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Abstract 

 

This study focuses on the drying process of pasta in a convectional air drying oven. A 

model predictive control algorithm is designed, based on a dynamic model describing the 

mass transfer between pasta and the surrounding air. The multiple input single output 

control algorithm minimizes a cost function over a prediction horizon which represents 

the deviation of the process from a desired reference track, thereby incorporating the 

working limitations of the oven. The performance of the controller and the influence of 

the prediction horizon are examined in this paper, showing minimal deviation between 

process and reference track.  
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1. Introduction 

 

Drying is one of the most energy intensive industrial processes with applications in a 

wide variety of industries including food industry and construction industry (1). 

Traditional convective drying processes, which are performed in batchwise operations, 

employ continuous constant air temperature and relative humidity for moisture removal. 

The rate of migration of the moisture from within the pasta to the evaporation front often 

controls the overall drying rate for a batch of pasta (2). Thus, for optimal energy 

consumption and improved quality, it is important to match the energy demand of the 

product during drying with the external supply of energy. Moreover, optimal control of 

the moisture content and the efficient application of the energy inputs during drying 

reduce the drying times and hence the energy consumption. Control of drying operations 

is therefore helpful, in addition to reduce the cost of production and increase the quality 

(3, 4). Whereas control techniques are widely used in many industries, the number of 

applications of control in drying is relatively still modest (5). The use of control tools has 

started to emerge in drying applications only since 1979. In a second phase started around 

1998, new trends based on optimization of a performance function solved by optimal 

control tools appeared. Since 1992, emerging applications have appeared with few papers 

in painting, pharmaceuticals, paper and wood applications (5). However, control 

structures for drying processes of pasta are not yet studied and applied for industrial use. 

Control actions in industrial companies are nowadays manually installed based on the 

practical process knowledge of the operators.  
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This research is concentrated around the efficient control during pasta drying. Presently, 

since the moisture content is unknown and uncontrolled during drying, pasta is 

industrially dried to a moisture level which is much lower than the legal threshold value 

for microbial safety. The implementation of an efficient controller will enable the process 

to be followed and to be directed towards a referential track, which is formulated as a 

function of quality aspects, economical imperatives and consumer concerns. The energy 

consumption can then be reduced by the efficient tracking of the moisture concentration 

in pasta, i.e. no additional energy will be spilled by the control actions (air temperature 

and relative humidity) to remove the extra unnecessary percentages of water out of the 

pasta with the consequence of a reduction in drying time. In process industry, pasta is 

namely dried to moisture contents, lower than the critical values for microbial 

contamination as the process moisture concentrations can not be measured online during 

production and biological variations in pasta materials influence the final moisture 

concentration. To reduce the (often unnecessary) last percentages of moisture out of 

pasta, long drying times are needed, consuming lots of energy. Control structures 

combined with online process measurements are therefore useful to reduce the drying 

time, and therefore the energy consumption.  

 

In this work, a model predictive control system for pasta drying is built. The idea of 

model predictive control can be traced back to the 1960s (6,7). However, interest in this 

field started to surge only in the 1980s after publication of the first papers on IDCOM (8) 

and dynamic matrix control (DMC) (9) and the first comprehensive exposition of 

generalized predictive control (GPC) (10,11). DMC was conceived to tackle the 
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multivariable constrained control problems typical for the oil and chemical industries. In 

DMC, these problems were handled by single loop controllers augmented by various 

selectors, overrides, decouplers, time-delay compensators, etc. (12). GPC was intended to 

offer a new adaptive control alternative. In the tradition of adaptive control input-output 

(transfer function) models were employed. The GPC approach is not suitable or, at the 

very least, awkward for multivariable constrained systems which are much more 

commonly encountered in the oil and chemical industries than situations where adaptive 

control is needed (12). Essentially all vendors have adopted a DMC-like approach (13). 

The initial research on MPC is characterized by attempts to understand DMC, which 

seemed to defy a traditional theoretical analysis because it was formulated in a non-

conventional manner. Many MPC approaches have been proposed along the past three 

decades, most of them based on a receding-horizon strategy, i.e., at each sampling instant 

k the following actions are taken (14):  

- The plant measurements are updated for use in the feedback/feedforward control loop 

- the plant model is used to predict the output response to a hypothetical set of future 

control signals,  

- a function including the cost of future control actions and future deviations from a 

reference behavior is optimized to give the best future control sequence, and 

- the first movement of the optimal control sequence is applied.  

