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Abstract

We develop an approach for the exploratory analysis of gene expression data, based upon blind

source separation techniques. This approach exploits higher order statistics to identify a linear model

for (logarithms of) expression profiles, described as linear combinations of “independent sources”. As a

result, it yields “elementary expression patterns” (the “sources”), which may be interpreted as potential

regulation pathways. Further analysis of the so-obtained sources show that they are generally characterized

by a small numbers of specific co-expressed or anti-expressed genes. In addition, the projections of the

expression profiles onto the estimated sources often provides significant clustering of conditions.

The algorithm relies on a large number of runs of “independent component analysis” with random

initializations, followed by a search of “consensus sources”. It then provides estimates for independent

sources, together with an assessment of their robustness.

The results obtained on two datasets (namely, breast cancer data and bacillus subtilis sulfur metabolism

data) show that some of the obtained gene families correspond to well known families of co-regulated genes,

which validates the proposed approach.
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I. Introduction

Todays microarray experiments yield large volumes of data, and raise numerous statistical problems.

Some of them are directly related to the experimental protocole and correction of the various biases (for

example, normalization, image analysis, background correction) while others address data analysis and

interpretational issues. This paper is devoted to the statistical analysis of microarray data using “blind

source separation techniques”, aiming at identifying “elementary” independent expression patterns, which

may be thought of as potential candidates for regulation pathways.

Besides methods for studying differentially expressed genes in microarray data (see for example (Du-

doit et al., 2002)), many different approaches have been proposed for various goals, including among

others condition and/or gene clustering and condition discrimination. We shall deal in this paper with

an approach based on a linear modeling of logarithms of expression data, as opposed to clustering based

approaches. Clustering based methods (including hierarchical methods such as UPGMA, or agglomerative

approaches -K-means, SOM,...) have been very popular, because they are fairly easy to use and require

(at first sight) little tuning effort1. However, clustering is not always completely adapted to microarray

datasets: though genes involved in the same biological process are likely to exhibit somewhat similar ex-

pression patterns, and thus be correctly clustered by most clustering algorithms, some may be significantly

involved in several biological processes, and could therefore be naturally clustered with several different

gene groups. Also, hierarchical clustering methods do not provide any simple way to find genes or gene

groups with opposite expression patterns. In addition, microarray data often yield “unregulated” genes,

whose expression profile does not contain much information, and prior filtering of such genes which are

not regulated is generally necessary before applying clustering.

Linear models attempt to describe expression data as linear combinations of elementary “modes”,

to be interpreted as “expression patterns”. An elementary mode takes the form of a “fake” microarray,

i.e. a set of gene expression data. After such elementary modes have been identified, conditions may

be compared to them, which yields useful informations in terms of condition classification. Also, the

distribution of gene expression levels in a given source generally features a small number of significantly

1This is not totally true, since all clustering strategies require prior decisions regarding for instance the choice

of distances or dissimilarities, the agglomeration strategies, and others which may be subject to arguments.



3

over-expressed or under-expressed genes, which kind of “govern” the source. Those genes generally form

very biologically coherent groups, and may be interpreted in terms of regulatory pathways.

A criterion is necessary to extract these elementary modes from datasets. Quite often (this is also true

for clustering techniques), one relies on tools (for example distances or dissimilarities) closely connected

to second order statistics (covariance, correlation.) This is in particular the case of PCA (Principal

Component Analysis) or SVD (singular value decomposition)) based approaches (see for example (Alter

et al., 2003), (Ghosh, 2002) and (Wall et al., 2001)), or clustering methods (see for example (Eisen

et al., 1998), (Ben-Dor et al., 1999) and (Peterson, 2002)) using correlation or Euclidean distances.

However, higher order statistics (for example, moments of higher order) contain significant complementary

information. This is the case in particular as soon as the statistical distribution of data differs significantly

from normal distributions, which turns out to happen quite often in microarray data. Indeed, some

particular genes may happen to be significantly over-expressed in some specific conditions (and under-

expressed in some others), which yields “heavy tail” distributions. Therefore, it makes sense to try to

exploit such higher order statistics for the analysis of expression data; this turns out to yield informations

which are complementary to the informations provided by first and second order moments.

In this paper, we report on an approach based on signal processing techniques known as blind source

separation methods, which amount to estimate linear mixtures of statistically independent modes from

observations, therefore assumed to originate from a linear combination of independent, non-Gaussian,

sources. The estimation of such independent components is based on techniques which go under the name

of Independent Component Analysis (ICA for short, see (Cardoso, 1998; Hyvärinen, 1999) for reviews.)

Our approach models logarithms of expression profiles (by expression profile, we shall mean a set of

expression levels for a given condition and a fixed gene set) as linear combinations of “elementary” sources

(logarithms of profiles) which are statistically independent. The estimation of these independent sources,

and of the corresponding mixing coefficients is performed using an algorithm called FastICA developed

by Hyvärinen and coworkers (Hyvärinen, 1999). The rows of the mixing matrix represent the coefficients

of the projection of the conditions onto the estimated sources. As such, they provide useful informations

in terms of discrimination or clustering of conditions. Further analysis shows that the estimated sources

often exhibit a certain number of over-expressed and under-expressed genes, which may be used for further
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analysis of the data under consideration.

Since all ICA implementations we know of have to face the classical problem of convergence to local

optima (a problem already alluded to in (Liebermeister, 2002), who mentioned that his results were

“quite reproducible”), our approach relies on multiple ICA runs (with random initializations), followed

by a search of “consensus independent sources”, which yields extremely stable and robust estimates for

the sources, as well as indications relative to their stability.

We illustrate our approach on a couple of case studies, using two significantly different datasets. The

first one is a dataset of breast cancer data provided by the TAGC team (CIML Marseille.) As a result,

the source separation produces a number of sources which may be given a clear biological interpretation.

