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Abstract

We consider the problem of bounding below the minimum value m
taken by a positive polynomial P ∈ Z [X1, . . . , Xk] of degree d over

the standard simplex ∆ ⊂ R
k. Using recent algorithmic developments

in real algebraic geometry enables us to obtain a positive lower bound

on m in terms of the dimension k, the degree d and the bitsize τ of

the coefficients of P . The bound is explicit, and obtained without any

extra assumption on P , in contrast with previous works reported in

the literature.

1 Introduction

1.1 Problem statement

Let P ∈ Z [X1, . . . , Xk] be a multivariate polynomial of degree d taking only
positive values on the standard simplex

∆ =

{

x ∈ R
k
+

∣

∣

∣

∣

∣

k
∑

i=1

xi ≤ 1

}

.

Let τ be an upper bound on the bitsize of the coefficients of P . Writing

m = min
∆

P > 0,

we consider the problem of finding an explicit bound mk,d,τ depending only
on k, d and τ such that 0 < mk,d,τ < m.
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1.2 Previous work 1 INTRODUCTION

1.2 Previous work

Several authors have worked on this subject. There are two main approaches:
Canny’s gap theorem can be used, under no degeneracy conditions ([C]); in
[LS], the authors use the Lojasiewicz inequality, leading to a bound involving
a universal constant. The method presented here gives a completely explicit
bound, with no extra assumption on P .

1.3 Univariate case

We begin with the univariate case, which contains the basic ideas of the
proof in the general case. This situation has already been studied in [BPR],
although the proof needs to be corrected. We present here a corrected proof,
leading to a slightly better bound.

Consider a univariate polynomial of degree d

P =

d
∑

i=0

aiT
i ∈ Z [T ] ,

taking only positive values on the interval [0, 1]. Let τ be a bound on the
bitsize of its coefficients.
The minimum m of P on [0, 1] occurs either at 0 or 1, or at a point x∗ lying
in the interior ]0, 1[. The first case is trivial, as P (0), P (1) ∈ Z, so that m
is clearly greater than 1. In the second case, P (x∗) = 0, so that m is a
root of the resultant R(Z) = ResT (P (T ) − Z, P ′(T )) ∈ Z [Z].The resultant
R(Z) is the determinant of the matrix Syl(Z), where Syl(Z) is the following
Sylvester matrix:
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1.3 Univariate case 1 INTRODUCTION

R(Z) =
d−1
∑

i=0
riZ

i is a polynomial of degree d − 1 in Z, whose coefficients are

controlled in the following fashion:

Lemma 1.1. For all i ∈ {0, . . . , d − 1}, we have

|ri| < 3−d/2
[

2τ
√

(d + 1)3
]d
(

d − 1

i

)

[

2τ
√

d + 1 − 1
]d−1−i

.

Proof. Let (A1, . . . , Ad−1, B1, . . . , Bd) denote the rows of the classical Sylvester
matrix S(0). Then

R(Z) = det (A1 + Zed+1, . . . , Ad−1 + Ze2d−1, B1, . . . , Bd) ,

where (e1, . . . , e2d−1) is the canonical basis of R
2d−1. Using the multilin-

earity of the determinant, we can write R(Z) =
d−1
∑

i=0
riZ

i, where, for all

i ∈ {0, . . . , d − 1}, ri is a sum of
(

d−1
i

)

determinants of matrices built with:

- i rows among the ej ’s

- d − 1 − i rows among the Aj ’s

- the d rows B1, . . . , Bd.

Hadamard’s bound (see [BPR]) implies that, for all i:

|ri| ≤
(

d − 1

i

)
√

[(d + 1) (22τ − 1)]d−1−i

√

[

d(d + 1)(2d + 1)

6
(22τ − 1)

]d−1−i

<

(

d − 1

i

)

[

2τ
√

d + 1 − 1
]d−1−i

[

2τ

√

(d + 1)3

3

]d

≤ 3−d/2
[

2τ
√

(d + 1)3
]d
(

d − 1

i

)

[

2τ
√

d + 1 − 1
]d−1−i

,

as announced.

