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Abstract

In this paper, we present optimal in time algo-
rithms to compute the distance transform, the re-
verse distance transform and the discrete medial
axis on digital objects embedded on n−dimensional
toric spaces.

1. Introduction

In binary images, the distance transformation
(DT) and the geometrical skeleton extraction are
classic tools for shape analysis [4]. The distance
transformation consists in labeling each pixel of an
object with the distance to the closest pixel of its
complement (also called the background). If we con-
sider a set of pixels labeled with a distance, the re-
verse distance transformation problem (RDT) con-
sists in reconstructing the binary shape obtained as
the union of all discs centered in the pixels and with
the distances as radii. If the underlying distance
is the Euclidean one, we can consider the SEDT
(Squared Euclidean Distance Transformation) and
the REDT (Reverse Euclidean Distance Transfor-
mation) see [3] for a survey. The medial axis is a
usual and convenient representation for shape de-
scription or recognition purposes [1]. In the fol-
lowing we focus on the discrete medial axis (DMA)
with Euclidean metric. In the digital space, we have
many efficient algorithms to compute such transfor-
mations [3]. The aim of this paper is to generalize
such techniques to toric spaces which is a widely
used model in the material analysis field [2].The
main idea is to perform measurements on a mate-
rial sample under the hypothesis that the overall
material is composed of a regular tiling of the sam-
ple (see Fig.1-(a, b)). Thus, in order to make the
measurements consistent through tiling, we have
to consider that the sample in embedded in a toric

space. The main contributions are n-dimensional,
error-free and optimal in time algorithms for the
SEDT, REDT and DMA on toric spaces.

2. Discrete Toric Spaces

In this section, we consider notations proposed
in [2]: let Zd (with d ∈ N) denotes the set
{0, 1, . . . , d − 1} and ⊕d be the sum operator on
integers modulo d: a ⊕d b = (a + b) modulo d.
Note that (Zd,⊕d) forms a cyclic group and can
be considered as a 1-D toric space. In dimen-
sion n, given (d1, . . . , dn) ∈ N

n, the direct product
Tn = Zd1

× . . . × Zdn
is an n-dimensional discrete

toric space [2]. On this space, we can define the ⊕
operator as the composition of the dimensional ⊕di

operators. A toric image is a mapping which asso-
ciate a value to each discrete point on a toric space.
We can define several n-dimensional adjacency rela-
tions [2], in the following, we only consider a simple
1−adjacency: two point p, q ∈ Tn are 1−adjacent
iff there is a vector s = (0, . . . , si, . . . , 0) on length n

with si = ±1 such that p⊕ s = q. The 1-adjacency
is equivalent to the 4-connectivity in 2-D and to the
6-connectivity in 3-D. In the following, a discrete
object on a toric space Tn is a set of 1-adjacent
grid points of Tn. Illustrations of a toric space and
a toric object in dimension 2 are provided in Fig. 1.

3. Separable Algorithms for the
SEDT, REDT and DMA

In this section, we first overview the separable al-
gorithms to compute the SEDT, the REDT and the
DMA of a discrete object in the classical Z

n grid.
[3]. Let us first consider the SEDT algorithm in the
2D case: given a two-dimensional binary object P

in a d1×d2 image, P̄ denotes the complementary of



(a) (b) (c) (d)

Figure 1. (a) a sample on a toric image, (b)
sample tiling, (c) 1-adjacency illustration

in 2-D, and (d) example of a disc on a toric

image.
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Figure 2. Lower and upper envelope com-
putations in SEDT and the REDT prob-
lems.

P , i.e. the set of background pixels. The output of
the algorithm is a 2D image H storing the squared
distance transform. The SEDT algorithm consists
of the following steps: first, build from the source
image P , a one-dimensional SEDT according to the
first dimension (x−axis) denoted by G = {g(i, j)},
where, for a given row j:

g(i, j) = min
x

{(i−x)2; 0 ≤ x < d1 and (x, j) ∈ P̄} .

(1)
Then, construct the image H = {h(i, j)} with a

y−axis process:

h(i, j) = min
y

{g(i, y) + (j − y)2; 0 ≤ y < d2} . (2)

To compute the first step of the SEDT, we perform
a two-scan of each image row independently and ob-
tain process in O(d1 ·d2). To solve the second step,
we can first observe that Eq. (2) corresponds to a
lower envelope computation of the set of parabolas
F i

y(j) = g(i, y)2 + (j − y)2, independently column
by column. To compute such a set, a stack based
technique has been proposed leading to a compu-
tational cost in O(d1 · d2) (see [3] for a complete
bibliography and Fig. 2−left). Note that Eq. (1)
can also be interpreted in terms of parabolas: given

the set of parabolas F j
x(i) = (i−x)2 for (x, j) ∈ P̄ ,

g(i, j) can be computed as the lower envelope of
this set. If no background pixels exist in the ith
row, the distance values of g(i, j) are set to +∞
(and thus propagated through the dimensions with
adapted arithmetical operators).

