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Abstract

This study focuses on the drying process of pasta ¢onvectional air drying oven. A
model predictive control algorithm is designed,dzshen a dynamic model describing the
mass transfer between pasta and the surroundingfar multiple input single output
control algorithm minimizes a cost function ovepr@diction horizon which represents
the deviation of the process from a desired referdmnack, thereby incorporating the
working limitations of the oven. The performancetioé controller and the influence of
the prediction horizon are examined in this pagbgwing minimal deviation between

process and reference track.
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1. Introduction

Drying is one of the most energy intensive indastgrocesses with applications in a
wide variety of industries including food industignd construction industry (1).
Traditional convective drying processes, which peeformed in batchwise operations,
employ continuous constant air temperature andivel&aumidity for moisture removal.
The rate of migration of the moisture from withiretpasta to the evaporation front often
controls the overall drying rate for a batch of tpa§?). Thus, for optimal energy
consumption and improved quality, it is importaotrhatch the energy demand of the
product during drying with the external supply oleegy. Moreover, optimal control of
the moisture content and the efficient applicatainthe energy inputs during drying
reduce the drying times and hence the energy cgptsum Control of drying operations
is therefore helpful, in addition to reduce thetaafsproduction and increase the quality
(3, 4). Whereas control techniques are widely usethany industries, the number of
applications of control in drying is relativelylsthodest (5). The use of control tools has
started to emerge in drying applications only sib@@é9. In a second phase started around
1998, new trends based on optimization of a perfoice function solved by optimal
control tools appeared. Since 1992, emerging agipdics have appeared with few papers
in painting, pharmaceuticals, paper and wood aattins (5). However, control
structures for drying processes of pasta are rtastyelied and applied for industrial use.
Control actions in industrial companies are nowadayanually installed based on the

practical process knowledge of the operators.



This research is concentrated around the effi@entrol during pasta drying. Presently,
since the moisture content is unknown and uncdettoduring drying, pasta is
industrially dried to a moisture level which is rhuower than the legal threshold value
for microbial safety. The implementation of an @tnt controller will enable the process
to be followed and to be directed towards a refiktrack, which is formulated as a
function of quality aspects, economical imperatigesl consumer concerns. The energy
consumption can then be reduced by the efficiauking of the moisture concentration
in pasta, i.e. no additional energy will be spillegthe control actions (air temperature
and relative humidity) to remove the extra unneagspercentages of water out of the
pasta with the consequence of a reduction in dryimg. In process industry, pasta is
namely dried to moisture contents, lower than thiical values for microbial
contamination as the process moisture concentsattan not be measured online during
production and biological variations in pasta matsrinfluence the final moisture
concentration. To reduce the (often unnecessast) darcentages of moisture out of
pasta, long drying times are needed, consuming dbtenergy. Control structures
combined with online process measurements areftnereseful to reduce the drying

time, and therefore the energy consumption.

In this work, a model predictive control system fmasta drying is built. The idea of
model predictive control can be traced back to1®&0s (6,7). However, interest in this
field started to surge only in the 1980s after pation of the first papers on IDCOM (8)
and dynamic matrix control (DMC) (9) and the firsbmprehensive exposition of

generalized predictive control (GPC) (10,11). DMGaswconceived to tackle the



multivariable constrained control problems typifmal the oil and chemical industries. In
DMC, these problems were handled by single looptrotlars augmented by various
selectors, overrides, decouplers, time-delay cosgters, etc. (12). GPC was intended to
offer a new adaptive control alternative. In thedttion of adaptive control input-output
(transfer function) models were employed. The GPB@r@ach is not suitable or, at the
very least, awkward for multivariable constrainegstems which are much more
commonly encountered in the oil and chemical indesstthan situations where adaptive
control is needed (12). Essentially all vendorsehastopted a DMC-like approach (13).
The initial research on MPC is characterized bgmfits to understand DMC, which
seemed to defy a traditional theoretical analyssabse it was formulated in a non-
conventional manner. Many MPC approaches have pemposed along the past three
decades, most of them based on a receding-horirategy, i.e., at each sampling instant
k the following actions are taken (14):
- The plant measurements are updated for use iredtback/feedforward control loop
- the plant model is used to predict the output respdo a hypothetical set of future

control signals,

a function including the cost of future controlians and future deviations from a

reference behavior is optimized to give the betr&icontrol sequence, and

- the first movement of the optimal control sequeiscplied.

