
HAL Id: hal-00350059
https://hal.science/hal-00350059

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparative study of SIP programming interfaces
Laurent Burgy, Laurence Caillot, Charles Consel, Fabien Latry, Laurent

Réveillère

To cite this version:
Laurent Burgy, Laurence Caillot, Charles Consel, Fabien Latry, Laurent Réveillère. A comparative
study of SIP programming interfaces. International Conference on Intelligence in service delivery
Networks, 2004, Bordeaux, France. pp.BCCLR04. �hal-00350059�

https://hal.science/hal-00350059
https://hal.archives-ouvertes.fr


A Comparative Study of SIP Programming Interfaces

Laurent Burgy Laurence Caillot Charles Consel Fabien Latry Laurent Réveillère

E-mail: {burgy,caillot,consel,latry,reveillere}@labri.fr

INRIA / LaBRI
ENSEIRB - 1, Avenue du Docteur Albert Schweitzer,

Domaine universitaire - BP 99; F-33402 Talence Cedex, France
Phone: +33 5 56 84 23 21 Fax: +33 5 56 84 21 80

Abstract : The Session Initiation Protocol (SIP) is a sig-
nalling protocol for Internet Telephony, multimedia conferenc-
ing, and instant messaging. The behavior of SIP platforms can
be configured thanks to various programming interfaces.

In this paper, we present a study of different existing SIP
platforms. From this study, we identify key requirements that
must be fulfilled by a SIP programming interface. We discuss
existing solutions and propose to introduce a language approach
to addressing these needs.

1. Introduction

The convergence of telecommunications and com-
puter networks, taking the form of telephony over IP, has
added a host of new functionalities to telephony services
including Web resources, databases,etc. Making these
rapidly evolving functionalities available to customers
critically relies on developing a stream of new telephony
services. Such a wide spectrum of functionalities enables
telephony to be customized with respect to preferences,
trends and expectations of ever demanding users. As a
consequence, these customizations entail a proliferation
of telephony services, which in turn emphasizes the need
for programming services.

Fortunately, the convergence of telecommunications
and computer networks has made the programming of
telephony services as accessible as the programming of
networking services. In practice, most telephony plat-
forms offer solutions to enable service programming;
this approach sharply contrasts with the traditional pro-
prietary and closed telephony platforms. However, this
openness comes at the expense of undermining the ro-
bustness of the underlying platform, which can compro-
mise a basic commodity such as telephony.

To address the robustness issue, it is critical to de-
fine requirements to service programming. For such a
study to be useful, we need to focus on a particular type of
platforms, integrating telecommunications and computer
networks. To do so, we selected platforms based on the
rapidly emerging Session Initiation Protocol (SIP) [10].
This protocol is being deployed in key contexts such as
Universal Mobile Telecommunications System (UMTS).

This Paper

This paper aims to identify and motivate a set of re-
quirements needed to program services in the telephony
domain. It examines how these requirements are taken
into account in existing SIP platforms. Furthermore, it
discusses the necessity to rigorously take into account all
these requirements and suggests that to do so a language
dedicated to telephony services should be introduced.

2. SIP Platforms

To offer rich functionalities, a SIP platform provides
the programmer with a rich and usually complex inter-
face. This programming interface enables access to call
parameters (e.g., the origin, the time, and the location),
signalling operations (e.g., call forwarding), and non-
signalling resources (e.g.,Web and databases). The re-
sulting complexity of the interface can make the rapid
design, development and deployment of a service a real
challenge.

The SIP community has made major advances to-
wards improving this situation. Interestingly, most of
these advances are aimed to introduce high-level pro-
gramming interfaces and to design dedicated languages to
further raise the level of abstraction. These trends are key
aspects to identify service programming requirements.

Our study covers a variety of SIP platforms, namely,
Vocal (Vovida) [3], SIP Express Router (iptel.org) [4],
Live Communications Server (Microsoft) [8], and Ap-
pEngine (DynamicSoft). These SIP platforms provide
a more or less complete framework for developing SIP
applications. Nevertheless, their aim is to simplify and
accelerate service creation by providing an interface that
is well-suited for service programming.