Since the minimum m is a root of the resultant R(Z), Cauchy’s bound
finally implies the following theorem

Theorem 1.2. Let P ∈ Z [T ] be a univariate polynomial of degree d taking
only positive values on the interval [0, 1]. Let τ be an upper bound on the
bitsize of the coefficients of P . Let m denote the minimum of P over [0, 1].
Then

m >
3d/2

2(2d−1)τ (d + 1)2d−1/2
.
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2 MULTIVARIATE CASE

Proof. ◦ If m is attained at 0 or 1, then the result is obvious.

◦ If not, m is a root of the resultant R(Z). Cauchy’s bound (see [BPR])
implies that

1

m
≤

d−1
∑

i=0

|ri|

<

d−1
∑

i=0

3−d/2
[

2τ
√

(d + 1)3
]d
(

d − 1

i

)

[

2τ
√

d + 1 − 1
]d−1−i

≤ 3−d/2
[

2τ
√

(d + 1)3
]d [

2τ
√

d + 1
]d−1

,

from which the result follows easily.

Remark 1.3. Our bound is slightly better than a recent one presented in
[BCR], which was already almost sharp. Indeed, following [BCR], consider

the polynomial Pk = Xd +
(

2kX − 1
)2

. Here, τ = 2k and the minimum mk

of Pk satifies

mk ≤ Pk

(

2−k
)

= 2−dτ/2,

and thus decreases exponentially with d and τ .

2 Bound on the minimum of multivariate positive

polynomial

We now switch to the multivariate case.

2.1 Problem statement

Let P ∈ Z [X1, . . . , Xk] be a polynomial of degree d, and τ a bound on the
bitsize of its coefficients. Moreover, assume that

m = min
∆

P > 0.

In order to find an explicit lower bound 0 < mk,d,τ < m, we generalize the
proof of the univariate case. We first show that, up to a small rise in the
bitsize of the coefficients, we can assume that the minimum is attained in the
interior of the simplex. Obviously, there exists a face σ of ∆, of dimension
0 ≤ s ≤ k, such that the minimum m is attained at a point of the interior
of σ (with its induced topology). In the following we consider such a face σ,
of minimal dimension s.
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2.1 Problem statement 2 MULTIVARIATE CASE

Remark 2.1. If σ is a vertex of ∆, then obviously m ≥ 1. We now assume
that s ≥ 1.

Denote
{

V0 = 0
Vi = ei (1 ≤ i ≤ k)

the vertices of ∆, and

{

λ0 = 1 −
∑

Xi

λi = Xi (1 ≤ i ≤ k)

the associated barycentric coordinates.

There exists a subset I = {i0, . . . , is} of {0, . . . , k} such that the vertices
of σ are the vertices (Vi)i∈I . Let J denote the complementary set of I in
{0, . . . , k}. The face σ is caracterized by :

σ = {x ∈ ∆ |∀j ∈ J, λj(x) = 0}.

We then proceed to the following substitutions in P :

• If j ∈ J and j > 0, replace the variable Xj by 0

• If j ∈ J and j = 0, replace the variable Xi0 by 1 −
s
∑

ℓ=1

Xiℓ

We then obtain a polynomial Pσ ∈ Z [Xi1 , . . . , Xis ] satisfying :

min
∆

P = min
◦

σ

Pσ.

Rewrite the variables Xiℓ into Yℓ.

Pσ ∈ Z [Y1, . . . , Ys] is a polynomial verifying :

Lemma 2.2. The degree of Pσ is bounded by d.
Besides, the bitsize of its coefficients is bounded by τσ, where

τσ = τ + 1 + dbit(k).

Proof. The degree of Pσ is clearly lower than d.
We now show the result concerning the bitsizes of the coefficients.

• The result is clear if s = k. Assume that s ≤ k − 1.

5



2.1 Problem statement 2 MULTIVARIATE CASE

• Assume that 1 ≤ s ≤ k − 1.
Replacing Xj by 0 does not change the bitsize of the coefficients, then

only the replacement of Y0 by 1 −
s
∑

i=1
Yi has to be taken into account.