 

These operations are repeated at time k+1. The main advantage of MPC is its ability to 

address long time delays, inverse responses, significant nonlinearities, multivariable 

interactions and constraints (14). The widespread use and success of MPC applications 
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described in the literature attest to the improved performance of MPC compared to the 

classical control algorithm for control of difficult process dynamics.  

However, due to the strong nonlinear character of the equations, a numerical solution 

technique must be used to solve these equations. The computational effort varies 

somewhat because some solution methods require only that a feasible (and not 

necessarily optimal) solution be found or that only an improvement be achieved from 

time step to time step. Nevertheless the effort is usually formidable when compared to the 

linear case and stopping with a feasible rather than optimal solution can have 

unpredictable consequences for the performance. The computational effort can be greatly 

reduced when the system is linearized first in some manner and then the techniques 

developed for linear systems are employed online. Nevistic (15) showed excellent 

simulation results when a linear time varying (LTV) system approximation is used, which 

is calculated at each time step over the predicted system trajectory (16). Zheng (17,18) 

used the MPC formulation in a closed-loop control strategy while reducing the online 

computational demand. The nonlinear MPC control law was thereby approximated by a 

linear controller which linearized the nonlinear model and assumed no constraints. The 

linear controller was then used to compute all future control moves. The online 

computation effort was significantly reduced in this manner since only the first control 

move was computed by solving the optimization problem.  

 

A time-varying linear MPC algorithm based on Dufour and Touré (19) will be developed 

for this research. In order to control the drying of pasta, it is necessary to model the 

drying process at a fundamental level. The governing transport equation for moisture 
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content is formulated on the basis of a nonlinear partial differential equation (PDE). To 

provide an insight into the drying process and to elucidate the physics of the transport 

phenomena that arise during drying, it is necessary to solve this system. The MPC 

structure which takes into account constraints for the model input and output, is 

developed afterwards. Experimental results reveal the applicability of the MISO 

(Multiple Input Single Output) MPC structure in pasta drying companies.  

 

 

2. General model structure 

 

The drying process of pasta was modelled with an uncoupled mass transfer model based 

on Fick’s law for flat pasta (2). The mass transfer balance was founded on an internal 

moisture transport mechanism governed by the moisture gradient and interpreted 

mathematically based on an effective diffusion coefficient in Fick’s law. The transport 

kinetics are entirely controlled by the internal transport resistance (2). The time and 

spatially dependent diffusion coefficient determines the internal transport kinetics totally 

and hence the overall drying time for moisture removal out of pasta (20, 21). Moreover, 

calculations of the Fourier number confirm that the diffusion in pasta is the time 

determining key factor during drying. Moisture transport was assumed to be one-

dimensional along the smallest pasta thickness L. The surface of the pasta was 

surrounded by air with well-known properties (air temperature and relative humidity) on 

one side while the pasta was insulated with aluminum-foil on the other side. The 

shrinkage of pasta is included in the model by considering it as a one-directional 
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phenomenon with a volume reduction, only attributed to the moisture loss. The 

unidirectional Fickian diffusion equation which relates moisture concentration to time 

and space is formulated as (2): 

 

2

( , )
 for t>0 and 0<ξ<L

(1 )
airD X TX X

t Xξ ψ ξ
  ∂ ∂ ∂=   ∂ ∂ + ∂  

  (1) 

in which    ( , ) ( )exp( ) for t>0air airD X T a T bX=    (2) 

 

in which t is the time in s and ξ the Lagrangian coordinate in m. X(ξ,t)  represents the 

moisture concentration in the pasta on dry basis, expressed in kg/kg, D(X,Tair) the 

diffusion coefficient in m2/s, ψ  the volumetric shrinkage coefficient, a an Arrhenius 

function of Tair in m2/s, b a dimensionless constant of the diffusion coefficient and ∂ the 

partial derivative operator.  

 

The initial and boundary conditions for the mass transport were formulated as: 
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in which X0 represents the initial (assumed uniform) moisture concentration in the pasta 

in kg/kg, Lξ  the total length of the pasta expressed in the Lagrangian coordinate in m, hm 
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the mass convection coefficient in m/s, RH the relative humidity of the drying air and Tair 

the air temperature of the drying air in °C. The numerical values and the expressions of 

all model parameters are shown in detail in another study (2). Fick’s model equation with 

the distributed diffusion parameter, combined with the boundary and initial conditions 

can only be solved by numerical discretization techniques. This model describes the 

moisture concentration in pasta as a function of the input parameters, the drying air 

temperature and the relative humidity. The model can be considered as a MISO model. 