These operations are repeated at tirng. The main advantage of MPC is its ability to
address long time delays, inverse responses, isgmif nonlinearities, multivariable

interactions and constraints (14). The widespreseland success of MPC applications



described in the literature attest to the impropedormance of MPC compared to the
classical control algorithm for control of difficyprocess dynamics.

However, due to the strong nonlinear characterefdquations, a numerical solution
technigue must be used to solve these equations. cbmputational effort varies
somewhat because some solution methods require thay a feasible (and not
necessarily optimal) solution be found or that oaty improvement be achieved from
time step to time step. Nevertheless the effausisally formidable when compared to the
linear case and stopping with a feasible rathem tlogtimal solution can have
unpredictable consequences for the performancecdimputational effort can be greatly
reduced when the system is linearized first in sonaner and then the techniques
developed for linear systems are employed onlinevigtic (15) showed excellent
simulation results when a linear time varying (LT3ystem approximation is used, which
is calculated at each time step over the predisystiem trajectory (16). Zheng (17,18)
used the MPC formulation in a closed-loop conttohtegy while reducing the online
computational demand. The nonlinear MPC control feag thereby approximated by a
linear controller which linearized the nonlineardeband assumed no constraints. The
linear controller was then used to compute all reitwontrol moves. The online
computation effort was significantly reduced instimanner since only the first control

move was computed by solving the optimization peobl

A time-varying linear MPC algorithm based on Dufeund Touré (19) will be developed
for this research. In order to control the dryingpasta, it is necessary to model the

drying process at a fundamental level. The governmnsport equation for moisture



content is formulated on the basis of a nonlineatig differential equation (PDE). To
provide an insight into the drying process and lteidate the physics of the transport
phenomena that arise during drying, it is necessargolve this system. The MPC
structure which takes into account constraints tfie model input and output, is
developed afterwards. Experimental results revéa &pplicability of the MISO

(Multiple Input Single Output) MPC structure in paslrying companies.

2. General model structure

The drying process of pasta was modelled with aoupled mass transfer model based
on Fick's law for flat pasta (2). The mass trangfatance was founded on an internal
moisture transport mechanism governed by the nreisgradient and interpreted
mathematically based on an effective diffusion ioeint in Fick’s law. The transport
kinetics are entirely controlled by the internansport resistance (2J.he time and
spatially dependent diffusion coefficient deternsirtiee internal transport kinetics totally
and hence the overall drying time for moisture reat@ut of pasta (20, 21). Moreover,
calculations of the Fourier number confirm that whiéusion in pasta is the time
determining key factor during drying. Moisture tsport was assumed to be one-
dimensional along the smallest pasta thicknessThe surface of the pasta was
surrounded by air with well-known properties (@&miperature and relative humidity) on
one side while the pasta was insulated with alumifioil on the other side. The

shrinkage of pasta is included in the model by wang it as a one-directional



phenomenon with a volume reduction, only attributed the moisture loss. The
unidirectional Fickian diffusion equation which atds moisture concentration to time

and space is formulated as (2):

X :iKD(X—E"zja—X} for t>0 and O€<L (2)
ot o\ A+yX) )oé
in which D(X,T,,) =a(T,, ) expoX ) for t>C 2)

in whicht is the time in s and the Lagrangian coordinate in M(&t) represents the
moisture concentration in the pasta on dry basipressed in kg/kgD(X,Tar) the
diffusion coefficient in /s, ¢ the volumetric shrinkage coefficiers, an Arrhenius
function of T4, in mf/s, b a dimensionless constant of the diffusion coedfitiandd the

partial derivative operator.