In particular, three of the estimated sources may be put in correspondence with already known facts

in breast cancer microarray data, which had been observed previously in the dataset under study. We

also obtain other independent sources, featuring families of over or under expressed genes with good

biological coherence, which had not been reported before. The second dataset consists of Bacillus Subtilis

gene expression data obtained by (Sekowska et al., 2000), for testing differences in gene expression when

Bacillus Subtilis is grown under different sulfur sources (methionine or methylthioribose.) Blind source

separation identified sources related to the main factors of variation in the experiment. Our results

confirm the results of (Sekowska et al., 2000); namely, the link between arginin metabolism and sulfur

metabolism, and the role of the late competence operons. Blind source separation turns out to be able

to identify the corresponding component, without any a priori information on experimental conditions

(unlike the ANOVA-based analysis of (Sekowska et al., 2000).) The analysis also points out families of

genes related to mobility, which did not appear on previous studies.

All together, our results show that blind source separation techniques are a promising approach for

exploratory microarray data analysis. In the two examples considered here, they allowed us to identify

groups of genes with a good biological coherence. This shows that, even though the proposed method is

not a clustering technique, it may be used to identify (possibly intersecting) classes of genes.

Nota : After a first version of this work was completed (Chiappetta et al., 2002b), we became aware

of the works of (Liebermeister, 2002; Hori et al., 2001), who have developed strategies close to our for

microarray analysis. The work reported here presents similarities with (Liebermeister, 2002). It also
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includes an additional “consensus source” search algorithm which yields finer estimates for the sources, as

well as indications relative to their “credibility” (which is an important point since the search algorithms

are likely to yield local optima rather than global ones.) Also, the datasets we have considered are different

from those studied by these authors, and we obtain for these results which were not reported in the original

publications.

II. Blind source separation and independent component analysis

Blind source separation is a recently introduced technique which originates from the signal processing

literature. The main idea is to disentangle statistically independent signals (sometimes called “linear

modes”, see (Liebermeister, 2002)) which have been linearly mixed. The approach we propose is to use

such models of linear mixtures of independent sources to model logarithms of expression profiles, and

corresponding ICA algorithms to estimate the sources. Even though it is unlikely that such simple models

can describe accurately complete microarray datasets, one may hope to be able to identify a few significant

sources, and put them in correspondence with biologically relevant features.

The general model goes as follows. Assume that we are given a family of vectors S1,S2, . . .SM (each

being a vector of dimension denoted by I), termed “sources”, and a family of observations Y1,Y2, . . .YN

(vectors of the same dimension), obtained by a linear “mixing” of the sources, in the form

Yn =

M∑

m=1

An
mSm , n = 1, . . .N . (1)

Componentwise, we also write

yn
i =

M∑

m=1

An
msm

i , n = 1, . . .N, i = 1, . . . I .

Here A = {An
m, m = 1, . . .M, n = 1, . . .N} is an M×N matrix, called the mixing matrix. Throughout this

paper, we shall assume that N ≥ M (in the practical examples to be discussed below, N shall be much

larger than M .) The blind source separation problem amounts to “inverting” the mixing, i.e. estimating

the mixing matrix and the sources from the observations. To be able to solve this problem uniquely,

further assumptions have to be made. The sources are therefore modeled as random vectors over some

probability space, and assumed to be (statistically) independent. This independence assumption is the

main ingredient of the estimation method.
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Estimation of the parameters of a linear model is often performed via a principal component analysis:

the diagonalization of the covariance (or the correlation) matrix of the expression data indeed yields a

representation such as (1). In such a situation, the decorrelated “sources” Sm are pairwise orthogonal.

However, taking into account the distribution of (logs of) expression data (in particular, the existence

of very large values of expression data), the principal component analysis is not necessarily the most

appropriate answer. In particular, it does not take into account the information contained in higher order

moments. The Independent Component Analysis (ICA for short) aims at performing such an analysis, by

seeking the “sources” Sm which are “maximally independent”. As a result, ICA produces estimates for

the sources of the form

Ŝm =
N∑

n=1

Bm
n Yn (2)

where B = {Bm
n } is a “disentangling matrix”. In other words, the probability distribution of the unmixed

vectors Ŝ1, . . . ŜM equals (or, in practice, is as close as possible to) the product distribution of the marginal

distributions of Ŝ1, ... and ŜM .

The mutual information provides an appropriate way of studying the departure from independence.

For the sake of simplicity, we limit our discussion to continuous random variables, to which a probability

density may be associated (discrete variables are treated similarly, replacing integrals with sums.) In this

context, the mutual information essentially provides an average measure of the logarithm of the ratio

between the joint probability density and the product of the marginal densities: given M (continuous)

random variables with joint density ρ and marginal densities f1, . . . fM , one defines

I [ρ] =

∫
ρ(x1, . . . , xM ) log2

(
ρ(x1, . . . , xM )
∏M

m=1 fm(xm)

)
dx1 . . . dxM .

An elementary calculation then shows that

I [ρ] = −H [ρ] +

M∑

m=1

H [fm] , (3)

where H [ρ] and H [fm] denote the Shannon entropies associated with the density ρ and the density fm

respectively

H [ρ] = −

∫
ρ(x1, . . . xM ) log2(ρ(x1, . . . xM )) dx1, . . . dxM , (4)

H [fm] = −

∫
fm(x) log2(fm(x)) dx , m = 1, . . .M (5)
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and measure the information content of the corresponding probability distribution (the interested reader

may refer to (Shannon, 1949) and the last chapters of (Renyi, 1970) for a detailed discussion of the

mathematical properties of Shannon’s entropy and interpretations.)

Ideally, finding the independent sources may be performed by seeking the “disentangling matrix” B

which minimizes the mutual information. However, estimating entropies or mutual informations turn out

to be quite difficult from the statistical point of view (see for example (Beirlant et al., 1997) and references

therein.) Actually, it may be shown (see for example (Cardoso, 1998; Hyvärinen, 1999)) that minimizing

the mutual information under the constraint that the estimated sources are uncorrelated is equivalent to

maximizing the entropy, i.e. finding (uncorrelated) directions in the data space in which the distribution

of projections is maximally non-Gaussian2. This remark is the key point for the existence of efficient

algorithms which yield estimates for independent sources, given a dataset.

