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In this article we present the study of the sensitivity optimization of our system of micromechanical
characterization called the scanning microdeformation microscope. The flexural contact modes of
vibration of the cantilever have been modeled. We discuss the matching between the cantilever
stiffness and the contact stiffness which depends on the sample material. In order to obtain the best
sensitivity, the stiffnesses must be the closest one to each other. Because the length of the cantilever
directly affects its stiffness, the cantilever geometry can be optimized for different materials. We
have validated this study with measurements on a soft material the polydimethylsiloxane with a
cantilever optimized for materials of Young’s moduli of some megapascals. Experimental results
obtained with two different samples have shown the high sensitivity of the method for the
measurement of low Young’s moduli and have been compared with nanoindentation and dynamic
mechanical analysis results. © 2008 American Institute of Physics. �DOI: 10.1063/1.2894208�

I. INTRODUCTION

Over the past few years, the atomic force microscope
�AFM� has been used not only for imaging topography but
also to probe mechanical properties at nanometre scale. Pres-
ently, by using force modulation mode measurements, elastic
properties of many materials can be estimated.1–7 Our tech-
nique called scanning microdeformation microscope8 �SMM�
works on higher scale �mesoscopic scale� and gives local
mechanical spectroscopy for mechanical characterization.
We present in this article the use of the SMM to characterize
a soft material—polydimethylsiloxane �PDMS�—which is a
viscoelastic polymer even used for microfluidic applications.
We made a detailed study of the sensitivity of the system in
order to optimize the cantilever sizes related to the stiffness
of the measured sample. And we validated it by characteriz-
ing two different PDMS samples.

II. THE SCANNING MICRODEFORMATION
MICROSCOPE

The SMM is a kind of ac-force contact microscope. The
sensor is a micromechanical resonator �Fig. 1� composed of a
silicon cantilever with a small sharp sapphire tip at the end.
The cantilever is glued onto a piezoelectric bimorph trans-
ducer at the other end. The transducer excites the vibration of
the tip-sample system. The tip remains in contact with the
sample and vibrates at some kilohertz with an amplitude of
some nanometers. Amplitude and phase of the vibrating can-
tilever are measured with a high sensitivity heterodyne
interferometer.9,10 The operation of the SMM is described in
Fig. 2.

The signal at the probe output is averaged with the
double-phase lock-in amplifier. Amplitude and phase of the
cantilever displacement are recorded by the computer. More-

over, a modulated laser diode is used in a deflectometer to
control the static force applied on the sample thanks to the
second lock-in �and the third one can be used for a transmis-
sion mode operation�. This microscope is an effective tool to
image surfaces and subsurfaces with heterogeneous local
elasticity or to characterize elastic properties of a material. In
the framework of this study, we use it to measure Young’s
moduli. So we put the tip in contact with the sample and we
apply an additional static force by vertically displacing the
clamped end of the cantilever. Then we scan the excitation
frequency. The resonant frequency depends on the static
force applied via the contact stiffness. Actually, by measur-
ing this resonant frequency, we can estimate local contact
stiffness and then, with a well-suited model, the local
Young’s modulus.

Other ultrasonic noninvasive methods such as atomic
force acoustic microscope, ultrasonic force microscopy, or
AFM spectroscopy with heterodyne interferometer make
such a characterization on the nanometer scale but with less
accuracy because the contact model must take into account
additional forces on this scale.1–3,7 We can also notice the
nanoindentation and particularly continuous stiffness mea-
surement technique which is a destructive method which en-
ables local elasticity measurements.11

III. MODEL

We have used a continuous model6,12 �Fig. 3� to obtain
Young’s moduli values of tested samples from the measured
contact resonant frequencies. The cantilever is represented
as a beam interacting with the sample through two springs
kN and kT. The piezoelectric bimorph transducer action on
the cantilever has been modeled as simple mass mp and
spring kp.
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We need to precisely know contact conditions to relate
model springs to local elasticity of the sample. Hertz theory
of static contact provides the relation between the static force
applied and the contact effective Young’s modulus E*,13