This MISO model has in general the form of: 

 

2
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    (8) 

 

in which Fd is the nonlinear function of the partial differential equation, while 
0bF  and 

LbF  are nonlinear operators for the boundary conditions at the surface impermeable for 

moisture transport and at the surface in contact with the surrounding air respectively. This 

MISO model is named a SNL model which stands for the nonlinear drying system. This 

model is the basis on which the MPC structure is built. 

 

3. MPC formulation 
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MPC refers to a control strategy in which the dynamic model equations (6) – (8) are used 

to predict and optimize the drying process. In this control application, the drying process 

is optimized by internal model control for the manipulated input variable consisting of 

both drying air temperature and relative humidity u(t)=[Tair(t) RH(t)]. The control 

problem is solved by calculating S0 offline (S0 is SNL obtained with u(t)=u0(t)), while SLTV  

is computed online during MPC optimization. The offline model S0, the online model 

SLTV  and the difference e between the process and model outputs then replace the 

nonlinear model SNL into the optimization. This linearized model contributes to a 

significant reduction in online computational time. It must be taken into account that 

communication between the control software and the online measuring system requires a 

non negligible time. Therefore, within this strategy of calculating a part of the solution 

offline, the remaining time between two successive measuring points can be used 

efficiently to find an optimal solution that performs well with the MPC algorithm.  

The control objective is then to find the variation ∆u(t) of the manipulated variable u(t) 

around the chosen trajectory u0(t) leading to a better online optimization result (22). The 

online linearization thus allows adding variations around the general offline calculated 

trend, reaching a much higher performance for the MPC formulation: more iterations are 

possible to find the solution, and the control performances are increased. 

 

3.1 General considerations 
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In the MPC formulation, the nonlinear system SNL is divided into a particular 

representation S0 of SNL and a linearized term, named SLTV. S0 stands for the particular 

solution of the nonlinear model for the input u0(t) and state X0(ξ, t), while SLTV represents 

a time-varying linearized model, obtained by small variations ∆u(t) =[∆Tair(t) ∆RH(t)] 

and ∆X(ξ t) around respectively the input u0(t) and state X0(ξ, t). This linearized model is 

described by (22): 

 

2
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z
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The time varying linear operators in these equations are obtained from the linearization of 

SNL around the behavior described by S0 (23).  

 

3.2 Control objective 

 

The control objective of pasta drying is a trajectory tracking for the average moisture 

concentration of pasta. The average moisture concentration is forced to follow a reference 

curve, which is formulated in industry as a function of the actual consumer and legal 

requirements. The reference curves are namely a function of quality aspects (no cracking 

of pasta is allowed, minimal brownness is required) and legal limitations (maximal 

tolerated moisture content). They are given by an industrial pasta firm. In this study, a 
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standard referential curve of an industrial pasta firm was taken. To follow such reference 

track, input and output constraints must be taken into account. A cost function is 

formulated here for the drying process, which is minimized by the MPC control 

algorithm.  

 

3.2.1 Input constraints 

 

The input parameters of the considered drying model are constrained by their working 

area and by the time needed to establish the drying air conditions in the working area. 

The pasta product in this study was assumed to be dried in an oven [Weiss Technik, 

Germany] by using temperatures between 1°C and 100°C and relative humidity varying 

from 1% to 100%. The oven considered had a heating velocity of 1.5°C/min and a 

cooling velocity of -3°C/min. The velocity for changes in relative humidity was measured 

under several constant and variable air temperatures, indicating a humidity velocity for 

both humidification and dehumidification of +/-0.5%RH/min. These limitations on the 

working area of the oven were taken into the controller mathematically as: 

 

min maxu u u≤ ≤      (12) 

min maxu u u≤ ≤ɺ ɺ ɺ      (13) 

 

in which umin and umax represent the minimal and maximal constraint input, while minuɺ  

and maxuɺ  are the minimal and maximal velocity for the input. In order to be used in the 

control algorithm, explicit constraints on the manipulated input parameter u require a 
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transformation method to translate the input parameters into an unconstrained parameter 

p. Therefore the following transformation equation is used (22): 