Blind source separation has become an increasingly active field during the last decade, and many

computer softwares have been contributed by different groups. A number of them are available at the ICA

Central web site3. In this work, we have mainly followed the approach and the algorithm proposed by

Hyvärinen and Oja (Hyvärinen and Oja, 2000), which are based upon the following strategy. Let Φ be

any (non quadratic) function, and let V denote an N -dimensional random vector, one seeks uncorrelated

directions (given by unit vectors w ∈ RN ) which are maximally non-Gaussian in the following sense:

sup
w,‖w‖=1

(E {Φ(w · V)} − E {Φ(Γ)})2 (6)

under the constraint

E
{
(w ·V)2

}
= 1 . (7)

Here, E {X} denotes the expectation of a random variable X , ‖v‖ denotes the Euclidean norm of a vector

v, w · V is the inner product of the vectors w and V, and Γ is a reference N (0, 1) random variable.

Many different choices for the non-Gaussianity criterion are possible, the most popular one being

2The heuristic is that mixing has a tendency to “Gaussianize”, and the mathematical reason is that the prob-

ability distribution which maximizes the Shannon entropy under the constraint of unit variance is the normal

distribution.
3see http://www.tsi.enst.fr/icacentral/index.html
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probably the Kurtosis, given by the function

Φkurt(u) = u4 ,

(used in (Hori et al., 2001)) for which E {Φ(Γ)} = 3. Other choices suggested by (Hyvärinen and Oja,

2000) include

Φtanh(u) = log cosh(u) , ΦGauss(u) = 1 − e−u2/2 ,

each choice emphasizing different types of departure from Gaussianity ((Liebermeister, 2002) used the

Gaussian.) Rescaled and normalized versions of these three choices are displayed in Fig 1. One of their

main differences is the importance they give to large values.

Remark: the influence of the criterion Φ has been discussed by several authors (see for exam-

ple (Hyvärinen, 1999).) In statistical terms, different criteria yield different estimators for the independent

directions. For example, it is clear from Fig. 1 that they give variable importance to large values (quartic

behavior for the kurtosis, versus linear behavior for the log cosh.) The choice of Φ, together with the nature

of the distribution of the (unknown) source, influence the variance of the estimator. Hyvärinen (Hyvärinen,

1999) proposes criteria for chosing the “optimal” criterion for a given distribution. In practice, the nature

of the distributions being generally unknown in advance, “general purpose” criteria are used, at least in

a first “exploratory” stage.

III. Application to expression data

We are concerned with the problem of analyzing and interpreting gene expression data. Our starting

point is an array

X = {Xc
g , g = 1, . . .Ng , c = 1, . . .Nc} , (8)

where Xc
g denotes the measured expression level for the gene g in the condition (chip) c. We assume that

the data under consideration have been appropriately normalized (normalization issues will therefore not

be discussed here as such.) We shall denote by Xc (resp. Xg) the column (resp. row) vectors corresponding

to conditions (resp. genes.) Typical values for Ng and Nc are of the order of a few thousands and between

fifty and two hundred respectively.
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A. Data preprocessing

The preprocessing of data is a standard but quite important aspect of microarray data analysis. There

is quite a general consensus in the literature on applying logarithmic corrections to the data, for several

reasons. A first justification is that some effects under study are likely to have a multiplicative behavior,

which becomes linear after being log transformed. A more “data analysis” oriented one is that in the data

under consideration, one often observes an extremely large amount of small values X c
g , together with a few

very large values; most data analysis techniques are strongly affected by such unbalanced distributions,

which may be corrected by a logarithmic transformation, of the type

Xc
g ↪→ log Xc

g

Other standard choices include square root, hyperbolic tangent. More sophisticated approaches (see for

example (Durbin et al., 2002) for a transformation which takes into account noise models) may also be

used, which however requires prior knowledge or estimates of the noise distribution.

However, for the datasets we have used in our study, such informations were hardly available or usable,

so that we had to stick to simple logarithmic corrections. In addition, for the breast cancer dataset, the

data at hand feature a large number of zero or very small values of X c
g (presumably resulting from a

background noise removal and/or thresholding in the data acquisition protocol) for which the singular

behavior of the log function at the origin may cause problems.

To overcome this shortcoming, we suggest “regularizing” the small values by adding a small “noise”

εc
g. The usual practice is to use a small, suitably chosen constant for εc

g, or to make it condition dependent

(i.e. to introduce a dependence with respect to c only) to account for normalization differences between

chips. However, when the number of zero or small values is large, this introduces a large number of values

equal to log ε, at the risk of introducing a systematic bias in the analysis. For that reason we suggest

using pseudo-random values for εc
g, with an appropriately chosen standard deviation. This of course

modifies significantly the quantitative information contained in small values, but preserves the qualitative

information (small values remain small, instead of being thrown away), and does not introduce arbitrary
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bias. More precisely, we set

Y c
g = log

(
X̃c

g

)
=





log
(
Xc

g

)
, if Xc

g 6= 0

log
(
εc
g

)
, if Xc

g = 0 ,

(9)

where the (positive valued) random perturbation is chosen as follows: for a fixed condition c, the mean

and standard deviation of εc
g are adapted to the smallest observed value ming(X

c
g) in the condition c.

In the examples discussed in the present article, we have taken the εc
g’s uniformly distributed between 0

and some constant (an example is shown in Fig. 2 below), the latter being proportional to the smallest

observed value in the condition c. Even though such a choice may appear arbitrary, further numerical

tests performed using different distributions did not change significantly the results.

Remark: Such a preprocessing turns out to be relevant when the number of zero values is large,

and no prior information on the noise is available. Otherwise, different approaches may be prefered.

Let us however point out an advantage of our procedure, in terms of test of robustness. Performing the

normalization in that way, and the subsequent statistical analysis, several times using different seeds for

the generation of the regularizing numbers ε provides a simple way to test the robustness of the procedure.

The results presented below turn out to be quite robust.

B. Independent component analysis

We denote by Yc = log X̃c the corrected logarithms of expression levels, and start from a model of

the form

Yc =

M∑

m=1

Ac
mSm , (10)

where the Sm are independent sources and A is the mixing matrix, to be estimated from the data.