F = 4
3E*R1/2�3/2, �1�

with

1

E*
=

1 − �t
2
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+
1 − �s

2

Es

�
1 − �s
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Et�Es �for us Esapph.�EPDMS� where � is the elastic inden-
tation in the sample and R the radius of the tip. Et, �t and Es,
�s are, respectively, Young’s modulus and Poisson ratio of
the tip and the sample. Thus the static force applied on the
sample is related to the static vertical displacement of the
cantilever and to the longitudinal stiffness by the following
expression:

F =
kckN

kc + kN

�z . �3�

Mindlin theory on the contact between a sphere and a
plane13 makes possible to take into account the lateral stiff-
ness and gives the relation between the longitudinal and lat-
eral stiffness,

kT = 4kN
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with
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Let us now consider a small variation of the elastic in-
dentation induced by the harmonic force like Mahaffy et al.

did,14

� = �0 + d� , �7�

F = F0 + dF . �8�

Equation �1� becomes with a first order approximation,

�9�

with E0
* the static reduced Young modulus of the sample and

E1
* the dynamic reduced Young modulus at the working fre-

quency �which are different for polymers�.
The dynamic contact stiffness equals, by definition,

kN =
dF

d�
= 2R1/2E1

*�0
1/2. �10�

And finally, using Eqs. �9� and �10�,

FIG. 1. Vibrating sensor of the SMM.

FIG. 2. Principle of the SMM.

FIG. 3. Model used to describe the behavior of the SMM.
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kN = E1
*�6RF0

E0
* 	1/3

. �11�

To extract Young’s modulus from the contact resonant
frequency, we solved the linear differential equation for the
vibration of the beam with boundary conditions,12

EcI
�4y

�x4 + �S
�2y

�t2 = 0, �12�

where Ec is Young’s modulus, I the area moment of inertia, �

the volume density, and S the cross section of the cantilever.

IV. SENSITIVITY STUDY

The sensitivity of our measurement system can be de-
fined as �f /�kN or �f /�E which represents the variation of
resonant frequency for a variation of contact interaction or
local elasticity. Actually, we need to obtain the greatest shift
frequency for two materials of different Young’s moduli.
Such considerations have already been treated for AFM in
force modulation by Chang,15 Wu et al.,16 Turner and
Wiehn.15,17 For all the sensitivity study we considered that
the beam is clamped because the spring kp modeling the
bimorph interaction depends on the cantilever and cannot be
applied here. We plotted the normalized sensitivity of the
first three flexural modes versus contact stiffness for a beam
with a length of 4 mm and with kT=0.68kN �Fig. 4�. We can
see that for soft materials, the first mode is the most sensi-
tive. But when contact stiffness increases and reaches nearly
a hundred times the cantilever stiffness, the second mode
becomes the most sensitive. And for larger values of contact
stiffness the third mode becomes the most sensitive too. We
can also notice that the first mode becomes always less sen-
sitive when the contact stiffness is greater, whereas for the
other modes the sensitivity first decreases and increases
again to reach a local maximum before decreasing with the
contact stiffness.

We can also plot the following expression: SN

= ��f /�kN��kN / f� which represents better the ability to distin-

guish two different materials with Young’s moduli close to
each other than sensitivity does. Actually SN is well appro-
priate because it takes into account the working frequency
and contact stiffness. SN has been plotted for a cantilever
with a length of 4 mm versus contact stiffness �Fig. 5�. We
can see that the curves are different from those of the sensi-
tivity. SN has a global maximum, whereas precedent sensitiv-
ity always decreases with contact stiffness for the first mode.
Besides curves appear quite symmetrical on each side from
this maximum. By means of this parameter, we highlight
precisely the contact stiffness which maximizes the ability to
measure elastically close materials. For the first mode SN

reaches a maximum for a contact stiffness of nearly ten times
the cantilever’s one, 1000 times for the second mode, and
10 000 times for the third mode. We can also notice that the
range of high value of SN is large for the first mode but is
reduced for the second mode and even more for the third
one.