REDT and the DMA can also be decomposed
into separable upper envelope computations, sim-
ilarly to Eq. (2) [3]. Indeed, given a set of discs
L = {xk, yk, rk} with centers (xk, yk) and radii rk,
the REDT consists of extracting the set of grid
points P such that

P = {(i, j) | (i−x)2+(j−y)2 < r2

k, (xk, yk, rk) ∈ L} .

(3)
Let F = {f(i, j)} be a picture of size d1 × d2 such
that f(i, j) is set to r(i, j)2 if (i, j) belongs to L

and 0 otherwise. Hence, if we compute the map
H = {h(i, j)} such that

h(i, j) = max{f(x, y) − (i − x)2 − (j − y)2;

0 ≤ x < d1, 0 ≤ y < d2 and (x, y) ∈ F} , (4)

we obtain P by extracting from H all pixels of
strictly positive values. So, to build H from F ,
we can decompose the computation into two one-
dimensional steps: first, build from the image F

the picture G = {g(i, j)} such that

g(i, j) = max
x

{f(x, j) − (i − x)2, 0 ≤ x < d1} . (5)

Then define from G the picture H such that

h(i, j) = max
y

{g(i, y) − (j − y)2, 0 ≤ y < d2} . (6)

Once again, both processes require a computation
of the upper envelope of a set of d parabolas that
can be done in O(d) per line or column (see Fig.
2−right) [3]. Hence, in dimension 2, the overall
computational cost is in O(d1·d2), which is optimal.

Concerning the Discrete Medial Axis computa-
tion, we have proven in [3] that the DMA can be
extracted during the REDT process with exactly
the same computational cost.

We do not go further into details but just focus
on the advantages of such algorithms: first the com-
putations are exact since we use an error free com-
putation with the Euclidean metric. Then, all these
algorithms are optimal in time O(d1 · . . . · dn) for a
d-dimensional image and can be extended to higher
dimensions since the internal processes are separa-
ble. Finally, all tools are based on the same 1-D
algorithmic tool: the upper/lower envelope compu-
tation of a set of parabolas. In the following sec-
tions, we extend all these algorithms to toric spaces



The main problem we have to consider in the
toric spaces is the information propagation between
the domain borders, otherwise, values may be in-
correct (see Fig. 5). Due to the separability of the
previous algorithms, the problem can be simplified
since, at each step, we have a 1-D process and thus
a 1-D propagation. For SEDT algorithm in dimen-
sion 2, during the first step, we just have to take
into consideration propagations along the x−axis
(Eq. (1)). Similarly, only propagations along the
y−axis may occur during the second step. If we
consider now the 1-D processes, for each algorithm,
we have to perform a upper (resp. lower) envelope
computation of a given set of parabolas. over 1-D
cyclic group (Zd,⊕d).

4. Lower/Upper Parabola Envelope
Computation on 1-D Toric Image

For the sake of clarity, we focus in the following
on the lower envelope computation problem. Re-
sults for the upper envelope computation are sim-
ilar. As illustrated in Fig. 3, let us consider a
set F of d parabolas {(al, hl)}l=0...d−1 such that
Fl : x → hl + (al − x)2 and ai 6= aj for all i and j.
The point (al, hl) is thus the apex of the parabola
Fl (dots in Fig. 3). To compute the lower envelope
on a cyclic group, the main idea is to find the in-
dex k ∈ {0, . . . , d − 1}, so-called break index in the
following, which allows us to break the cycle and
thus use the classical lower envelope computation
algorithm to obtain the result.
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Figure 3. The cycle unfolding along the

break index (3).

Lemma 1 A break index for the toric lower (resp.
upper) parabola envelope computation is obtained
by taking the abscissa al of a parabola Fl with min-
imum (resp. maximum) height hl.