In independent component analysis, the number of parameters to estimate turns out to be quite large,

as discussed for instance in (Cardoso, 1998), and it is advantageous to reduce it. In order to focus on

higher order moments, we first “whiten” (or “sphere”) the data, using a principal component analysis:

from the covariance matrix

C = Y′Y

(where the “prime” symbol denotes matrix transposition) the principal axes are computed, and the vari-

ance along them normalized to unity. This has the effect of “factoring out” the intrinsic variability of
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genes, and attenuating the possible impact of outliers. Directions in which the variance is too small

may also be factored out, which results in a reduction of the dimensionality of the data. By an abuse

of notation, we still denote by Y the data after sphering (and dimension reduction when it is indeed

performed.)

Using the FastICA algorithm (see (Hyvärinen and Oja, 2000)), one obtains estimates for the indepen-

dent sources (whose number has to be chosen in advance, but the choice may be refined afterwards, see

below), and for the mixing matrix. The algorithm is essentially based upon a numerical optimization of

the chosen criterion (see equation (6)), using a Newton-type iterative method. An estimated source (i.e.

a linear combination of the expression profiles Yc) takes the form of a vector of “fake” (logarithms of)

expression levels, and may be thought of as representing an “elementary regulation pattern”, or “inde-

pendent linear mode” (see (Liebermeister, 2002)), to be confirmed by a subsequent analysis.

C. Search for consensus sources and corresponding mixing matrices

Unlike principal component analysis, which is only based on linear algebra techniques, ICA requires

searching the maxima of a target function in a large dimensional configuration space. Therefore, one often

encounters difficulties with local maxima in which most algorithms may get stuck, and the result may be

sensitive to initialization. This is the case of the FastICA algorithm we use, even though we could observe

empirically on all experiments we made that several interesting sources were strikingly “stable” (similar

observation was also made in (Liebermeister, 2002).)

In addition, the results obtained from an ICA algorithm are not “ordered”: if Ns sources are looked for,

Ns sources are obtained, without any indication regarding their significance. This problem was addressed

in (Liebermeister, 2002), where the author proposed to rank the estimated sources according to a contrast

function, accounting for the percentage of total variation they carry.

To overcome these difficulties, we use the following procedure. The independent source estimation

is run several times (say, 100 times), with different random initializations, and “consensus sources” are

recorded: namely, sources which are obtained (to a certain controlled approximation) with a frequency

larger than a certain threshold are conserved, and their frequencies of appearance are recorded, and used

as “credibility indices”. As a result, one is led to a (variable, data driven) number of average consensus
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sources S̄1, . . . S̄Ns (the algorithm for consensus sources is described in the Appendix.)

Finally, the corresponding Nc × Ns consensus mixing matrix A is computed by solving for

min
A

∥∥∥∥∥Y
c −

Ns∑

m=1

Ac
mS̄m

∥∥∥∥∥

2

, c = 1 . . .Nc , (11)

which implies the matrix equation (S̄n)′Yc =
∑Ns

m=1 Ac
m(S̄n)′S̄m (the “prime” standing for matrix or

vector transposition.) As long as the average sources are linearly independent (which should be the case

nif Ns is not too large, and must be checked for), this yields the following “pseudo-inverse” solution

Ac
m =

Ns∑

n=1

V n
m(S̄n)′Yc , c = 1, . . .Nc, m = 1, . . .Ns , (12)

where V = {V n
m, n, m = 1, . . .Ns} is the inverse of the Ns × Ns matrix U of scalar product of the sources

(Umm′ = (S̄m)′S̄m′

.)

Remark : Let us stress that the “linear mixture of independent modes” model on which our approach

is based upon is quite speculative, and to be considered cautiously. Therefore, the “credibility” index

obtained as a result of the consensus sources search, though it does not provide any indication on the

biological significance of the result (as well as the criterion used in (Liebermeister, 2002) for ranking

sources, which is tied to the chosen non-Gaussianity criterion), is still a useful tool: when an independent

source is obtained more than 90% of the times, with various random initializations, this may be considered

a significant result.

D. Interpretation of ICA results

As a result, the blind source separation approach yields “pseudo” expression profiles, to be interpreted

in more details. A first step of the analysis is the study of the mixing matrix A. For a fixed source, say

source m, the coefficients Ac
m represent the projection of condition c on source m, or the “importance” of

source m in condition c. If one believes in the “linear mixture of independent sources” model, and accepts

to identify a source with a regulation pathway in first approximation, the coefficients Ac
m would allow one

to assert to which extent the source m was (positively or negatively) “active” in condition c.

The distribution of the values of {Ac
m, c = 1, . . .Nc} is often interesting, and may reveal specific fea-

tures of the dataset. Particularly interesting is the situation where the distribution of mixing coefficients
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for a given source exhibit a bimodal or multimodal behavior. This indicates that the source under consid-

eration has a good discriminating power between two or more different classes of conditions. However, let

us point out that even though bimodal distributions yield spectacular results, good discrimination may

also be obtained without such a behavior, as we shall see on the breast cancer dataset below.

A second step in the interpretation of ICA results is to analyze carefully the behavior of specific genes

in different sources. It generally happens that a given independent source is characterized by a number

of significantly over-expressed (or under-expressed) genes. Putting such genes into correspondence with

conditions, or clinical data, may happen to be extremely informative. More precisely, we proceed as

follows. For each estimated consensus source S̄m, we pick the genes whose “expression level” in the

considered source exceeds -in absolute value- some critical value z: |S̄c
g | ≥ z. For the sake of simplicity

(since departure from Gaussianity is the criterion on which the approach is based), z is chosen to be the

critical value for the normal distribution corresponding to some fixed risk, for example 0.1% or 0.01%. As

we shall see in the case studies below, very coherent groups of genes may be obtained in this way.

E. Miscellaneous comments

Before turning to the discussion of test results, a few comments are necessary. It is important to realize

that the approach proposed here is still far from an automatic procedure for expression data analysis, in

several respects. We list here a few of them.

• A first point concerns the choice of the non-Gaussianity criterion. Several choices are possible.

In addition, it has been shown that for a given (non-Gaussian) distribution, there exists a choice for the

non-Gaussianity criterion which is optimal in the sense that it minimizes the variance of the estimator.

The distributions of the sources being generally unknown, we chose to stick to “general purposes” criteria,

namely the log cosh criterion, which does not give too much importance to large values. However, there

is probably room for improvement at this point.