In order to have the best sensitivity, the cantilever stiff-
ness kc and the contact stiffness kN must be close. In fact, if
kN is far bigger than kc, the cantilever will totally bend.
Whereas if kc is far bigger than kN, the tip will indent the
sample. The cantilever stiffness kc equals 3EcI /L3, Ec being
Young’s modulus of the cantilever material, and I the area
moment of inertia �I=bh3

/12 for a rectangular section beam,
b being the width of the beam, and h the thickness�. Obvi-
ously, the parameters which most affect the stiffness are the
length and the thickness of the beam because they are cubed
in the expression of kc. Theoretically, the effect of other pa-
rameters such as b, R, or the tip length are negligible for this
application, but no generalization is allowed. So we have
only focused our study on the length of the cantilever �it is
easier and faster to fabricate on the same wafer beams of
different lengths than different thicknesses by clean room
techniques�. We made the sensitivity study for a static force
of 0.5 mN. Normalized first flexural mode sensitivity
SN= ��f /�E��E / f� is plotted for beam lengths from

FIG. 4. Normalized flexural sensitivity df /dkN as a function of contact
stiffness kN �normalized by the cantilever stiffness kc�, with kT=0.68 kN for
a cantilever with a length of 4 mm, a width of 400 �m, and a thickness of
150 �m for the first three modes.

FIG. 5. Normalized flexural sensitivity �df /dkN��kN / f as a function of
contact stiffness kN �normalized by the cantilever stiffness kc�, with
kT=0.68 kN for a cantilever with a length of 4 mm, a width of 400 �m, and
a thickness of 150 �m for the first three modes.
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1 to 7 mm and materials of Young’s moduli of 10 MPa,
1 GPa, and 100 GPa �Fig. 6�. Thickness is assumed to be
150 �m and width of 400 �m.

We can notice that, depending on Young’s modulus, sen-
sitivity is increasing or decreasing with the length of the
cantilever. Actually for a hundred-gigapascal Young’s modu-
lus material, the best sensitivity is obtained with a length of
2 mm, whereas for a ten-megapascal Young’s modulus one,
it is with the length of 7 mm. So the cantilever with a length
of 7 mm is optimized to characterize very soft materials. In
fact with this cantilever, contact stiffness with Young’s
moduli of some tens of gigapascals, such as silicon or silica,
kN ��150 000 N /m� is nearly 1000 times greater than
kc ��150 N /m�.

So SN is a very useful parameter to compare the effi-
ciency of our measurement system for different materials.

V. EXPERIMENTAL RESULTS

We tried to validate this precedent study by characteriz-
ing a very soft material by the cantilever with a length of
7 mm. A sapphire tip with a length of 0.7 mm and a radius of
curvature of 45 �m was used. We chose PDMS. PDMS is a
silicon-based viscoelastic polymer. Mechanical properties of
this material vary with preparation conditions. Actually
Young’s moduli values can fluctuate in the range of 100 kPa
to some megapascals depending on this preparation.18

We used two different PDMS samples with thicknesses
of some millimeters prepared in different conditions and dif-
ferent aging times. To characterize PDMS we put the spot of
the laser at the end of the cantilever because it is where the
amplitude of vibration of the first contact mode is the great-
est �whereas for harder materials the maximum is on the
middle of the beam�. The model agrees with these observa-
tions �see Fig. 7�. We can also notice that for hard materials
the bimorph interaction spring kp has a real influence on the
modulus computed and has to be fitted with a known sample,
whereas with PDMS the value of kp doesn not hardly change

the result. Figure 8 shows resonances on the first sample of
PDMS for different static loads. We can observe the shift
frequency and the amplitude losses versus the force because
of damping, whereas with an elastic material such as silicon
we observed that amplitude increases with the force.

To estimate Young’s modulus of the sample we realized
15 successive measures in the same conditions. Static force
applied was 150 �N because this load provides the best sen-
sitivity �the best slope of frequency versus force�. A new
contact was obtained for each measurement and we recorded
the magnitude spectrum. The dispersion of amplitude is
nearly 0.75 Å and 80 Hz in frequency. So we obtain a mean
value for the frequency close to 4.18 kHz. And thanks to the
model by taking 0.48 for �, we computed Young’s modulus
of 3.4 MPa. ��0.3 MPa by considering sensitivity and fre-
quency dispersion�. We took 1.7 MPa for the static Young
modulus �dynamic mechanical measurement value�.