 

tanh moy
moy amp

amp

p f
u f f

f

 −
= +   

 
   (14) 

 

with: 

( )max min

2moy

f f
f

+
=      (15) 

( )max min

2amp

f f
f

−
=      (16) 

( )max max minmin , ( 1)f u u j u= − + ɺ    (17) 

( )min min maxmax , ( 1)f u u j u= − + ɺ    (18) 

 

and the future discrete times j at each current discrete time k is: 

 

{ }1,..., pj k k N∈ + +      (19) 

 

At each sampling time k, the working range for the input parameters is calculated starting 

from the previous input u(k-1). The maximal and minimal input velocities minuɺ  and maxuɺ  

are therefore added and subtracted to the previous input and compared with the overall 

tolerated working zone limits, defined by umin and umax (equations (17) and (18)). The 

average value fmoy and amplitude value famp of the working range are consequently 
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considered (equations (15) and (16)) and used to transform the constrained input 

parameter u into the unconstrained parameter p, which is used further on in the MPC 

optimization algorithm. The control move is then physically feasible at any time and at 

any iteration: the constrained input parameter u  determines the working range for the 

inputs of the drying model. 

 

 

3.2.2. Output constraints 

 

The average moisture concentration of pasta is assumed to follow a reference track 

during air drying to satisfy food quality, concerning product stability, texture and color. 

In order to produce high quality pasta, the evolution of the average moisture 

concentration must be situated between minimal and maximal boundaries. These 

constraints on the process output are formulated as a band around the reference track in 

which deviations between the process and reference curve are tolerated. Concentrations 

falling out of the toleration band have to be forced to move towards the reference curve 

by the control algorithm. The concentration limits for the moisture contents are 

mathematically expressed: 

 

( )( ), ( ) 0i pCo y t u t ≤      (20) 

 

in which Coi represents the constraint function for the process output constraints. The 

constraint functions Co1 and Co2 in this study represent the transforming functions for the 
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maximal and minimal tolerated moisture concentrations MAX
py (t) and MIN

py (t) around the 

reference track respectively: 

 

 

1

( )
1

( )
p

MAX
p

y t
Co

y t

 
= −  
 

     (21) 

2

( )
( ) 1

( )
p

MIN
p

y t
Co t

y t

 
= −  
 

    (22) 

 

3.2.3 Linearization 

 

The small input variations ∆u(t), small state variations ∆X(ξ t) and small output variations 

∆ym(t) are used in the time-varying linearized model SLTV. The offline solved nonlinear 

model S0 and the online solved time-varying linearized model SLTV with the error e(t) 

then replace the initial nonlinear model SNL, while the model output ym(t) is defined as the 

sum of the nonlinear offline solved output y0(t) and the linearized output ∆ym(t) (Fig. 1). 

Moreover, by discrete time formulation, the time dependent input, output and states can 

be expressed as a function of the discrete time index j, defined by (19). The process 

output yp(j) is then: 

 

0( ) ( ) ( ) ( )p my j y j y j e k= + ∆ +    (23) 
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in which the difference e(k) between the process and model outputs is assumed constant 

over the prediction horizon. This error e(k) is also fed back in the controller and is 

updated at each time k. Therefore, two feedback loops are used to adjust process 

performances (24). 

The small variations ∆u(j) can be reformulated as unconstrained parameter variations 

∆p(j) based on equation (14). The control objective is then to find the variation ∆p(t) of 

the unconstrained manipulated variable p(t) about the chosen trajectory p0(t) leading to a 

better online optimization result. As a consequence the output constraints (20) are then 

considered as: 

 

( )0( ), ( ), ( ), ( ) 0i mCo y j y j e k p j∆ ∆ ≤     (24) 

 

3.2.3. Cost function 

 

A cost function Jtot is introduced to quantify the deviation of the process from the 

reference behavior and the positioning of the process output compared to the 

concentration band around the reference curve. The output constraints are taken into 

account in the second term of Jtot by adopting the exterior penalty method where a 

positive defined weighted penalty term is added to the initial cost function J (24): 

 

( )2min ( ) ( ) ( ) max 0, ( )tot ext i i
p

J J j J j J j Co jω
∆

= + = +    (25) 
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where J(j) incorporates the deviation of the process from the reference behavior and ωi is 

a positive defined weight that increases when the output constraints tend to be checked 

and decreases when they do not tend to be checked (24). For any constraint Coi not 

checked, the weight ωi penalizes the minimization task. This enforces the optimizer to 

minimize Jext(j) and hence to enforce the violated constraints to be checked. The problem 

is thus transformed into an unconstrained penalized optimization problem by substituting 

a penalty function for the constraint (24). 