• The second point concerns the algorithm itself. The FastICA algorithm on which our approach is

based has two main drawbacks for application to microarray data: the number of sources has to be chosen

in advance, and the algorithm itself often yields estimates which correspond to local optima of the target

function. Even though preliminary work showed some form of stability, we developed a “consensus source
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search” algorithm for post-processing the ICA results. Not only does this procedure yield completely

stable estimates for the sources, but it also provides a “credibility” estimate for them (see the appendix

for mode details.) Therefore, the number of retained sources may be made completely data driven, by

limiting oneself to the sources whose credibility index exceeds some fixed tolerance. Nevertheless, it still

makes sense to study alternatives to FastICA type fixed point algorithms.

Despite these remarks, our results definitely show that source separation techniques perform quite well

in a variety of situations. In addition, the relative simplicity of the search algorithm make it possible to

perform quite a large number of ICA runs in a reasonable amount of time. To give a rough idea, the

whole process, involving 100 ICA runs and the corresponding consensus source search, on the B. Subtilis

dataset described below (16 conditions, 16 sources, approximately 4000 genes) took less than 5 minutes

on a Pentium 4 processor (1.5 GHz).

IV. Test results

The source separation method has been applied to several datasets, including breast cancer data

discussed in (Bertucci et al., 2000; Bertucci et al., 2002), and Bacillus subtilis sulfur metabolism data, see

(Sekowska et al., 2000). We now discuss results obtained with these two significantly different datasets.

A. Breast cancer data

There already exists a significant amount of literature on the study of breast cancer through mi-

croarray, using different technologies, see for example (Gruvberger et al., 2001; Perou et al., 1999; West

et al., 2001)4. These references were often concerned with the search for classes of genes of particular

clinical interest, or on class prediction. We focus here on a dataset provided by the TAGC team of the

“Centre d’Immunologie de Marseille-Luminy (CIML), which has been analyzed in (Bertucci et al., 2000;

Bertucci et al., 2002). The data consist of nylon microarray data, in which PCR products from cDNA

were arranged on a nylon membrane and hybridized with a radioactive probe. They form a set of 1045

genes and 67 microarrays (corresponding to 55 breast cancer tumors, and 12 cell lines.) The proposed

approach has been applied to the complete 1045 × 67 dataset, as well as the reduced 1045 × 55 dataset

4A rather large account of the existing references on the subject may be found at the web site

http://clarkelabs.georgetown.edu/BreastStudies.html.
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(with the cell lines removed.) Notice that no prior filtering of non regulated genes was necessary, since

one of the goals of the method is to be able to identify automatically significant gene families. In what

follows, we discuss the results obtained using the blind source separation technique, and compare them

with those of (Bertucci et al., 2002). Let us point out that PCA did not provide results that could be

directly interpretable. We also refer to results we obtained in (Chiappetta et al., 2002a) using clustering

techniques.

A.1 The complete dataset.

The corrected logarithms of normalized expression data have been computed as described above (in the

dataset under consideration, the number of vanishing expression values was quite large, so that the random

correction was needed.) The distributions of normalized expression data and their corrected logarithms

are shown in Fig. 2, from which it may be seen that the global distribution of corrected logarithms is “bell

shaped”. We stress that very small values are likely to originate from “random” restoration of “logs of

vanishing values” (which would have been small anyway.) We have checked by running several times the

log correction (with different seeds for the random number generator) that such very small values do not

affect the results presented here.

A principal component analysis (performed on either covariance matrix or correlation matrix) didn’t

yield any significant result, neither in the gene space nor in the conditions space.

The blind source separation algorithm (involving 100 ICA runs, followed by the consensus sources

estimation) was run on the complete dataset (including breast tumor cells, and cell lines), using the

Φ = log cosh

non-Gaussianity criterion (after PCA-based dimension reduction from 67 to 30.) 20 independent sources

were estimated, and consensus sources were searched for from 100 ICA runs. The distributions of the

mixing matrix coefficients for the 12 most significant sources (whose credibility exceeds 60%) are displayed

in Fig. 3 (we used kernel estimators for the pdfs, with Gaussian kernel, whose bandwidth was set to the

fifth of the standard deviation; the values are plotted under the pdf plot.) The pdfs essentially feature

three main types of departure from Gaussianity:

• Bimodal distributions (in particular, the sources 2, 9 and to some extent 4.) Such a situation
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is particularly interesting, as it expresses the fact that the source under consideration has a significant

discriminating power between conditions. We shall come back to those cases in more details below.

• Distributions with one or a few very large values (for example, sources 2, 5, 6, 7, 10 and 12.)

Such situations indicate that a given condition played a prominent role in the selection of the source. This

fact may originate from the possible presence of outliers, or stress a particular difference between one of

a few conditions with respect to others.

• Distributions close to uniform, here the consensus source 1.

(let us recall that the consensus sources have been ordered by decreasing “credibility”.) Among the

consensus sources which were not retained, some also exhibited a manifestly asymmetric distribution.

We now focus more closely on a few specific sources, and examine the genes which are significantly

over-expressed or under-expressed in the corresponding source. Besides sources which were essentially

characterized by a large (or small) value for one particular condition (which were here quite difficult to

interpret, and we chose to disregard in this paper), the following four consensus sources appear to be

particularly interesting, for various reasons.

a: Immune response genes (source 1):

The stablest source (credibility 100%) yields a “uniform like” pdf for the mixing matrix coefficients Ac
1.

However, interestingly enough, the conditions c with largest values of Ac
1 all correspond to cell lines, and

generate the right “hill” in the upper left plot of Fig 3. Even though there is no gap between cell lines

and tumor cells in that particular source, the separation nevertheless appears clearly.