The initial and boundary conditions for the massisport were formulated as:

t=0 s:X =X, for 0< <¢, 3)
t>0 s: —D(X—’T“”Z)a—x = 0 foré= ( 4)
@+eX)” oé
._D(X,T,) 0X

t>0s =h, T, \c T X )<, T, RH) foré=¢ (5)

(1+eX)? O&

in which X, represents the initial (assumed uniform) moistorecentration in the pasta

in kg/kg, ¢, the total length of the pasta expressed in thedragan coordinate in niy,



the mass convection coefficient in MR the relative humidity of the drying air afid;

the air temperature of the drying air in °C. Thenevical values and the expressions of
all model parameters are shown in detail in anahety (2). Fick’s model equation with
the distributed diffusion parameter, combined whke boundary and initial conditions
can only be solved by numerical discretization téghes. This model describes the
moisture concentration in pasta as a function ef itiput parameters, the drying air
temperature and the relative humidity. The modael lsa considered as a MISO model.

This MISO model has in general the form of:

S W P
oX
F 22 x[..T, |=0 7
bo(agg:o |E:0 J ()
oX
F - IX 1Tair’RH =0 8
" [af =4, L(:{L J ( )

in which Fq is the nonlinear function of the partial differatequation, whileF, and
F, are nonlinear operators for the boundary condstianthe surface impermeable for

moisture transport and at the surface in contattt thie surrounding air respectively. This
MISO model is named anS model which stands for the nonlinear drying syst&mis

model is the basis on which the MPC structure ik.bu

3. M PC formulation



MPC refers to a control strategy in which the dyitamodel equations (6) — (8) are used
to predict and optimize the drying process. In tuatrol application, the drying process
is optimized by internal model control for the nmarated input variable consisting of
both drying air temperature and relative humidifft)=[ T:(t) RH(t)]. The control
problem is solved by calculating 8ffline (S is Sy. obtainedwvith u(t)=w(t)), while S1v

is computed online during MPC optimization. Thelio# model g, the online model
Sirv and the differencee between the process and model outputs tiegtace the
nonlinear model @ into the optimization. This linearized model cdmites to a
significant reduction in online computational tirle.must be taken into account that
communication between the control software andotiise measuring system requires a
non negligible time. Therefore, within this strategf calculating a part of the solution
offline, the remaining time between two successiweasuring points can be used
efficiently to find an optimal solution that perfos well with the MPC algorithm.

The control objective is then to find the variatida(t) of the manipulated variablgt)
around the chosen trajectamy(t) leading to a better online optimization result)(Zthe
online linearization thus allows adding variaticer®und the general offline calculated
trend, reaching a much higher performance for tflRCMormulation: more iterations are

possible to find the solution, and the control perfances are increased.

31 General considerations



In the MPC formulation, the nonlinear system.Ss divided into a particular
representation (Sof Sy, and a linearized term, namegrg S stands for the particular
solution of the nonlinear model for the inpyft) and stateXo(¢, t), while Sty represents
a time-varying linearized model, obtained by snvalliationsAu(t) =[ATa(t) ARH()]

andAX(¢ t) around respectively the inpug(t) and stateXo(é, t). This linearized model is

described by (22):

B = K022+ ) Z + Al )8X +B,00T, ©)
A 025+ A O0X + B (04T, (10)
At )aA_x+ A (1)DX +B] (1)AT,, +B™ ()ARH =0 (11)

The time varying linear operators in these equatarne obtained from the linearization of

SuL around the behavior described y(33).