If
P =

∑

α∈N
k

|α|≤d

aαXα,

then
Pσ =

∑

γ∈N
s

|γ|≤d

bγY γ ,

where

bγ =
∑

β∈Iγ

±
(|β|

β

)

a(γ1−β1,...,γk−βk),

and

Iγ = {β ∈ N
s+1 | |β| ≤ d and ∀i ∈ {1, . . . , s}, βi ≤ γi}.

Hence, we have

|bγ | ≤ 2τ
∑

β∈Iγ

(|β|
β

)

≤ 2τ
∑

β∈N
s+1

|β|≤d

(|β|
β

)

≤ 2τ
d
∑

p=0

∑

β∈N
s+1

|β|=p

(|β|
β

)

≤ 2τ
d
∑

p=0

(s + 1)p

≤ 2τ (s + 1)d+1

s

≤ 2τ × 2(s + 1)d

≤ 2τ+1kd,

and the conclusion follows.
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2.2 Rational univariate representation 2 MULTIVARIATE CASE

Note that σ can be identified with the standard simplex of R
s. Since

m = min
∆

P = min
◦

σ

Pσ,

Pσ ∈ Z [Y1, . . . , Ys] achieves its minimum in the interior of σ. Consequently,
m is attained at a critical point of Pσ, ie a point x ∈ R

s such that the
gradient of Pσ is zero. We are thus interested in computing the values of P
at the zeros of its gradient. We aim at giving a univariate reformulation of
this problem, enabling us to use resultant methods. The following section
introduces the necessary material.

2.2 Rational univariate representation

We first introduce the notion of Thom encoding :

Definition 2.3. Let P ∈ R[X] be a real univariate polynomial, x ∈ R a
real number and σ ∈ {0, 1,−1}Der(P ) a sign condition on the set Der(P ) =
{

P, P ′, . . . , P (deg P )
}

of the derivatives of P .

The sign condition σ is a Thom encoding of x if σ(P ) = 0 and

∀i, sign
(

P (i)(x)
)

= σ
(

P (i)
)

.

We can now define a rational univariate representation as follows :

Definition 2.4. A s−rational univariate representation u is a (s+3)−tuple
of the form

u = (F (T ), g0(T ), . . . , gs(T ), π)

such that :

1. F, g0, . . . , gs ∈ R [T ]

2. F et g0 are coprime,

3. π is a Thom encoding of a root tπ ∈ R of F .

Remark 2.5. If t ∈ R is a root of F , then g0(t) 6= 0.

We then define the point associated to the rational univariate represen-
tation :
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2.2 Rational univariate representation 2 MULTIVARIATE CASE

Definition 2.6. The point associated to u is the point

xu(tπ) =

(

g1(tπ)

g0(tπ)
, . . . ,

gs(tπ)

g0(tπ)

)

.

Hence, a rational univariate representation gives rise to a point whose
coordinates are rational fractions evaluated at a root of F .

Let Q ∈ R
s be a nonnegative polynomial over R

s, and

Z(Q) = {x ∈ R
s | Q(x) = 0}

be the (real) zero-set of Q. We are interested in finding a point in each
connected component of Z(Q) included in the unit ball

B(0, 1) = {x ∈ R
s | ‖x‖2 ≤ 1}.

This can be done by applying algorithm 12.15 of [BPR] :

Algorithm 1 Bounded Algebraic Sampling

Require: A polynomial Q ∈ Z [X1, . . . Xs], nonnegative over R
s.

Ensure: A set U of rational univariate representations of the form

(F (T ), g0(T ), . . . , gs(T ), π) ,

where the polynomials F, g0, . . . , gs have integer coefficients, and such that
the associated points meet every connected component of Z(Q) included
in the unit ball B(0, 1).