The distribution of gene expression levels in that source (not shown here) exhibits a significant asym-

metry. The genes significantly overexpressed in this source form a group closely connected to immune

response. Namely, the following genes are significantly over-expressed in the source: immunoglobulin

genes IGHM, IGHA1, IGKV1D-8, IGL, the GATA transcription factors GATA1, GATA2, GATA4, GATA6, and

others among which IL2RG (two clones), CSF1, NFYB, SUI1, RELA, NCOA3, SILV, FOS, CD79A, MYB, TNFRSF7,

NFKB1. As a consequence of the asymmetry of the gene expression levels distribution, no significant family

of genes anti-expressed with those was found. These results are coherent with those obtained in (Bertucci

et al., 2002), where a significant over-expression of this group of genes in the tissues was mentioned (a

result similar to the one obtained here, even though no clear gap appears in the histogram.) Let us
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also mention that the results are coherent with those we obtained in (Chiappetta et al., 2002a), with a

completely different approach.

b: Prolactin receptor and CIDE A (source 2):

The credibility index of that source was found to equal 100%. The pdf of mixing matrix coefficients Ac
2

for the consensus source 2 in Fig. 3 exhibits a spectacularly bimodal distribution, with a significant gap

between the two components. This shows that the source under consideration has a high discriminating

power.

The distribution of gene expression levels appears again to be quite asymmetric. A closer examination

of the expression profile of the consensus source 2 shows that it is characterized by a significant over-

expression of a certain number of specific genes, including (we quote the most significant) PRLR (prolactin

receptor), CIDE A (cell death activator), CDKN3 (cyclin-dependent kinase inhibitor 3), TC21, CDH15, CNTFR,

KLF1, and a splice variant of BCL2 (some of these genes have been shown to be associated to chemotherapy

resistance.)

Our results confirm results previously obtained by Bertucci and coworkers (Bertucci et al., 2000;

Bertucci et al., 2002), who also showed that this set of genes has a high predictive power in terms of

patient survival. High expression of CIDE A, PRLR, and a few other genes has been shown to be associated

with poor prognosis.

c: Stromal source (source 4):

The consensus source 4 was again found very stable (credibility: 96%.) The mixing matrix coefficients

Ac
4 exhibit a bimodal distribution. A closer examination of the coefficients shows that the small values of

Ac
4 actually correspond to the cell lines, which are well separated from the tumor cells by this particular

component, although no clear gap appears (unlike the case of source 2.)

Again, the distribution of gene expression levels is quite asymmetric, and features a number of signif-

icantly overexpressed genes, among which the collagen genes (COL6A1, COL1A1), IGF2 (insulin-like growth

factor 2), the group of matrix metalloproteinases (MMP2, MMP3, MMP11, MMP13), SPP1, CDH11, IGF2 and

IGHA1. This group was already mentioned in (Bertucci et al., 2002) (identified as the “stromal cluster”),

and its ability to discriminate between cell lines and tissues was observed. One may also notice the ex-

istence of a small complementary group, involving in particular VNN2 (vanin 2), the T-cell gene CD3G,
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CEACAM1 and the gene ATR involved in the growth of tumor cells.

d: ESR1 and GATA3 versus GSTP1 (source 9):

The consensus source 9 (credibility: 70%) is also extremely interesting. The histogram of mixing matrix

coefficients inFig. 3 exhibits a significantly bimodal behavior (although no clear gap appear in the values.)

The distribution of gene expression levels in that particular source does not present an asymmetric

shape, but is rather characterized by two groups of genes, which appear to be anti-regulated. The signif-

icantly over expressed genes are GATA3 (GATA binding protein 3, two clones), ESR1 (estrogen receptor),

KRT19 (keratin 19, two clones), MUC1, MYB, XBP1, CRABP2, IGFBP1, a family of genes which had already

been reported to possess a great importance for prognosis.

These genes go together with a family of systematically under-expressed genes, in particular two

clones of GSTP1 (glutathione S-transferase Pi 1), MAGEA3, WNT6 (wingless-related MMTV integration site

6 protein), EEF1G and CDH3. As may be seen in Fig. 4 (top left), significant under-expression (resp.

over-expression) of GSTP1 goes together with over-expression (resp. under-expression) of GATA35. The

relationship between the (logarithms of) expression levels is remarkably close to linear. The corresponding

correlation coefficient is r = −0.5413. In fact, the 6 conditions which do not seem to correlate well (upper

left corner in the figure) correspond to cell lines, more specially those whose GSTP1 expression level is

extremely small. When cell lines are not taken into account, the correlation increases significantly to

r = −0.6744 (see Fig. 4, top plots.) Similarly, the middle plot of Fig. 4 shows that WNT6 has also

significant anti-correlation (r = −0.6328) with GATA3. Another illustration of such anti-correlation is

provided by the pair WNT6-XBP1; the differential expression plots are exhibited in the bottom row of

Fig. 4. The corresponding correlation coefficients read r = −0.6185 when the complete dataset is used,

and r = −0.6309 when cell lines are not taken into account. All this seems to indicate the presence of two

“anti-regulated” groups of genes, including GATA3, XBP1, ESR1 on one hand, and GSTP1, WNT6, CDHH3

on the other hand. The gene-gene correlations are summarized in Table 1.

The comparison with clinical data is also quite interesting. Remarkably enough, the mixing matrix

coefficients Ac
9 correlate extremely well with ER (estrogen receptor) clinical data. Leaving aside the

extreme left part of the pdf plot (which only corresponds to cell lines), the two modes correspond to ER

5Similar results had been previously reported by Gruvberger and coworkers in (Gruvberger et al., 2001).



19

positive (left mode) and ER negative (right mode) tumor cells, the middle part being a bit more “mixed

up”. This again confirms results reported in (Bertucci et al., 2000; Bertucci et al., 2002).

Further comments:

To confirm our results, we have also checked the dependence with respect to the non Gaussianity criterion.

The three criteria shown in Fig. 1 have been tested extensively, and the results we obtain appear to depend

only weakly on the chosen criterion.

Also, since the initial number of sources has to be fixed in advance, we have tested for possible

dependence of the results in this parameter. Again, the significant results, such as the four sources

described above, appear to remain stable within a reasonable range of values of the number of sources

(say, between 12 and 25.)

A.2 The case of the reduced dataset

As stressed before, the cell lines seem to play a significant role in several independent sources estimated

from the complete dataset (this is particularly the case for the immune response source and the “stromal”

source, which clearly discriminate between cell lines and tumors.) When cell lines are not taken into

account, the main features of the other interesting sources turn out to remain quite stable. The blind

source separation has been performed on the reduced dataset, using equivalent parameters (same number

of sources, dimension reduction to 25, same non-Gaussianity criterion.) Fig. 5 shows the pdf of mixing

matrix coefficients for 9 consensus sources with maximal credibility (more than 70%.) As a result, the

most significant components discussed above are still present in this new situation. In particular, the

stablest source (source 1, credibility index: 100%) is still the one governed by the “immune response”

genes. We recall that in the case of the complete dataset, that source yielded a clear separation between

cell lines and tumor cells. When cell lines are taken away, that source still shows up.

