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ABSTRACT

Shift-invariant dictionaries are generated by taking all the possible
shifts of a few short patterns. They are helpful to represent long
signals where the same pattern can appear several times at different
positions. We present an algorithm that learns shift invariant dic-
tionaries from long training signals. This algorithm is an extension
of K-SVD. It alternates a sparse decomposition step and a dictio-
nary update step. The update is more difficult in the shift-invariant
case because of occurrences of the same pattern that overlap. We
propose and evaluate an unbiased extension of the method used in
K-SVD, i.e. amethod able to exactly retrieve the original dictionary
in a noiseless case.

1. INTRODUCTION

Obtaining a sparse representation of a large signal is a key pre-
processing step for many applications. Many common classes of
signals are known to be well representable on some analytical ba-
sis: wavelets for natural images, Gabor bases for sounds [1].. .. For
more complex classes, it might not be possible to find one basis that
can represent the whole class efficiently. Then an overcomplete dic-
tionary containing more vectors called afoms than the dimension of
the signal space must be used. For example a musical signal often
contains short and long notes, thus a multiscale Gabor dictionary
would perform better than a simple Gabor basis.

When one does not know an analytic dictionary that fits a signal
class, it can be useful to learn such a dictionary. To do this one usu-
ally relies on several examples of signals chosen among the class
and searches the dictionary of a given size that minimizes the ap-
proximation error under a sparsity constraint. Roughly speaking,
the K-SVD algorithm [2] attempts to perform this job by alternat-
ing a sparse approximation of the training signals on the current
dictionary and the optimization of the dictionary according to the
computed decomposition.

When the signals are known to be shift-invariant, one would also
like to learn a shift-invariant dictionary generated by all the possible
shifts of a set of patterns. A limited set of patterns can generate a
huge dictionary while keeping the number of free parameters low.
Standard K-SVD and many other learning algorithms do not allow
this. The only way they have to deal with large signals is to split
them into small frames and to consider those frames as the train-
ing set. While this enables the learning of time-localized atoms,
their position is arbitrary and each shift of a pattern has to be learnt
individually.

In this paper we present an extension of K-SVD that learns this
set of patterns from a long signal.

2. PRINCIPLE
2.1 The problem

A dictionary D is a matrix whose columns dj, are called atoms. A
signal s has a sparse representation on D if it can be decomposed as
a linear combination s = Dc where the number of non-zero coeffi-
cients in ¢, usually noted ||c||o, is much smaller than the length (i.e.
the number of samples) of s.

Given a family of signals s;, the dictionary learning problem can
be expressed as the computation of a dictionary that minimizes the
approximation error under a hard sparsity constraint:
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where L is the maximum number of atoms allowed.

In the shift-invariant case, the learning is performed on one long
signal s instead of a training set and the dictionary D is built by shift-
ing a family M of patterns m: M = (my)1<x<g. Now it is this set of
patterns that has to be learnt and the learning problem is defined by
the new objective function:
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where T; is the shift operator that takes a pattern m and returns
an atom that is null everywhere except for a copy of m that starts
at instant 7. So we have D = (Trmy) . For this work we only
considered integer shifts 7.

2.2 Global overview

Shift-invariant K-SVD follows an iterative strategy described in Al-
gorithm 1.

The decomp function tries to compute the best decomposition
(i.e. the best ¢) of the signal on the current dictionary and the update
function computes the dictionary that minimizes Criterion (1) with



Algorithm 1 (M, ¢, t) — K-SVD(s,L, M)
M — Myt
while the algorithm has not converged do
¢ < decomp(s,M,L)
(M,c) < update(M, s,c)
end while

fixed 7. This alternate optimization has already been widely used in
dictionary learning [3][7][8]. The main difference in our approach
is that we don’t rely on the value of the amplitude coefficients, but
only on the instants where they are not null.