The complexity analysis in [BPR] shows that, if dQ is a bound on the degree
of Q and τQ a bound on the bitsize of its coefficients, then :

1. The degree of the polynomials F, g0, . . . , gk is bounded by

(dQ + 2)(dQ + 1)k−1

2. The bitsize of their coefficients is bounded by

(dQ + 2)(dQ + 1)k−1(kdQ + 2)
(

τ ′ + 2bit(kd + 3) + 3µ + bit(4k)
)

,

where

τ ′ = sup [τQ, dQ + 2, bit(2k − 1)] + 1 + 2bit [k(dQ + 2)]

µ = bit
[

(dQ + 2)(dQ + 1)k−1
]

.
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2.3 The bound 2 MULTIVARIATE CASE

2.3 The bound

Recall that Pσ ∈ Z [Y1, . . . , Ys] achieves its minimum in the interior of σ.
Consequently, this minimum is attained at a critical point of Pσ, ie a point
x ∈ R

s such that the gradient of Pσ is zero. Consider the set of critical
points

Z =

{

x ∈ R
s |

s
∑

i=1

(

∂Pσ

∂Yi

)2

(x) = 0

}

.

It is easy to see that if C is a connected component of Z containing a min-

imizer of Pσ in σ, then C ⊂ ◦
σ by minimality of the dimension s of σ. In

particular, C ⊂ B(0, 1) ⊂ R
s.

Algorithm 1 then gives a set of rational univariate representations of the
form

u = (F (T ), g0(T ), g1(T ), . . . , gs(T ), π) ,

whose associated points meet every connected component of Z contained in
B(0, 1). In particular, they meet every connected component of Z containing
a minimizer of Pσ in σ. We easily control the degree and the bitsize of the
coefficients of the polynomials F (T ), g0(T ), g1(T ), . . . , gs(T ) :

Lemma 2.7. The degree of the polynomials F, g0, . . . , gs is bounded by du,
where

du = 2d(2d − 1)k−1.

Moreover, the bitsize of their coefficients is bounded by

τu = 2d(2d − 1)k−1(2kd − 2k + 2)
[

τ ′ + 2bit(2kd − 2k + 3) + 3µ + bit(4k)
]

,

where

τ ′ = 2τ + (2d + 2)bit(k) + (k + 3)bit(d) + 4

µ = bit
[

2d(2d − 1)k−1
]

.

Proof. Let Q denote the polynomial

Q =

s
∑

i=1

(

∂Pσ

∂Yi

)2

.

Clearly, its degree is bounded by dQ = 2d − 2. Moreover, we can bound the
bitsize of its coefficients as follows.
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2.3 The bound 2 MULTIVARIATE CASE

If
Pσ =

∑

γ∈N
s

|γ|≤d

bγY γ ,

then
(

∂Pσ

∂Yi

)2

=
∑

γ∈N
s

|γ|≤d

cγY γ−2ei ,

where
cγ =

∑

α∈N
s

α≤γ

αi(γi − αi)aαaγ−α.

Write Q =
∑

δ∈N
s

|δ|≤d−2

dδY
δ. Since Q =

s
∑

i=1

(

∂Pσ

∂Yi

)2

, its coefficients are bounded

as follows :

|dδ| ≤ s
∑

α∈N
s

α≤γ

αi(γi − αi)aαaγ−α

≤ sd222τσdk

≤ k22τσdk+2.

Hence, the bitsize of the coefficients of Q is bounded by τQ, where

τQ = 2τσ + (k + 2)bit(d) + bit(k) = 2τ + (2d + 1)bit(k) + (k + 2)bit(d) + 2.

The result now follows from the complexity analysis of algorithm 1.

We can now construct the following polynomials :

Pu(T ) = g0(T )dPσ

(

g1(T )

g0(T )
, . . . ,

gs(T )

g0(T )

)

.

We then have :

Lemma 2.8. The degree of Pu is bounded by dP,u = dud.
Besides, the bitsize of its coefficients is bounded by τP,u, where

τP,u = d [τu + bit(du + 1)] + τ + dbit(k) + d + k + 1.

Proof. The result about the degree is clear in sight of the previous lemma.
The bound on the bitsize of the coefficients is obtained by substitution, using
proposition 8.11 of [BPR].
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2.3 The bound 2 MULTIVARIATE CASE

The minimum m of Pσ over σ is attained at a point x ∈ σ contained
in a connected component of Z included in the ball B(0, 1). Since Pσ is
constant on such a component, m is also attained at some point xu(tπ)
associated to an already computed rational univariate representation u =
(F (T ), g0(T ), g1(T ), . . . , gs(T ), π).