 

Minimization of the cost function Jtot is obtained by manipulating the input parameters 

∆p of the model, thereby taking into account the constraints on the input: 

 

[ ]( ) ( ) ( )
2

0 2 2
1 1 2 2

1

( ) ( ) ( ) ( )
min max 0, ( ) max 0, ( )

( )

pN
ref m

tot
p

k ref

y j y j y j e k
J Co j Co j

y j
ω ω

∆ =

  − + ∆ +
 = + + 
    

∑

(26) 

 

where k stands for the actual discrete time, yref(j) for the future trajectory track, y0(j) for 

output of the S0 model, ∆ym(j) for output of the SLTV model, e(k) for the difference 

between process and model output, while ω1 and ω2 are the penalization factors for Co1(j) 

and Co2(j).  

 

3.3. Control algorithm 

 



 17 

To optimize the input parameter p∆  at each time k, the Levenberg-Marquardt algorithm 

is used due to its robustness, simplicity and convergence criteria. In this optimization 

algorithm the argument 1ip +∆  is calculated starting from ip∆  by the following iteration: 

 

( ) 12
1i i tot totp p J I Jλ

−

+∆ = ∆ − ∇ + ∇     (27) 

 

in which λ  represents a blending factor which is recalculated at each iteration, I  is the 

identity matrix, while ∇  is the gradient and 2∇  the hessian with respect to ip∆ . In Fig. 1 

the structure of the MPC loop is shown.  

 

3.4. IMC PID control 

 

The developed control strategy can also be used for IMC PID control. The difference 

between the referential value and process value at each process time (the error e), which 

is now not evaluated over a prediction horizon, forms the basis to predict ( )u t  as the 

output of the PID controller and is mathematically expressed as: 

 

( )
( )  p i d

d e
u t k e k e dt k

dt
= + +∫     (28) 

 

The input parameter ( )u t  of the considered drying model is also constrained by their 

working area and its limits are identical as explained for MPC. 
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4. MPC simulation results 

 

The objective of the MPC system is to tune the input parameters that minimize the 

deviation between the process output and reference track. The average moisture 

concentration in pasta is controlled by adapting the input parameters of the system, 

namely the air temperature and relative humidity. The working area for the air 

temperature is constrained between 1°C and 100°C and for the relative humidity between 

1% and 100%. The considered heating and cooling velocity are constrained to 1.5°C/min 

and -3°C/min respectively, while the relative humidity change is constrained to +/-

0.5%RH/min. The process output is considered by calculating S0 offline, while SLTV is 

computed online during MPC optimization. The S0 model was calculated for u0(t)=[49.5 

10], in which the first number stands for the drying air temperature (in °C) and the second 

number for the relative humidity (in %). The sampling time was set to 60 s for a total 

drying process of 5000 s. The initial average moisture concentration of pasta in the model 

was assumed to be 47.7%. Deviations were introduced to check the adequacy and 

robustness of the controller: in order to create deviations between the actual process and 

model, the initial average moisture concentration of the process was set to 48.5%, while 

the diffusion coefficient of the process model was raised with 10.0%. Moreover real 

processes only deviate from the simulated models by parameter deviations. The real 

process can then be assumed as a process model with parameter deviations. However, 

online implementation requires highly precise measuring systems for the moisture 

content, evaluated over 60 s, which are not available for the moment, but are under 
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development. For the implementation, the MPC@CB software developed under Matlab 

was used.1 

 

In Fig. 2 convergence of the process towards the reference track is shown for various 

control strategies. The deviation between the drying process and reference track is 

minimal with the MPC. Since a higher diffusion coefficient of the model than in the 

process speeds up the modeled drying, the MPC controller has to intervene in the control 

loop by decreasing the air temperature or/and increasing the relative humidity in order to 

direct the process towards the reference curve. The small temperature increase at the 

beginning of the drying process is caused by the deviation in the initial moisture 

concentration of the process, after which the temperature decreases to counterbalance the 

effect of the diffusion coefficient for the simulated process. With a prediction horizon 

consisting of 5 points considered for the MPC control algorithm, the root mean squared 

error (RMSE) between the average moisture concentration of the process and the 

reference track is 0.30% for this simulated process, which indicates the adequacy and 

performance are very good. The control magnitudes for the MPC strategy are shown in 

Fig. 3 together with the minimal and maximal allowed input: the constrained control 

magnitudes are situated between the specified  boundaries. The increase or decrease in 

the manipulated input variables is limited between two consecutive sampling points due 

to the constraints on the input variations caused by the oven used (Fig. 4).  