This is not the case of the source that was characterized by collagen genes (source 4), which in the

complete dataset also yielded a clear cut separation betwen cell lines and tumors, and does not appear

any more in the reduced dataset.

The source involving CIDEA and PRLR (source 2 in the complete dataset) is still present, and has the

same spectacularly bimodal distribution (source 5), with a somewhat smaller credibility index (85%.)
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This is also the case of the source involving ESR1, GATA3, XBP1 (source 9 in the complete dataset, and

source 3 in the reduced one), with similar credibility. In both cases, the significantly under and over

expressed genes are essentially the same in each source, and the discriminating power (in terms of ER

status for instance) is also stable.

B. Sulfur metabolism bacillus subtilis data

The blind source separation method was applied to a dataset on the expression variations of 4107 genes

of bacillus subtilis across two sulfur nutrients (methionine and methylthioribose), in different conditions:

two different sulfurs (mtr or met), two different dates (days A and B), two different RNA concentrations

(1µg and 10µg), and two spots per experiment (spots a and b), all together 16 different conditions. The

relative effect of these factors has been studied using the analysis of variance (see (Sekowska et al., 2000)

and (Didier et al., 2002).) The data under study are logarithms of expression levels (in the absence of

zero values, no “random” correction was necessary.) The independent component analysis turns out to

be able to isolate such effects in a quite simple way. In the numerical experiment reported here, the

same procedure as above was used, using the Φtanh non-Gaussianity criterion, without prior dimension

reduction, and 100 runs were done seeking each time 16 sources. The obtained consensus sources turn

out to be remarkably stable (7 consensus sources obtained credibility 100%, the fourteenth -out of 16-

having credibility 94%.) Out of these consensus sources, four particular ones (namely, sources 1,3,4 and

14) turned out to have a simple and clear interpretation, and an additional one (source 2) presented

interesting characteristics. Since the number of conditions (16) was fairly small, the results are displayed

differently in Fig. 6. The other consensus sources we obtained sometimes presented interesting patterns in

terms of condition grouping (though not as clear as the 4 sources examined below), but the corresponding

over-expressed and under-expressed genes were mainly genes with unknown function.

B.1 Methionine versus methylthioribose: source 4

The mixing matrix coefficients for consensus source 4 appear to form different groups, and appear in

the following order: the four metB conditions, then the four metA, the four mtr A and finally the four

mtr B. The two sulfur sources are then clearly separated by the horizontal line in the left figure in Fig. 6.

That source does not make any significant difference between the two spots (“a” and “b”.)
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Among the identified genes, this particular source shows a very significant anti-expression of two

families of genes: a group arg* of 6 arginine biosynthesis genes, together with the 3 yqi* mentioned

in (Sekowska et al., 2000) as arginine transporters, 6 ydc* and 6 ydd* genes , and the groups flg* (4

genes), flh* (4 genes), fli* (11 genes), ytm* (4 genes) on the other hand. We therefore first recover

the results published in (Sekowska et al., 2000) stressing the role of arginin biosynthesis genes in sulfur

metabolism, and almost all of the genes identified in Table 1 of (Sekowska et al., 2000) appear in the list

above. Interestingly enough, the blind source separation also points out other gene families (namely, the

unknown ydc* and ydd* genes on one hand, and the flg*, flh*, fli* flagellar proteins and other genes

related to mobility on the other hand.) We do not have any simple biological explanation to such a very

strong appearance of mobility related genes in this group.

B.2 The date effect: source 1

The difficulty of controlling precisely the experimental conditions from one day to another was men-

tioned as an important source of variation. The “date” effect is present in the ICA analysis. The separation

appears to be mainly governed by a “day” effect (“A” or “B”), and a concentration effect for day “A”.

More precisely, conditions appear in the following order: first the “B day” conditions, then the “A day”

conditions, with a clear cut separation (see the vertical line in the left plot of Fig. 6.) This confirm the re-

sults obtained in (Sekowska et al., 2000) (see Table 3): day A data is characterizeed by an over expression

of genes involved in competence (11 com* genes, nucA.) More generally, most of the genes appearing in

table 3 of (Sekowska et al., 2000) appear as significantly over or under expressed in this particular source.

B.3 Other unexplained effects

The blind source separation algorithm also provides sources which may be put into correspondence

with well-defined factors, even though there does not seem to exist any simple biological explanation, nor

well defined gene family specifically involved.

For instance, the effect of concentration was identified in (Sekowska et al., 2000), as the most important

source of variance, even though no simple explanation could be given. The consensus source 3 estimated by

ICA provides a clear cut separation between the conditions corresponding to different RNA concentrations

(see the vertical line in the right plot of Fig. 6.) The left hand part of the points corresponds to RNA
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amount of 10µg, while the right hand part corresponds to 1µg of RNA. A closer examination of the main

genes involved in this particular source did not lead us to any sensible interpretation, exhibiting neither

well identified gene families, nor coherent sets of genes of unknown function.

Similarly, and even though the “spot” effect was mentioned as weak, and disregarded in (Sekowska

et al., 2000), it appears significantly in the consensus source 14 (credibility 94%), as may be seen on the

right hand plot of Fig. 6. More precisely, the conditions appear in the following order: the “b” spot first,

then the “a” spot (even though the two conditions close to the horizontal line are too close to each other

to yield a really significant order.) Again, the main genes involved in this particular source are genes with

unknown function, and did not lead us to any sensible interpretation.

V. Conclusions

Blind Source Separation appears as a promizing tool for exploratory analysis of gene expression data,

as already remarked in (Liebermeister, 2002) and (Hori et al., 2001). The additional “consensus sources”

search techniques yields stable estimates for sources.