PROOF: first of all, let us consider two parabolas
F1(x) = h1 + (a1 − x)2 and F2(x) = h2 + (a2 − x)2

such that a1 < a2 and such that h2 < h1. In other
words, F2 is the parabola with minimum height of

{F1, F2}. Since the intersection between any two
parabolas of F is reduced to a point, we denote
Pij(xij , yij) the intersection point between Fi and
Fj . Since h2 < h1 and a1 < a2 then x12 < a2.
Hence, for x > a2 we have F2(x) < F1(x). In
other words, the parabola F1 does not interfere in
the lower envelope computation of the right part
of the F2 parabola. Let us consider now the set
F on a non-cyclic index group and suppose that
Fl is the parabola with minimum height. We de-
note F< (resp. F>) the parabolas Fi such that
ai < al (resp. ai > al). We can compute the
set of parabolas belonging to the lower envelope of
F as the union of the lower envelope of F<, the
parabola Fl and the lower envelope of F> (since Fl

is the parabola with minimum height, it necessar-
ily belongs to the lower envelope). With the above
argument used on each pair Fi and Fl, we can con-
clude that the envelope computation on F< and
F> are independent. If we consider now a cyclic
index group for F , the parabola Fl allows us to con-
trol the propagation on the envelope computation.
Hence, if we consider the sequence of d+1 parabo-
las F ′ = {Fl, Fl⊕1, . . . , Fl⊕d−1, Fl} (the parabola Fl

is duplicated in some sense). The cyclic lower enve-
lope computation on F ′ is exactly the same as the
non-cyclic lower envelope computation. Hence, l is
the break index of F and allows us to use the clas-
sical lower envelope computation on the unfolded
cycle.✷

Hence, to compute the lower envelope of F , the
overall algorithm can be sketched as follows: first
we identify the parabola with minimum height, we
construct the set F ′ and then we use the classi-
cal algorithm. We conclude with the fact that the
parabolas in the lower envelope computation of F ′

are also in the lower envelope of the cyclic group
F .

5. Application to SEDT, REDT and
DMA problems

Considering the SEDT problem, Fig. 4 illus-
trates the overall 1-D process for the first step (Eq.
(1)): in this case, the break index is the first back-
ground pixel found in during a forward scan. We re-
construct a d+1 vector, duplicating the first break
index value at the end. We apply the classical 1-
D SEDT algorithm on this vector and finally copy
the values into the cyclic vector. Since all rows can
be processed independently, the above procedure
can be applied of every rows leading to a correct
result thanks to Lemma 1. Concerning the sec-
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Figure 4. Illustration of the cycle unfolding
for the first step of the SEDT computation.

ond step (Eq. (2)), we us the same principle with
a break index defined as the index of the parabola
with minimum height (obtained in linear time). Fi-
nally, thanks to Lemma 1 and to the separability if
the problem, we obtain a correct SEDT algorithm
on toric space that is linear in the number of grid
points (see Fig. 5). Concerning the REDT and
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Figure 5. Overall SEDT computation on a
classic space (top) and on a toric space
(bottom).

the DMA problems, we have the same results us-
ing the parabola index with maximum height as
break index. Finally, we also have optimal in time
algorithms for the REDT and DMA problems in
arbitrary dimension for toric spaces.

To illustrate these algorithms on toric spaces in
dimension 2 and 3, Fig. 6 gives results of the toric
SEDT and DMA in dimension 2 on the input ob-
ject presented in Fig. 1-(d). Note that tiling il-
lustrations allow the reader to make sure that the
toric behaviors of the algorithms are visually cor-
rect. Finally, Fig. 7 presents results in dimension

(a) (b) (c) (d)

Figure 6. (a) SEDT of the toric sample, (b)
tiling of the sample, (c) DMA of the toric

sample, and (d) tiling of the DMA.

3 (SEDT and REDT).

(a) (b) (c)

(d) (e) (f)

Figure 7. Toric SEDT in dimension 3: (a)
input sample, (c) volumetric SEDT trans-

formation computed on the sample and
tiled, (d) represents a slice of the volumet-
ric SEDT. REDT example: (a) an input set
of discs, (b) a toric reconstruction, and (c)
a tiling of the reconstruction.

6. Conclusion

In this paper, we have presented a generaliza-
tion to toric spaces of several tools widely used
in shape analysis: the SEDT, the REDT and the
DMA. More precisely, we have first identified the
core procedure in all the optimal in time algo-
rithms for these problems: the 1-D lower/upper en-
velope computation of a set of parabolas. We have
solved this problem on toric spaces and thus ob-
tained n−dimensional separable, optimal in time,
algorithms for the SEDT, the REDT and the DMA
problems on toric domains.
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