In the first open loop case, the input magnitudes still remain constant at 49.5°C and 10% 

and do not counterbalance for the higher diffusion coefficient or the deviating initial 

                                                 
1 © University Claude Bernard Lyon 1 – EZUS. In order to use MPC@CB, please contact the author: 
dufour@lagep.univ-lyon1.fr 
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moisture concentration. The uncontrolled process shows divergence from the reference 

track after 800s which only increases afterwards as there is no control action for this open 

loop system (Fig. 2). The RMSE between the average moisture concentration of the 

process and the concentration of the reference track for the open loop system is 4.36%.  

Additionally, another open loop control case is given in Fig. 2 for the drying conditions 

at 45.0°C and 20%, indicating again divergence from the referential curve. The drying air 

temperature of 45.0°C is not adequate to reach the referential curve as remained constant 

because there is no control (RMSE=4.12%). 

An internal MISO PID, replacing the MISO MPC system is unable to take prediction 

horizons into account and hence cannot foresee the process. The optimal internal PID 

specifications are given in Table 1. The PID controller does not perform as well as the 

MPC controller (RMSE= 1.98%). The process is not controlled optimally by the PID 

between 500 s and 1500 s due to the lack of process evaluation over a prediction horizon. 

However, there is no bad impact of the PID controller on the tracking results. The 

constrained manipulated control magnitudes (temperature and relative humidity) for the 

applied internal MISO PID are given in Fig. 3. In Fig. 4, the variation in constrained 

manipulated control magnitudes between the successive sampling instants is shown for 

the MISO MPC and MISO PID controller. It is demonstrated that the inputs for the MISO 

PID controller are sometimes saturated, while the inputs of the MISO MPC system are 

situated between their maximal heating, cooling and humidification and dehumidification 

velocity. 

The same MISO MPC control strategy is performed for prediction horizons including 2, 

3, 4, 5, 7, 10 and 15 points. The deviation between process and reference track is 
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therefore also minimal. The influence of longer or shorter prediction horizon on the 

RMSE is shown in Fig. 6. As optimal prediction horizon, the prediction horizon which 

minimizes the RMSE is preferred. The optimal prediction horizon is always a function of 

the type of reference curve and the type of process. In Fig. 6, it is shown that a prediction 

horizon, consisting of 4 points, is optimal for tracking the reference curve. The prediction 

horizon has a different effect because the relative importance of the next input is varying 

for variable prediction horizons. The relative importance for the next applied input value 

increases for small prediction horizons, while it decreases for longer prediction horizons. 

Highly varying reference curves, for example, are better tracked by using short prediction 

horizons as it makes no sense to consider the future process behaviour when the reference 

is highly varying. The optimal RMSE between the process and reference track average 

moisture concentration is therefore 0.29%. For longer or shorter prediction horizons, the 

importance of the prediction horizon for calculating the next process value is respectively 

under- or overestimated i.e. the percentage contribution for the next process input value 

in the prediction horizon is under- or overestimated and hence the prediction horizon is 

preferred to be shorted or lengthened respectively.  

The impact of both input parameters (air temperature and relative humidity) on the 

process output is analyzed in Fig. 5 based on the sensitivities analysis. The following 

sensitivity ratio is defined: 

 

( ) ( )airRatio(t)= dX/dT (t) / dX /dRH(t)     (29) 
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This sensitivity ratio ranges from 10 at the beginning, to 1 at the end. It is therefore 

obvious that the air temperature has more impact on the process than the relative 

humidity, explained by its influence on the diffusion process. The impact of the relative 

humidity is limited as it only intervenes in the boundary condition (equation (5)), but 

increases at the end of the drying process. One may then wonder if this may have an 

impact in term of closed loop control results, assuming a single input, single output 