Whereas the external loop described in Algorithm 1 is very simi-
lar to the K-means one, each inner step is more difficult. The sparse
decomposition problem is combinatorial, so we will have to use a
suboptimal algorithm. The dictionary update also becomes a hard
problem. In K-means, each pattern can be updated independently
from the others. This is not the case here: Objective function (1)
cannot be separated in individual objectives for each pattern. In this
work, we dealt with it by updating each pattern m;, successively and
update the amplitude coefficients ¢ ; accordingly before updating
the next pattern. Engan et al. [7] propose a way to update all the
patterns at the same time, but they do so with fixed coefficients.

3. SPARSE DECOMPOSITION STEP

Finding the closest sparse approximation of a signal on a given
dictionary is a combinatorial problem, but many sub-optimal algo-
rithms are known. They can be sorted in 2 main groups: greedy
algorithms which select atoms successively and optimisation algo-
rithms that solve a constrained least-square problem. Both have
been proven to give the right solution when the dictionary is in-
coherent [4], i.e. when different atoms of the dictionary are little
correlated.

Unfortunately, this is not the case here as there is few difference
between close shifts of a given pattern. We need an algorithm that
does not perform too bad with highly coherent dictionaries, and that
can deal with very large dictionaries: the size of our dictionaries
will roughly equal the number of patterns times the length of the
signal, generally several million atoms. For all these reasons we
chose Matching Pursuit (MP).

3.1 Matching Pursuit (MP)

MP is a greedy algorithm. At each step, it selects the atom that has
the highest correlation with the current residual, adds it to the book
and subtracts it from the residual. The basic algorithm is explained
in Algorithm 2. A fast C++ implementation has been developed for
the shift invariant case L. It deals efficiently with long signals (up to
memory capacity) without needing to split them thanks to the use
of fast convolution for correlation computation, local update at each
iteration and a tournament tree for the fast retrieval of the best atom.
More explanations about this implementaton can be found in [5].

Algorithm 2 ¢ < decomp(s,M, L)

rn=s=s

Vk,VT,Ck_’T.’() =0

fori=1to/do
(kiy i) = argmax  r) (ri—1, Tymy) {select best atom}
%= (rio1, Tomy,)
Chi,1,i = Chy,1y,i—1 T ¥ {store best atom}
V(k,T) # (ki, Ti), Ch,z,i = Chyrjie1
i = ri—1 — YiTr;my, {subtract from residual }

end for

'http://mptk.gforge.inria.fr/

3.2 MP stopping criterion

The main parameter to tune with this approach is the number of
iterations / that bounds the decomposition length L. It can often be
roughly estimated via simple preprocessing, such as spike detection.
Moreover, we have observed that the algorithm is quite robust to
overestimating the number of atoms, i.e. choosing L larger than
really needed. Such an experiment is shown in Section 5.2.2.

The problem can also be formulated as a constrained problem,
trying to minimize

I7il13 +Alleilo

over the iterations i instead of just performing a fixed number of
iterations. Such a function is very easy to compute after each MP
iteration. As the last selected atom is orthogonal to the last residual,
the error update rule is given by

2 2
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The lp norm of the coefficients can be computed greedily: it is equal
to 0 at the beginning of the algorithm and is incremented each time
a new atom is selected.

However, with such an approach there is still the A parameter
to tune. Parameter-free approaches have been proposed for other
algorithms, such as choosing the variance of the residual as A [3].
This leads to the objective function

201 leillo
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where T is the number of samples of the signal.

Unfortunately this approach cannot be used for greedy algo-
rithms. If the dictionary is quasi-incoherent, then the error is known
to decrease exponentially [6]. In that case, as the [y norm of the
coefficients is bounded by the number of iterations, the function
converges to 0 and never reaches its minimum.

Even with coherent dictionaries, we have observed experimen-
tally that the error is decreasing too fast (i.e. faster than %) and the
objective function keeps decreasing even for large decompositions.
This was observed for a decomposition of the signal used in Sec-
tion 5.2 with 200 000 MP iterations, about half the dimension of the
signal space.