In the two examples we have studied in this article, this approach was able to identify consensus

independent sources which have a good biological coherence, and put them into correspondence with

consistent classes of conditions. Moreover, it could do so without any a priori information (unlike ANOVA

and related techniques), nor prior gene filtering. As such, it may also be used as a “class discovery method”,

like the methods described in (Ben-Dor et al., 2001) or (von Heydebreck et al., 2001), even though this is

not the main goal of the approach.

Some aspects of the analysis described here require further investigations and developments. Among

them, the algorithmic part is one of the most important. Like many data analysis and clustering tech-

niques, ICA provides estimates which turn out to depend on parameters such as the required number

of sources, the initialization of the algorithm, (even though the really significant results turn out to be

remarkably stable.) The consensus source search represent a significant improvement in this respect.

However, this is a point we plan to investigate further, for example by studying variants (avoiding fixed

point algorithms) to the optimization algorithms we have used here.

Another important point is the a posteriori validation of the technique. In our work, the results
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are validated by taking into account prior knowledge about the problem, not taken into account in the

estimation of the sources (namely, the adequacy of the sources with known facts about conditions, or the

coherence of the sets of genes significantly involved in a given source.)
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Appendix: Consensus sources estimation

When running ICA N times, we obtain N times M candidate sources, denoted by Sn
m, n = 1, . . .N , m =

1, . . .M , which we normalize to unity. We recall that each of these is an Ng-dimensional vector (Ng being

the number of genes.) Out of these, the significant ones are expected to show up a large number of

times, modulo small perturbations, and in uncontrolled order. We outline below the procedure we use for

searching such significant sources.

We first compute the “similarity matrix” of (normalized) source scalar products, and record the pairs

of indices [(n, m), (n′, m′)] such that Sn
m and Sn′

m′ are “similar”, in the following sense

Sn
m ∼ Sn′

m′ if n 6= n′ and
∣∣∣〈Sn

m,Sn′

m′〉
∣∣∣ ≥ τ , (13)

where τ ∈ [0, 1) is a fixed threshold (typically τ = 0.9) (the sources being normalized, this amounts to

consider the sources whose Pearson coefficient exceeds τ in absolute value.) We then obtain a NM ×NM

matrix M, whose nonzero entries correspond to similar sources, and are set to 1. Equivalently, M

is the adjacency matrix of a graph whose vertices are the estimated sources Sn
m, and edges connect

similar sources. Consensus sources are then defined from maximal connected subgraphs, by averaging the

corresponding sources, and their credibility is obtained as their relative frequency in the N simulations.

More precisely we used the following approximate scheme, which amounts to gradually “peel off” the

set of estimated sources: for a fixed value of τ , initialize the similarity matrix M(1) = M, and consider

the set of all n(1) = NM estimated sources. Then do the following iteration:

while dim(M(k)) > 0, do

• Among the n(k) remaining sources, pick the source S(k) with maximal number |N(S(k))| of neigh-

bors, and denote by c(k) = |N(S(k))|/N the corresponding credibility index.

• Calculate the corresponding average source

S
(k)

=
1

|N(S(k))|

∑

S′∼S(k)

sign(〈S(k),S′〉)S′ (14)

• Remove the sources in S ∼ S(k) from the list of estimated sources (yielding n(k) sources), and the

corresponding entries from the similarity matrix (now of dimension n(k) × n(k).)
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We then obtain an ordered set of consensus sources S
(1)

,S
(2)

, . . . together with their credibility index

c(1), c(2), . . . The consensus sources whose credibility exceeds a fixed value are finally retained. Even

though such a procedure is not optimal in a general situation, it is fairly simple, and turned out to perform

very satisfactorily in the situation at hand. This procedure mainly depends upon two parameters: the

threshold τ and the final number of consensus sources. The result turns out to depend weakly on the

value of τ : this comes from the fact that the sources are either very close to each other, or significantly

different. In the first case, their scalar product is quite close to 1, and setting τ to 0.9 or 0.7 does not

make much difference. Otherwise, the scalar product is very small (we recall that the dimension of the

sources is Ng, usually a large number.)
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Table

GSTP1 WNT6 GATA3 ESR1 MYB XBP1 CRAPB2

GSTP1 1.0000 0.3808 -0.6744 -0.5596 -0.4041 -0.4881 -0.3996

WNT6 1.0000 -0.6419 -0.4834 -0.4704 -0.6309 -0.3188

GATA3 1.0000 0.8351 0.6183 0.7156 0.5552

ESR1 1.0000 0.5071 0.6392 0.4162

MYB 1.0000 0.5760 0.2166

XBP1 1.0000 0.3645

CRABP2 1.0000

TABLE 1

Values of the Pearson correlation coefficient for significant genes of consensus

source 9.
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Fig. 1. Three different choices for the function Φ characterizing the non-Gaussianity criterion: rescaled

versions of u4 (“+”), log cosh (“o”) and negative Gaussian (“x”.)
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Fig. 2. Histograms of expression data (left) and of their “corrected logarithms”(right), in the case of

breast cancer microarray data.
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Fig. 3. Breast cancer data: pdf of estimated mixing matrix coefficients for the 12 “most credible”

consensus sources (complete dataset.)
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Fig. 4. Logarithms of expression levels. Top row: GSTP1 versus GATA3; left: complete dataset; right:

breast cancer cells only. Middle row: WNT6 versus GATA3. Bottom row: WNT6 versus XBP1; left:

complete dataset; right: breast cancer cells only.
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Fig. 5. Breast cancer data: pdf of estimated mixing matrix coefficients for the 9 more credible consensus

sources (small dataset.)



35

−18 −16

B A

−14 −12 −10 −8 −6
−1.8

−1.6

−1.4

−1.2

−1

mtr
met

−0.8

−0.6

−0.4

−0.2

Source 1 

S
o
u
rc

e
 4

 

0 0.5 1 1.5

c=1c=10

2 2.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
b
a0

0.1

0.2

0.3

Source 3 

S
o
u
rc

e
 1

4
 

Fig. 6. Bacillus subtilis sulfur data mixing matrix coefficients: projections of the conditions on 4 distinct

sources. Left: source 1 (date effect) and source 4 (sulfur source.) Right: source 3 (concentration

effect) and source 14 (“spot” effect.)