(SISO) MPC structure rather that the MISO MPC structure. In this SISO MPC structure, 

the air temperature is assumed as input parameter and the relative humidity then remains 

constant during the whole drying process (RH=10% is used in the simulations). After 

some simulations, the RMSE between the average moisture concentration of the process 

and the reference track is 0.34% for this SISO MPC structure, indicating less adequate 

performance compared to the MISO model (0.29%). Using a MISO MPC instead of a 

SISO MPC therefore helps to decrease by 15% the RMSE between these two cases. The 

influence of the PID controller on the SISO model gives a RMSE of 2.08%, which also 

has less performance compared to the MISO PID control structure (1.98%). Using a 

MISO PID instead of a SISO PID therefore helps to decrease by 5% the RMSE between 

these two cases. Table 2 helps to summarize the RMSE between the referential drying 

curve and the drying process output in open loop, with SISO and MISO PID controlled 

systems and with the best tuned SISO and MISO MPC controlled systems. It can be seen 

that the MISO MPC system is the best control structure during pasta drying processes. 

 

For the MISO MPC structure, it is obvious that the whole calculation time during control 

calculations is reduced due to the offline calculation of the model. Fig. 7 demonstrates 
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the calculation time for the prediction horizon consisting of 5 points and 10 points. The 

calculation results show the calculation time needed for the control actions is much lower 

than the sampling time for process output measuring during implementation (3-5 s versus 

a sampling time of 60 s for implementation respectively), indicating the control algorithm 

is very efficient in calculating the control actions. The remaining time between the 

successive samplings can then be used for the communication between the PC software 

and the actual process on a laboratory scale (approximately 10 s), and also to use a model 

based observer in order to estimate online some unknown or time-varying model 

parameters like the pasta temperature or diffusion coefficient or to recalculate the 

specified MISO MPC problem in order to find more optimal solutions.  

 

 

5. Conclusion 

 

In the present study, a distributed parameter model predictive control framework is used 

based on computationally efficient MPC software for pasta during convectional air 

drying. The control system is formulated based on an offline nonlinear model and an 

online time-varying linear model. The MPC controller combines the process output with 

a Levenberg-Marquardt optimization technique to provide a model predictive control 

framework that can be supported in an industrial environment. The smaller average 

deviation between the average moisture concentration of the product and the reference 

track curve was found to be 0.29% in the MISO MPC case. The proposed MISO MPC 
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produces high performance and accuracy, with relatively small computational cost and 

gives better results than PID, or SISO MPC with the air temperature as the single input. 

The advantage of this developed control structure lies in its practical use. The 

implementation of the developed control structure is one the possible practical 

applications of this control structure. The MPC control strategy is therefore considered as 

a powerful research strategy with a variety of possibilities, even in other application areas 

such as freezing, painting, etc. 
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List of abbreviations and symbols 

 
a   Arrhenius function of the air temperature (m2/s) 
b   diffusion constant (-) 
Co   constraint function for the process output constraints 
D   diffusion coefficient (m2/s) 
DMC   dynamic matrix control  
e   difference between process and model output (kg/kg) 
Fd   nonlinear function of the partial differential equation 

Lbb FF ,
0

 nonlinear functions for the boundary conditions  

famp   difference between fmax and fmoy at the instant time 
fmax   maximal constraint input at the instant time 
fmin   minimal constraint input at the instant time 
fmoy   average constraint input of fmin and fmax at the instant time 
GPC   generalized predictive control 
hm   mass convection coefficient (m/s) 
I   identity matrix 
J cost function incorporating the deviation of the process from the 

reference 
Jtot   total cost function  

j   future discrete time index (-) 
k   actual discrete sampling time index (-) 
kp   proportional tuning factor ([kg °C]/kg) or (kg/kg) 
ki   integral tuning factor ([kg °C]/[kg s]) or (kg/[kg s]) 
kd   derivative tuning factor ([kg °C s]/kg) or ([kg s]/kg) 
L   smallest pasta thickness (m) 
LTV   linear time varying  
MISO   Multiple Input Single Output 
MPC   model predictive control 
Np   prediction horizon (-) 
p    unconstrained manipulated input variable 
∆p   unconstrained parameter variation around p0 
PDE   partial differential equation 
RH   relative humidity (kg/kg) 
SLTV   linearized time-varying model, solved on-line 
SNL   nonlinear model 
S0 particular solution of the nonlinear model for the input u0(t) and 

state X0(ξ, t), solved off-line 
Tair   air temperature (°C) 
t   time (s) 
u input variable consisting of drying air temperature and relative 

humidity  
∆u   small variation around the input u 
umax   maximal constraint input 
umin   minimal constraint input 



maxuɺ    maximal velocity for the input 

minuɺ    minimal velocity for the input 
X   moisture concentration in pasta on dry basis (kg/kg) 
X0   initial moisture concentration in pasta on dry basis (kg/kg) 
∆X   small variation around X (kg/kg) 
ym   model output  
∆ym   linearized output around y0 
y0   nonlinear model output solved offline  
yp   process output 