Since tπ is a root of F , the minimum m = Pσ (xu(tπ)) is a root of the
resultant

R(Z) = ResT

(

Pu(T ) − g0(T )dZ, F (T )
)

.

Example 2.9. We consider here the following easy example (Berg polyno-
mial, see example 37 in [Sc]):

B := x2y2(x2 + y2 − 1) + 1.

It is easy to show that B is positive on ∆. We now compute its minimum.

• On the three vertices of ∆, we have B = 1.

• On the faces {x = 0} and {y = 0}, we have B = 1.

• Consider the face {x + y = 1}. Replacing x by 1 − y leads to consider
the (univariate) polynomial

B{x+y=1} = 2y6 − 6y5 + 6y4 − 2y3 + 1.

Since B′
{x+y=1} = 6y2(y − 1)2(2y − 1), the minimum of B{x+y=1} is

31/32, attained at y = 1/2.

• We now compute the values of B at its critical points contained in the
interior of ∆. It is easy to show that those points (x, y) satisfy

2x2 + y2 = 1

x2 + 2y2 = 1.

We now compute a rational univariate representation of this set. Salsa
software (see [Sa]) produces the following one :

F = (3T 2 − 1)(T 2 − 3)

g0 = T (3T 2 − 5)

g1 = T 2 + 1

g2 = 2(T 2 − 1).
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2.3 The bound 2 MULTIVARIATE CASE

The resultant R(Z) equals

R(Z) = ResT

(

g0(T )6B

(

g1(T )

g0(T )
,
g2(T )

g0(T )

)

− Zg0(T )6, F (T )

)

= 24836(27T − 26)4.

The only root 26/27 < min(1, 31/32) is thus the minimum of B over
∆, corresponding to the root

√
3 of F , and giving the minimizer

(

g1(
√

3)

g0(
√

3)
,
g2(

√
3)

g0(
√

3)

)

=

(

1√
3
,

1√
3

)

.

In order to obtain a lower bound on the minimum depending only on
k, d and τ , one needs to evaluate the roots of R(Z). This can be done
by controlling the size of the coefficients of R(Z) and then using Cauchy’s
bound. Write

F (T ) =

du
∑

i=0

fiT
i,

Pu(T ) =

dP,u
∑

i=0

aiT
i

and

g0(T )d =

dud
∑

i=0

biT
i =

dP,u
∑

i=0

biT
i.

Lemma 2.10. g0(T )d is a polynomial of degree less than dud = dP,u, and
the bitsize of its coefficients is bounded by d(τu + bit(du + 1)) ≤ τP,u.

Proof. The degree of g0(T )d is clearly less than dud = dP,u. We now show
the bound on the bitsize of its coefficients. Recall that the degree of g0 is
bounded by duand that the bitsize of its coefficients is less thanτu. When
multiplying a univariate polynomial f by g0, the rise of the bitsize of the
coefficients is at most τu + bit(du + 1). Indeed, the coefficients of fg0 are
sums of at most (du + 1) products of a coefficient of f by a coefficient of g0.
The conclusion follows.

The resultant R(Z) is the determinant of the matrix Syl(Z), where

12



2.3 The bound 2 MULTIVARIATE CASE

Syl(Z) is the following Sylvester matrix :






































adP,u
− bdP,u

Z · · · · · · · · · · · · a0 − b0Z 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 adP,u

− bdP,u
Z · · · · · · · · · · · · a0 − b0Z

fdu
· · · · · · · · · f0 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 fdu

· · · · · · · · · f0





























































du































dP,u

R(Z) =
du
∑

i=0
riZ

i is a polynomial of degree du in Z, whose coefficients are

controlled in the following fashion :

Lemma 2.11. For all i ∈ {0, . . . , du},

|ri| <

(

du

i

)

[

2τP,u
√

dP,u + 1
]du
[

2τu
√

du + 1
]dP,u

.