3.2  Control objective

The control objective of pasta drying is a trajegtracking for the average moisture
concentration of pasta. The average moisture caratem is forced to follow a reference
curve, which is formulated in industry as a funetiof the actual consumer and legal
requirements. The reference curves are namelydaidmnof quality aspects (no cracking
of pasta is allowed, minimal brownness is requirad§l legal limitations (maximal

tolerated moisture content). They are given byratustrial pasta firm. In this study, a
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standard referential curve of an industrial pasta Wvas taken. To follow such reference
track, input and output constraints must be takaio iaccount. A cost function is
formulated here for the drying process, which isnimized by the MPC control

algorithm.

3.2.1 Input constraints

The input parameters of the considered drying madelconstrained by their working
area and by the time needed to establish the daingonditions in the working area.
The pasta product in this study was assumed toried th an oven [Weiss Technik,
Germany] by using temperatures between 1°C andCL@@d relative humidity varying
from 1% to 100%. The oven considered had a heateigcity of 1.5°C/min and a
cooling velocity of -3°C/min. The velocity for chges in relative humidity was measured
under several constant and variable air tempemstimdicating a humidity velocity for
both humidification and dehumidification of +/-0.8¥d/min. These limitations on the

working area of the oven were taken into the cdletronathematically as:

(12)

(13)

in which umn and umx represent the minimal and maximal constraint inpttile U,
and u,,, are the minimal and maximal velocity for the inplmt order to be used in the

control algorithm, explicit constraints on the npaiated input parameter require a

11



transformation method to translate the input patarsento an unconstrained parameter

p. Therefore the following transformation equatisrused (22):

P~ s
u=f +f,,tanh —* (14)
famp
with:

( fmax + fmin)
fy = (15)

— ( fmax B fmin)
farm EEEa— (16)
e =MiN(U L U —D+u ) (17)
foin = MaXxX(Uy, U (= DFu,) (18)

and the future discrete timgat each current discrete tirkés:

jO{k+1,..k+N,} (19)

At each sampling time k, the working range for ithigut parameters is calculated starting
from the previous inputi(k-1). The maximal and minimal input velocitigs,, and u,,,,

are therefore added and subtracted to the prevwngpusg and compared with the overall
tolerated working zone limits, defined loyin, and upnax (equations (17) and (18)). The

average valudy, and amplitude valud,,, of the working range are consequently

12



considered (equations (15) and (16)) and used dosftorm the constrained input
parameteu into the unconstrained parametgerwhich is used further on in the MPC
optimization algorithm. The control move is therygically feasible at any time and at
any iteration: the constrained input parameatedetermines the working range for the

inputs of the drying model.

3.2.2. Output constraints

The average moisture concentration of pasta isna$uo follow a reference track
during air drying to satisfy food quality, concergiproduct stability, texture and color.
In order to produce high quality pasta, the evohlutiof the average moisture
concentration must be situated between minimal arakimal boundaries. These
constraints on the process output are formulateal ls@snd around the reference track in
which deviations between the process and referenoe are tolerated. Concentrations
falling out of the toleration band have to be fardce move towards the reference curve
by the control algorithm. The concentration limitsr the moisture contents are

mathematically expressed:

Co (y,().u))<0 (20)

in which Co; represents the constraint function for the proaagput constraints. The

constraint function€o; andCo; in this study represent the transforming functiforshe

13



maximal and minimal tolerated moisture concentratigy™ (t) and y,"" () around the

reference track respectively:

Yo ()
Co =| 5t —-1 21
% [YEAAX(t) ] &)
Yo ()
Co, (t) =| 1- =2t 22
0,(t) ( % (t)J (22)

3.2.3 Linearization

The small input variationsu(t), small state variationsX(¢ t) and small output variations
Aym(t) are used in the time-varying linearized modgh,SThe offline solved nonlinear
model $ and the online solved time-varying linearized mao8lgy with the errore(t)
then replace the initial nonlinear model Swhile the model outpuwt,(t) is defined as the
sum of the nonlinear offline solved outpgyft) and the linearized outpiy(t) (Fig. 1).
Moreover, by discrete time formulation, the timgeedent input, output and states can
be expressed as a function of the discrete timexipddefined by (19). The process

outputyy(j) is then:

Yo (1) = Yo (1) + Ay, (1) +e(k) (23)

14



in which the difference(k) between the process and model outputs is assuomstaat
over the prediction horizon. This erre(k) is also fed back in the controller and is
updated at each timk. Therefore, two feedback loops are used to adpstess
performances (24).