MAX
py    maximal tolerated moisture concentration  
MIN
py    minimal tolerated moisture concentration  

yref    trajectory track 
ξ   Lagrangian coordinate (m) 

Lξ    total length of the pasta expressed as a Lagrangian coordinate (m) 

ε   tolerance factor 
λ    blending factor 
ω   positive defined weight factor 
ψ    volumetric shrinkage coefficient  

∂   partial derivative operator 
∇    gradient operator 

2∇    hessian operator 
 
 
 
 
 
 



Table 1: PID tuning parameters kp, ki and kd for air temperature and relative humidity control  

Air temperature kp [(kg dry solids °C)/kg water] -2500.0 

 ki[(kg dry solids °C)/(s kg water)] -2.0 

 kd[(kg dry solids °C s)/kg water] -1.10-3 

Relative humidity kp [(kg dry solids)/kg water] 6.0 

 ki[(kg dry solids)/s kg water] 1.10-3 

 kd[(kg dry solids s)/kg water] 1.10-3 

 



Table 2: RMSE (%) between the referential curve and the drying process output: with open 

loop control while u=u0=[49.5°C 10.0%] and u=u0=[45.0°C 20.0%], with SISO and MISO 

PID, with SISO  and MISO MPC, each case  with uncertainties: 1.68% error on the initial 

moisture concentration and 10.0% error on the diffusion coefficient  

RMSE (%) SISO MISO 

Open loop 1 
(u=u0=[49.5°C 10.0%]) 

__ 4.36 

Open loop 2 
(u=u0=[45.0°C 20.0%] ) 

__ 4.12 

PID 2.08 1.98 

MPC 0.34 0.29 

 



 

 
Fig. 1: General MPC structure used. 
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Fig. 2: Reference trajectory tracking: reference curve (• • •) for the drying process output: 

with open loop control while u=u0=[49.5°C 10.0%] (x) and u=u0=[45.0°C 20.0%] (_   _  _), 

with the MISO PID (___) and with the MISO MPC (___) with a 5 point horizon prediction, each 

case  with uncertainties: 1.68% error on the initial moisture concentration and 10.0% error 

on the diffusion coefficient. 
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Fig. 3: Constrained manipulated variable magnitude: minimal and maximal allowed 

temperature and relative humidity magnitude (_ _ _) together with the actual temperature and 

relative humidity for the MISO PID (+++) and the MISO MPC (•••) with a 5 point horizon 

prediction, each case with uncertainties: 1.68% error on the initial moisture concentration 

and 10.0% error on the diffusion coefficient. 
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Fig. 4: Variation in constrained manipulated variable magnitudes: minimal and maximal 

allowed temperature and relative humidity variation (_ _ _) together with the actual variation 

in temperature and relative humidity between the successive sampling instants for the MISO  

PID (+++) and the MISO MPC (•••) with a 5 point horizon prediction, each case with 

uncertainties: 1.68% error on the initial moisture concentration and 10.0% error on the 

diffusion coefficient. 
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Fig. 5: The ratio  between the sensitivities of the air temperature and mean relative humidity 

with respect to an air temperature input of 1.0°C and with respect to a relative humidity input 

of 1.0%, measured for the drying process at 49.5°C and 10.0%. 

 

 

 

 

 

 

 

 

 



 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Number of points in the prediction horizon

R
M

S
E

 (
%

)

 

 

 

Fig. 6: The impact of the tuning of the prediction horizon of the MPC on the RMSE, each case 

with uncertainties: 1.68% error on the initial moisture concentration and 10.0% error on the 

diffusion coefficient. 
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Fig. 7: Time needed by the whole program to compute the control action by the MPC, 

evaluated for prediction horizons of 5 (___) and 10 (__*__) points, each case with 

uncertainties: 1.68% error on the initial moisture concentration and 10.0% error on the 

diffusion coefficient. 

 

 

 

 

 

 