In the experiments presented here we fixed the number of itera-
tions /.

4. DICTIONARY UPDATE STEP

The patterns are updated to minimize the error according to the
given supports o = {T|cy # 0}. As in standard K-SVD, this is
performed successively on each pattern. For a given pattern m ., if
we name § = r+ Y ¢ cx,t Trmy the signal without the contributions
of the other patterns m;, where k # K, then the best update pattern

t. .
my’ is given by:

opt opt\ __ .
(mK ,Cx )-argmmHmHz:l

Sk — Z cTrm
TECK )
4.1 Non-overlapping case
If the different occurrences of the pattern do not overlap, as the shift
operators T are unitary, we can easily show that:
2
= Z ||TT*§K—ch||§—|—cst 2)

) TEOK

Vm, ||§x — Z ctTrm

TEO,

where T; is the adjoint of 7; (i.e. the operator such that
Vm, Vs, (Trm,sy = (m,Ty's)). It takes a signal and extracts from it
a patch that has the same length as a pattern and begins at sample .



4.1.1 Update with fixed coefficients

If we fix the coefficients c¢, then the minimum of Expression (2)
over m is a simple weighted mean:

me— Y eiTise=| ) 2 | me+ Y oTyr

TEC, TEOCK TEOK

My

My — ——

Imellz

This update rule is very close to the Bayesian rule used in [3],

except that the adaptation rate (i.e. the trade-off between the old
pattern and the residual) here is chosen to minimize the error instead
of being fixed.

4.1.2  Joint update of the dictionary and coefficients

There are several reasons not to trust the coefficients given by the
decomposition step. First they have been computed by a decompo-
sition on the old dictionary, so we can hope to get better results with
joint optimisation than with alternate one. More important, most
sparse decomposition algorithms do not compute the orthogonal
projection of the signal on the sub-dictionary. Constrained optimi-
sation algorithms often use some other norm than the /o norm to get
a continuous or convex objective function, so the coefficients they
compute are biased by the constraint. There are greedy algorithms
such as Orthogonal Matching Pursuit that compute the orthogonal
projection of the signal on the sub-dictionary at each step, but cur-
rent implementations require too much time or memory when used
on long signals.

So we prefer to use only the support information from the de-
composition, then jointly estimate the value of the coefficients and
the new dictionary. This can be performed successively for each
pattern. The pattern and coefficients that jointly minimize Criterion
(2) are given by the SVD of the patch matrix. The pattern is the
principal component of the patches:

)
My < AIGMAX || | Z (m, T $ic) 3)
° 1€0¢
2
(cx,1)1e0, < argmin ||Sx — Z ctTem 4
TEOK )

4.2 Overlap handling

If the patches can overlap, then the decomposition (2) does not hold
any more. If we still use the previous learning rules, then we in-
troduce a bias in the learning. There have already been several ap-
proaches of this problem with fixed coefficients such as Engan et al.
[7], Aharon’s PhD thesis [8] and Skretting et al. [9].

One can also learn the new pattern only on patches that do not
overlap with another, as done in [10], but this introduces a bias and
a loss of robustness since the learning is performed on fewer train-
ing examples. That is the reason why we also propose an unbiased
update that extends the previous one.

Now the vectors T;§i cannot be used as patches because they
are perturbed by the other overlapping occurrences. We propose
to compute the patch family P = (pi 1)rco, that minimizes the
deviation of the current pattern direction:

P;(’bt = argmin(pi) Z llpz— CK,TmKH% Q)

TEOK

under the constraint that the patches rebuild the signal as perfectly
as possible:

V1 € oy, T; < Y TT«pf/> =T} §x

T €0y

If the patches do not overlap, then the constraint can be reduced
to VT € ok, py = T i and we get the previous case back. Other-
wise it can still be computed easily: the solution is given by divid-
ing the residual equally among the patches. If we define wy ¢ as the
number of patches that overlap on the 7 sample (and oo if there is no
patch, so that it can always be inverted) , then the solution can be
written as:

vt e GK',p(}i'?’i' = CK,TmK+T: <W;1 X ")

where X is the pointwise product of two signals and the powers of
wye are also computed point by point. With these notations and / the
length of the pattern we can compute the cost function (5):

Z HPT*CK.,rmK”% = Z ’

TEC, TEO,
2 2
-Y ¥ & = ¥ e
T€0k t'e[r,1+1—1] VK, T T Wy gy <00 K7
r%/ 7% 2
= — =||wx° Xr|| +cst
‘C’/WK1/<°° WK‘VT/ 2

where the constant only depends on the parts of the signal with no
occurrence of my. So at each step the new pattern is the vector
of canonical norm 1 that minimizes the elliptic euclidean norm of
1
2

the residual |w, > x r|[3. The less overlap there is at a sample T
1

(to a minimum of 1), the larger w. 2. So, compared to the canonical
norm, this elliptic norm penalizes more the error committed on parts
of the signal with few overlap, thus giving them more weight in
the computation of the pattern. It makes sense to trust more the
observed parts that are supposed to be less perturbed.

Then we take the new pattern as the principal component of the
patches, as in Equation (3). Finally the coefficients that reduce the
patchwise error (5) the most are given by

VT € Ok, Cx,r — <PK,7:-,mK>

If the patches do not overlap, then these coefficients are the same as
the ones given by the orthogonal projection update (4).

5. EXPERIMENTAL RESULTS
5.1 Exact recovery on synthetic data

This experiment is aimed at checking that the update method we
propose is unbiased, i.e. that it can recover the original dictionary if
we know the right decomposition support (o). We also measured
the influence of a bad estimation of the amplitude coefficients ¢y ¢
on the recovered dictionary. To do that we used a synthetic toy
example.

The dictionary contains only one random Gaussian pattern m
of length 1024 and the signal is generated with only 2 overlapping
occurrences of that pattern (op = {0,256}) with Gaussian ampli-
tudes (co 0,c0256). Then we iterated all the different update meth-
ods (without alternating with decomposition) with another random
dictionary and the exact decomposition support o as an input. The
input amplitude coefficients were (co o+ €0,0,¢0,256 + €0,256) Where
€ is an additive Gaussian noise. For the Bayesian, we used an adap-
tation rate decreasing as %, with i the iteration number, to ensure
convergence.

Figure 1 shows the dictionary SNR defined as —201log ||m —
mg|| where m is the learnt pattern and m the original one, depend-
ing on the number of successive updates. It shows that the princi-
pal component method with overlap handling converges to the ex-
act pattern with exponential speed. The SNR threshold at 300dB
corresponds to machine precision. Without overlap handling, the
principal component method converges very fast to a sub-optimal
solution.
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Figure 1: Dictionary SNR reached by the different update methods
on a toy signal with only 2 occurrences of the same pattern and a
200dB noise on the initial amplitude coefficients.

The optimal rate weighted mean update converges to a sub-
optimal solution with SNR roughly equal to the input coefficient
SNR equal to —20log; % This was observed for several differ-
ent coefficient SNR between 0 and 250dB. If the input coefficients
are the exact ones, then this method converges faster than the prin-
cipal component one to the optimal solution. Bayesian update os-
cillates because of a too big adaptation rate and converges much
more slowly to the same limit as weighted mean update (more than
1 million iterations, not shown on the plot). The final result of prin-
cipal component methods is not affected by the initial coefficients,
but convergence speed might slightly change.

These results were confirmed on more complex synthetic data
with several patterns in the dictionary and several random occur-
rences of each pattern in the signal (plot not shown).