The small variationg\u(j) can be reformulated as unconstrained parametéatioais
Ap(j) based on equation (14)he control objective is then to find the variatidp(t) of
the unconstrained manipulated variap{f about the chosen trajectgny(t) leading to a
better online optimization result. As a consequethesoutput constraints (20) are then

considered as:

Co, (Yo (1), 8ym(j).€(k),0p(j))< O (24)
3.2.3. Cost function
A cost functionJy is introduced to quantify the deviation of the mes from the
reference behavior and the positioning of the m@sceutput compared to the
concentration band around the reference curve. dtliput constraints are taken into

account in the second term &f; by adopting the exterior penalty method where a

positive defined weighted penalty term is addeth&oinitial cost functiond (24):

minJy, = 3()+ 350 ()= I()+ @ mak ( 0Ca) () (25)

15



whereJ(j) incorporates the deviation of the process fronréfierence behavior and is

a positive defined weight that increases when thipud constraints tend to be checked
and decreases when they do not tend to be che@d&d Kor any constrain€o; not
checked, the weighb; penalizes the minimization task. This enforces dpgmizer to
minimize Jex(j) and hence to enforce the violated constraintetohecked. The problem
is thus transformed into an unconstrained penaligeoinization problem by substituting

a penalty function for the constraint (24).

Minimization of the cost functiod; is obtained by manipulating the input parameters

Ap of the model, thereby taking into account the tramnsts on the input:

ngmm:% (Vi (D) =[¥o(3) + 2y, (1) +e(K)])

P k=1 Yis (1)

+amax (0Co, (j ) +w, max( 0Co, {)
(26)
wherek stands for the actual discrete tingey(j) for the future trajectory track/(j) for
output of the & model, Ay,(j) for output of the §v model, k) for the difference
between process and model output, whijeandw, are the penalization factors f6o;(j)

andCoqy()).

3.3.  Control algorithm

16



To optimize the input parametép at each timé, the Levenberg-Marquardt algorithm
is used due to its robustness, simplicity and cogemce criteria. In this optimization

algorithm the argumemp,,, is calculated starting fromp, by the following iteration:

Ap,, =Ap —(023, +A1) " 0

tot

o (27)
in which A represents a blending factor which is recalculateeach iteration] is the
identity matrix, whileO is the gradient an@® the hessian with respect fp . In Fig. 1

the structure of the MPC loop is shown.
34. IMCPID control

The developed control strategy can also be usedM@r PID control. The difference
between the referential value and process valeaclt process time (the erer which

is now not evaluated over a prediction horizonm®rthe basis to prediai(t) as the

output of the PID controller and is mathematicatkpressed as:

d(e)

e (28)

u(t) =k,e+k [edt +k,

The input parameteu(t) of the considered drying model is also constraibhgdheir

working area and its limits are identical as exypgai for MPC.
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4, M PC simulation results

The objective of the MPC system is to tune the inparameters that minimize the
deviation between the process output and referdrmek. The average moisture
concentration in pasta is controlled by adapting imput parameters of the system,
namely the air temperature and relative humidithe Tworking area for the air
temperature is constrained between 1°C and 1008CGaarthe relative humidity between
1% and 100%. The considered heating and coolingcitglare constrained to 1.5°C/min
and -3°C/min respectively, while the relative huityidchange is constrained to +/-
0.5%RH/min. The process output is considered bgutatiing $ offline, while S+v is
computed online during MPC optimization. Then$del was calculated fai(t)=[49.5
10], in which the first number stands for the dgyair temperature (in °C) and the second
number for the relative humidity (in %). The samglitime was set to 60 s for a total
drying process of 5000 s. The initial average nuoestoncentration of pasta in the model
was assumed to be 47.7%. Deviations were introdduoedheck the adequacy and
robustness of the controller: in order to creataat®ns between the actual process and
model, the initial average moisture concentratibthe process was set to 48.5%, while
the diffusion coefficient of the process model wased with 10.0%. Moreover real
processes only deviate from the simulated modelpdrameter deviations. The real
process can then be assumed as a process modgbakéimeter deviations. However,
online implementation requires highly precise measgu systems for the moisture