Proof. We proceed as in the proof of lemma 1.1.
With obvious notations, write

(

A1 + ZB1, . . . , Adu
+ ZBdu

, C1, . . . , CdP,u

)

the rows of the Sylvester matrix Syl(Z). Using the multilinearity of the

determinant, we can write R(Z) =
du
∑

i=1
riZ

i, where, for all i ∈ {0, . . . , du}, ri

is a sum of
(

du

i

)

determinants of matrices built with:

- i rows among the Bj ’s

- du − i rows among the Aj ’s

- the dP,u rows C1, . . . , CdP,u
.

Hadamard’s bound (see [BPR]) implies that, for all i:

|ri| ≤
(

du

i

)
√

[

(dP,u + 1)
(

22τP,u − 1
)]du

√

[(du + 1) (22τu − 1)]dP,u

≤
(

du

i

)

[

2τP,u
√

dP,u + 1
]du
[

2τu
√

du + 1
]dP,u

,

as announced.
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2.3 The bound 2 MULTIVARIATE CASE

Since the minimum m is a root of the resultant R(Z), Cauchy’s bound
finally implies the following theorem :

Theorem 2.12. Let P ∈ Z [X1, . . . , Xk] be a polynomial of degree d, τ a
bound on the bitsize of its coefficients and m = min

∆
P the minimum of P

over the standard simplex ∆. Assume that m > 0.

Moreover, let U be a set of rational univariate representations of the form

u = (F (T ), g0(T ), . . . , gk(T ), π)

giving a point in each connected component included in the ball B(0, 1) ⊂ R
s

of

Zσ =

{

x ∈ R
s

∣

∣

∣

∣

∂Pσ

∂Y1
(x) = · · · =

∂P

∂Ys
(x) = 0

}

,

for all face σ of V .

Besides, let du (resp. τu) be a bound on the degree (resp. the bitsize of
the coefficients) of the polynomials occuring in the rational univariate repre-
sentations of U .

We then write
dP,u = dud

and
τP,u = d [τu + bit(du + 1)] + τ + dbit(k) + d + k + 1

the bounds on the degree and on the bitsize of the coefficients of the polyno-
mials

Pu(T ) = g0(T )dPσ

(

g1(T )

g0(T )
, . . . ,

gs(T )

g0(T )

)

.

Then :
m > md,τ,u,

where

md,τ,u =
1

[

2τP,u+1
√

dP,u + 1
]du
[

2τu
√

du + 1
]dP,u

.

Proof. Since R has at least one non-zero root (R(m) = 0), we can write

R(Z) =

du
∑

i=c

riZ
i,
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2.3 The bound 2 MULTIVARIATE CASE

with du > c and rcrdu
6= 0.

Cauchy’s bound then implies :

m ≥ 1
du
∑

i=0
|ri|

>
1

du
∑

i=0

(

du

i

) [

2τP,u
√

dP,u + 1
]du
[

2τu
√

du + 1
]dP,u

≥ 1

2du
[

2τP,u
√

dP,u + 1
]du
[

2τu
√

du + 1
]dP,u

≥ 1
[

2τP,u+1
√

dP,u + 1
]du
[

2τu
√

du + 1
]dP,u

,

as announced.

Corollary 2.13. In particular, one can choose

du = 2d(2d − 1)k−1

τu = 2d(2d − 1)k−1(2kd − 2k + 2)
[

τ ′ + 2bit(2kd − 2k + 3) + 3µ + bit(4k)
]

,

where

τ ′ = 2τ + (2d + 2)bit(k) + (k + 3)bit(d) + 4

µ = bit
[

2d(2d − 1)k−1
]

.

The bound corresponding to this choice is the bound mk,d,τ we were aiming
at.

Remark 2.14. In [LS], the authors give the following estimate :

1

m
≤ (2τ )Dc(k+1)

2Dc(k+1)
(†)

where D denotes a bound on max(d + 1, k + 1) and c is (unknown) universal
constant. With our method, repetitive but straightforward estimations lead
to the following simple bound :

1

mk,d,τ
≤ (2τ )2

2k+3d2k+2(k+1) 222k+8(d+1)2k+2(k+1)2 .

15
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In particular, we have :

1

m
≤ (2τ )D4k+6

2D4k+12
.

Thus, we can take c = 12 in the bound (†).
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