5.2 Learning on a music track

We also ran these algorithms on real data to check that found
atoms are morphologically sound, to compare their performances
for sparse approximation and to observe the effect of a bad estima-
tion of the decomposition length L. These experiments were per-
formed on an excerpt from the RWC base 2. It is a 1 minute long
jazz guitar piece down-sampled to 8000Hz, so 480000 sample long.
All the learnt dictionaries contain 40 patterns of 1024 samples.

For all the learnt dictionaries, the learnt patterns were mostly
sinusoidal, sometimes with modulated amplitude. Some atoms had
a strong harmonic structure and some looked more noisy. Figure 2
shows some examples.

5.2.1 The different update methods

For the first experiment, we focused on the influence of the dic-
tionary update method chosen. All the dictionaries were learnt on
10000 atom decompositions with different update rules:

o the Bayesian rule used in [3]

o the weighted mean of the patches

e the principal component of the patches

o the principal component of the patches modified to handle over-

lap
Performing 100 learning iterations took about 3h 40min for the

two mean-based methods and about 4h 20min for the two SVD-
based methods. The difference remains quite low because most of
the time is spent in the decomposition step. At each iteration, one

’http://staff.aist.go.jp/m.goto/RWC-MDB/

Figure 2: Some learnt patterns
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Figure 4: reconstruction SNR of a music signal with dictionaries
learnt with different update methods

step of mean-based update costs about 20s, one SVD-based update
about 45s and one MP decomposition about 1min 50s. However,
the SVD cost might explode when dealing with very large patterns:
to our knowledge, the most efficient SVD algorithms have quadratic
complexity.

1]

Figure 4 shows the reconstruction SNR defined as —20log;, sl

as a function of the /y norm of the coefficients. It represents the
trade-off between the quality of an approximation and its sparsity.
All the update methods give quite close results, with a maximal
difference of 1.3dB. SVD without residual split performs better than
the weighted mean, and weighted mean performs better than the
Bayesian update with a fixed adaptation rate.

The overlap handling causes a loss of performance that could be
explained by the minimized error function. As seen in section 4.2,
when correcting the overlap we minimize the weighted euclidean

1

2

norm of the residual ||wy > x r||3. The fact that we don’t minimize
the cost function used for the performance measurements could ex-
plain the loss. This might be corrected in future works by looking
for another way to split the residual that leads to minimizing the
canonical norm.

5.2.2 Influence of the decomposition length

We also measured the effect of bad estimation of the number of MP
iterations / during the learning. In that goal we learnt several dic-
tionaries with several choices for I between 100 and 10 000 atoms,
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Figure 3: reconstruction SNR for dictionaries learnt on several decomposition lengths.
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then we measured the reconstruction SNR —20log; 7 obtained

Bl
by each dictionary for a decomposition of fixed length. Figure 3

shows the reconstruction SNR for a decomposition of 2 000 MP it-
erations on dictionaries learnt with an / parameter of 100, 200, 500,
1 000, 2 000, 5 000 or 10 000. We can see that the best dictionary
is the one learnt with the same decomposition length that is used
for measure. However, the SNR decreases slowly for dictionaries
learnt on bigger sizes. This leads us to believe that the algorithm is
quite robust to the overestimation of the decomposition length.

These results were also observed by comparing the SNR at all
the values of I used for learning one of the dictionaries (data not
shown).

6. CONCLUSION

We have presented a way to extend the K-SVD algorithm to learn
shift invariant dictionaries for sparse representation. The update
method we propose is unbiased and does not rely on the exact value
of the decomposition coefficients. We have observed on synthetic
data that this method is able to retrieve the dictionary used for syn-
thesis if provided the correct support of the decomposition. We have
also checked on real music data that the algorithm was able to find
sinusoidal and harmonic patterns modulated patterns.

Although not demonstrated here, the same algorithm can be used
to learn patterns of several sizes or on multidimensional signals.
The invariance to any group of unitary operators could also be easily
formally derived, but practical tractability would require an efficient
implementation of the corresponding decomposition.

This algorithm could be much improved by being able to learn
parameters such as the decomposition length, the number of pat-
terns or their length.
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