content, evaluated over 60 s, which are not aviailétr the moment, but are under

18



development. For the implementation, the MPC@CBwsot developed under Matlab

was used.

In Fig. 2 convergence of the process towards the refereac& ts shown for various
control strategies. The deviation between the drymmocess and reference track is
minimal with the MPC. Since a higher diffusion dogént of the model than in the
process speeds up the modeled drying, the MPCadilemthas to intervene in the control
loop by decreasing the air temperature or/and asing the relative humidity in order to
direct the process towards the reference curve. sthall temperature increase at the
beginning of the drying process is caused by theiatlen in the initial moisture
concentration of the process, after which the teatpee decreases to counterbalance the
effect of the diffusion coefficient for the simudak process. With a prediction horizon
consisting of 5 points considered for the MPC aalntitgorithm, the root mean squared
error (RMSE) between the average moisture cond@mraof the process and the
reference track is 0.30% for this simulated procedsich indicates the adequacy and
performance are very good. The control magnitudeshife MPC strategy are shown in
Fig. 3 together with the minimal and maximal allowed inhpine constrained control
magnitudes are situated between the specified dzoigs. The increase or decrease in
the manipulated input variables is limited betwégao consecutive sampling points due
to the constraints on the input variations causethé oven usedg. 4).

In the first open loop case, the input magnitudiisremain constant at 49.5°C and 10%

and do not counterbalance for the higher diffustoefficient or the deviating initial

! © University Claude Bernard Lyon 1 — EZUS. In artteuse MPC@CB, please contact the author:
dufour@lagep.univ-lyon1.fr
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moisture concentration. The uncontrolled processvshdivergence from the reference
track after 800s which only increases afterwardghese is no control action for this open
loop system Kig. 2). The RMSE between the average moisture concerirati the
process and the concentration of the referenck foathe open loop system is 4.36%.
Additionally, another open loop control case isegivnFig. 2 for the drying conditions
at 45.0°C and 20%, indicating again divergence ftbereferential curve. The drying air
temperature of 45.0°C is not adequate to reachetfeeential curve as remained constant
because there is no control (RMSE=4.12%).

An internal MISO PID, replacing the MISO MPC systénunable to take prediction
horizons into account and hence cannot foreseerheess. The optimal internal PID
specifications are given ihable 1. The PID controller does not perform as well as th
MPC controller (RMSE= 1.98%). The process is nattcgled optimally by the PID
between 500 s and 1500 s due to the lack of pramedaation over a prediction horizon.
However, there is no bad impact of the PID corgrolbn the tracking results. The
constrained manipulated control magnitudes (tentpexaand relative humidity) for the
applied internal MISO PID are given Fig. 3. In Fig. 4, the variation in constrained
manipulated control magnitudes between the suaeessimpling instants is shown for
the MISO MPC and MISO PID controller. It is demaagtd that the inputs for the MISO
PID controller are sometimes saturated, while tipuis of the MISO MPC system are
situated between their maximal heating, cooling lamaehidification and dehumidification
velocity.