We did the same for our second PDMS sample, and we
finally measure a mean resonant frequency of 4.53 kHz and

FIG. 6. Normalized flexural sensitivity �df /dE��E / f for a cantilever with
a thickness of 150 �m, width of 400 �m for the first contact mode �with a
static force of 0.5 mN� as function of the length of the cantilever for differ-
ent Young’s moduli of the sample.

FIG. 7. Theoretical deformation shapes of the first flexural mode in contact
with SiO2 and PDMS.

FIG. 8. Experimental spectra of amplitude of vibration �first mode� as a
function of frequency in contact with the first PDMS sample for a driving
voltage of the bimorph of 0.5 V and for different static forces.
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also for Young’s modulus a value of 5.5 MPa ��0.3 MPa�.
We took 2.8 MPa for the static Young modulus �dynamic
mechanical measurement value�. The SMM has already been
tested on standard hard materials such as silicon and
silica6,12,19 and leaded to a precision of nearly 5% with the
model we are using. We are able to characterize two very
soft samples with Young’s modulus difference of some
megapascals. The shift frequency difference between the two
materials is 350 Hz �see Fig. 9�. For example, the shift
frequency difference with the same cantilever between
silica �72 GPa� and silicon �100� �130 GPa� is nearly
1 kHz �see Table I�. Experimentally the sensitivity has in-
creased by a factor of 10 000. SN also has increased by a
factor of 3.

We compared our measures with other ones made by two
different techniques—nanoindentation �static and continuous
stiffness method� and dynamic mechanical analysis—
�DMA�—on the same samples for a wide range of frequen-
cies �Fig. 10�. DMA measures were conducted on a BOSE
electroforce 3200 machine. Sample useful length was
33 mm, for a section of 13.5�3.9 mm2. A feedback on the
position with a peak to peak amplitude of 0.5 mm �corre-
sponding to a deformation of �7.6�10−3� for a preload de-
formation of 7.6�10−3 was realized. The sample also was
always in traction even at the down point of the cycles. Tem-
perature was nearly 22 °C. We can observe that Young’s
modulus increases with the working frequency which is typi-
cal of the evolution of viscoelastic materials. We also notice
that SMM measures are a possible continuity at higher fre-
quencies of DMA and nanoindentation curves. Actually the

two moduli measured, thanks to the SMM, seem to prolong
correctly the curves, but it is difficult to be more affirmative
because of the two decades between the measures.

VI. CONCLUSION

In this paper we discussed the optimization of our SMM
by taking into account the sample material considered and
the stiffness of the cantilever. We can summarize our conclu-
sions as follows.

�1� The sensitivity of the three first contact modes of the
SMM has been studied. Sensitivity decreases with the
contact stiffness. The first mode is the most sensitive but
when contact stiffness increases higher modes become
the most sensitive.

�2� The parameter SN �sensitivity reduced to working con-
tact stiffness and frequency� shows for each mode a
maximum corresponding to a contact stiffness. Actually
we saw that SN is maximum when the contact stiffness
and the cantilever stiffness are of the same order of mag-
nitude for the first mode.

�3� The sensitivity is also depending on the stiffness of the
cantilever. So the length of the cantilever which directly
affects its stiffness is a mean to optimize the cantilever
with the considered material. We chose lengths of 7 mm
because they are optimized for soft materials �increasing
sensitivity by a factor of 10 000 and factor of 3 for SN,
compared with hard materials�.

�4� Measures have been made to validate our study. We
characterized two different PDMS samples by measur-
ing a shift frequency which enables us to compute their
Young’s moduli �3.4 and 5.5 MPa� and we obtained a
great sensitivity. Comparisons with DMA and nanoin-
dentation measures show a possible continuity between
the three techniques.
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FIG. 9. Experimental spectra of amplitude of vibration �first mode� as a
function of frequency in contact with the two different PDMS samples for a
static force of 150�N and for a driving voltage of the bimorph of 1 V.

TABLE I. Frequency shifts and sensitivities for stiff and flexible materials
with a cantilever with a length of 7 mm.

Materials SiO2 /Si Different PDMSs
� shift frequency 1 kHz 350 Hz
Sensitivity 0.015 Hz /MPa 167 Hz /MPa
SN 47�10−3 136�10−3

FIG. 10. Young’s modulus measured by nanoindentation, DMA, and SMM
techniques as a function of the working frequency.
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