The same MISO MPC control strategy is performedpi@diction horizons including 2,

3, 4,5, 7, 10 and 15 points. The deviation betwpestess and reference track is

20



therefore also minimal. The influence of longer shrorter prediction horizon on the
RMSE is shown irFig. 6. As optimal prediction horizon, the prediction izon which
minimizes the RMSE is preferred. The optimal predichorizon is always a function of
the type of reference curve and the type of prodedsg. 6, it is shown that a prediction
horizon, consisting of 4 points, is optimal fordking the reference curve. The prediction
horizon has a different effect because the relathy@rtance of the next input is varying
for variable prediction horizons. The relative imjamce for the next applied input value
increases for small prediction horizons, whilegteases for longer prediction horizons.
Highly varying reference curves, for example, agtdy tracked by using short prediction
horizons as it makes no sense to consider thegfgiarcess behaviour when the reference
is highly varying. The optimal RMSE between theqass and reference track average
moisture concentration is therefore 0.29%. For &g shorter prediction horizons, the
importance of the prediction horizon for calculgtthe next process value is respectively
under- or overestimated i.e. the percentage caioib for the next process input value
in the prediction horizon is under- or overestidadéed hence the prediction horizon is
preferred to be shorted or lengthened respectively.

The impact of both input parameters (air tempeeataind relative humidity) on the
process output is analyzed fg. 5 based on the sensitivities analysis. The following

sensitivity ratio is defined:

Ratio(t)=( dX/dT, (t) [ dX /dRH(t) (29)
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This sensitivity ratio ranges from 10 at the be@ignto 1 at the end. It is therefore
obvious that the air temperature has more impactthen process than the relative
humidity, explained by its influence on the diffoisiprocess. The impact of the relative
humidity is limited as it only intervenes in theumalary condition (equation (5)), but
increases at the end of the drying process. One thexy wonder if this may have an
impact in term of closed loop control results, asisig a single input, single output
(SISO) MPC structure rather that the MISO MPC stree In this SISO MPC structure,
the air temperature is assumed as input paramedethe relative humidity then remains
constant during the whole drying process (RH=10%sed in the simulations). After
some simulations, the RMSE between the averagetum@isoncentration of the process
and the reference track is 0.34% for this SISO M#Gcture, indicating less adequate
performance compared to the MISO model (0.29%)n@st MISO MPC instead of a
SISO MPC therefore helps to decrease by 15% the RMSween these two cases. The
influence of the PID controller on the SISO modeleg a RMSE of 2.08%, which also
has less performance compared to the MISO PID a@bstructure (1.98%). Using a
MISO PID instead of a SISO PID therefore helpsdordase by 5% the RMSE between
these two caseJable 2 helps to summarize the RMSE between the refetedrtyeng
curve and the drying process output in open loafh #1SO and MISO PID controlled
systems and with the best tuned SISO and MISO Mitralled systems. It can be seen

that the MISO MPC system is the best control stmgctiuring pasta drying processes.

For the MISO MPC structure, it is obvious that Wieole calculation time during control

calculations is reduced due to the offline caldafaif the modelFig. 7 demonstrates
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the calculation time for the prediction horizon s@ting of 5 points and 10 points. The
calculation results show the calculation time neefde the control actions is much lower
than the sampling time for process output measuturgng implementation (3-5 s versus
a sampling time of 60 s for implementation respetyi), indicating the control algorithm
is very efficient in calculating the control act®nThe remaining time between the
successive samplings can then be used for the caroation between the PC software
and the actual process on a laboratory scale (appately 10 s), and also to use a model
based observer in order to estimate online somenawmk or time-varying model
parameters like the pasta temperature or diffusioafficient or to recalculate the

specified MISO MPC problem in order to find moreioml solutions.

5. Conclusion

In the present study, a distributed parameter mpuoilictive control framework is used
based on computationally efficient MPC software fmsta during convectional air
drying. The control system is formulated based orotiline nonlinear model and an

online time-varying linear model. The MPC control®mbines the process output with
a Levenberg-Marquardt optimization technique tovgte a model predictive control

framework that can be supported in an industrialirenment. The smaller average
deviation between the average moisture concentratiche product and the reference

track curve was found to be 0.29% in the MISO MRSec The proposed MISO MPC
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produces high performance and accuracy, with vahtismall computational cost and
gives better results than PID, or SISO MPC withdltdemperature as the single input.
The advantage of this developed control structues In its practical use. The
implementation of the developed control structuse dne the possible practical
applications of this control structure. The MPC tcohstrategy is therefore considered as
a powerful research strategy with a variety of fjmbfes, even in other application areas

such as freezing, painting, etc.
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List of abbreviations and symbols

Umin

Arrhenius function of the air temperature?/(si
diffusion constant (-)

constraint function for the process output caists
diffusion coefficient (rffs)

dynamic matrix control

difference between process and model outpuk@kg/
nonlinear function of the partial differential edoa
nonlinear functions for the boundary conditions

difference betweenyfxand foyat the instant time
maximal constraint input at the instant time
minimal constraint input at the instant time
average constraint input gfif and fhax at the instant time
generalized predictive control
mass convection coefficient (m/s)
identity matrix
cost function incorporating the deviation of thegess from the
reference
total cost function
future discrete time index (-)
actual discrete sampling time index (-)
proportional tuning factor ([kg °C]/kg) or (kafk
integral tuning factor ([kg °C]/[kg s]) or (k& S])
derivative tuning factor ([kg °C s]/kg) or ([le¥/kg)
smallest pasta thickness (m)
linear time varying
Multiple Input Single Output
model predictive control
prediction horizon (-)
unconstrained manipulated input variable
unconstrained parameter variation around p
partial differential equation
relative humidity (kg/kg)
linearized time-varying model, solved on-line
nonlinear model
particular solution of the nonlinear model for thput w(t) and
state X%(&, t), solved off-line
air temperature (°C)
time (s)
input variable consisting of drying air temperatand relative
humidity
small variation around the input u
maximal constraint input
minimal constraint input



maximal velocity for the input

minimal velocity for the input

moisture concentration in pasta on dry basi&Rg
initial moisture concentration in pasta on dry bgkg/kg)
small variation around X (kg/kg)

model output

linearized output aroung

nonlinear model output solved offline

process output

maximal tolerated moisture concentration

minimal tolerated moisture concentration

trajectory track

Lagrangian coordinate (m)

total length of the pasta expressed as a Lagmmgordinate (m)
tolerance factor

blending factor

positive defined weight factor

volumetric shrinkage coefficient

partial derivative operator

gradient operator

hessian operator



Table 1: PID tuning parameters ky, ki and ky for air temperature and relative humidity control

Air temperature ko [(kg dry solids °C)/kg water] -2500.0
k[(kg dry solids °C)/(s kg water)] -2.0
ka[(kg dry solids °C s)/kg water] -1.10°

Relative humidity ko [(kg dry solids)/kg water] 6.0

ki[(kg dry solids)/s kg water] 1.10°
ka[(kg dry solids s)/kg water] 1.10°




Table 2: RMSE (%) between the referential curve taeddrying process output: with open
loop control while u=g=[49.5°C 10.0%] and u=g=[45.0°C 20.0%], with SISO and MISO
PID, with SISO and MISO MPC, each case with uagaties: 1.68% error on the initial

moisture concentration and 10.0% error on the difbn coefficient

RMSE (%) SISO MISO
Open loop 1 o
(U=uo=[49.5°C 10.0%]) 4.36
Open loop 2 o
(U=up=[45.0°C 20.0%] ) 4.12
PID 2.08 1.98

MPC 0.34 0.29




Yref(K)

OPTIMIZATION

Au(k

Ar Ar

k),

u(k) Yo(K)
. PROCESS >
T ek
NONLINEAR | YK -
MODEL

% Ym|(K)

TIME VARYING

LINEARIZED MODEL | Ay, (k

]

Fig. 1. General MPC structure used.
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with the MISO PID+-) and with the MISO MPC-() with a 5 point horizon prediction, each

case with uncertainties: 1.68% error on the ifit@oisture concentration and 10.0% error

on the diffusion coefficient.
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