Vocal, for Vovida Open Communication Library, is
a complete open source software solution, implemented
as a distributed platform. The Vocal system consists of
various SIP servers and can be configured at deployment-
time using an ad hoc graphical user interface. One of
these servers, the Feature Server, enables service creation
using the Call Processing Language (CPL) [7, 11]. CPL



is an XML-based scripting language for describing and
controlling call services. A CPL script simply represents
a decision tree whose nodes specify actions or decisions
to take.

Sip Express Router(SER) is an open source project
developed by iptel.org aimed to be a high-performance
SIP platform. The core of the platform proposes a con-
figurable SIP-compliant server. It can be statically con-
figured thanks to a dedicated C-like language, defining
the message-routing logic. Nevertheless, like the HTTP
Apache server, an API offers hooks to extend the core of
the platform, through modules written in C.

Microsoft Office Live Communications Server 2003
is a manageable and extensible instant messaging server.
This platform requires the Windows Server 2003 oper-
ating system, and can only be extended using Microsoft
products. Thus, it is completely integrated into the Mi-
crosoft framework, and its openness is limited by some
features of this environment (e.g.,authentication, appli-
cation dependencies). It supports SIP and SIP for Instant
Messaging and Presence Leveraging Extensions (SIM-
PLE). This extensible platform for real-time communica-
tions includes various communication services like chat,
video and audio conferencing, and data collaboration.

AppEngineis a commercial SIP platform developed
by Dynamicsoft. It is a pure Java framework providing a
powerful SIP Servlet API [5] for developing and deploy-
ing SIP based applications. The AppEngine streamlines
the development of communication services enabling the
use of existing Web-based application development tools.

Noticeably, our study is based on very different types
of SIP platforms. Their features and their benefits are
very diverse. Indeed, the target of these platforms range
from residential/SOHO/small business to large-scale in-
frastructures. Furthermore, they exhibit different levels of
programming interfaces; they handle programmers with
different levels of trust; and, they illustrate different soft-
ware architectures, enabling various degrees of extensi-
bility.

3. Requirements for Programming Tele-
phony Services

Because telephony is a basic commodity, it has strin-
gent requirements [9]. This section defines these require-
ments, and illustrates them in the context of existing
signalling platforms.

Multi-level programming. Programming telephony
services can be viewed as performing two kinds of ac-
tions: signalling actions and non-signalling actions. Sig-

nalling actions include call forwarding or call responding,
whereas non-signalling actions are related to databases,
Web resources,etc. One of the requirements to program
services is thus to facilitate and simplify the use of sig-
nalling actions in the common cases, while providing an
extended interface to program elaborate call treatments.
To address this need, Microsoft’s platform splits the pro-
gramming of a service into two parts, each correspond-
ing to a specific programming language. The top part is
written in a kind of configuration language (MSPL) and
aims to define basic SIP message routing. The bottom
part is written in a general-purpose language, namely C#;
it gives full access to the state and functionalities of the
platform.

In contrast to the Microsoft platform, Vocal only pro-
vides a basic programming interface, simply aimed to
route SIP messages, thus giving restricted programmabil-
ity.

Abstraction level. The abstraction level of the pro-
gramming language is an important issue. Indeed, high-
level abstractions enable the programmer to ignore the
intricacies of both the platform and the underlying pro-
tocols. In doing so, a whole class of errors can be elim-
inated. The resulting services are easier to read, develop
and maintain. Concretely, programming services in SIP
Servlets or the SER language requires the understanding
of the details of the underlying protocol. In comparison,
Vocal, thanks to the high-level nature of CPL, requires
very little expertise to program services.

Untrusted Users. An important issue for a telephony
platform is to define the service programmer community.
In particular, one question is whether or not untrusted
users should be allowed to write and deploy services. Ev-
idently, if untrusted users are allowed to develop services,
they should be provided with a programming interface
and/or a programming language that prevent a faulty or
malicious service from crashing the platform. Among
the platforms we studied, only Vocal enables untrusted
services to be developed and deployed without sacrificing
the platform robustness. This is achieved by providing
untrusted users with a restricted programming language.
All other platforms included in our study only offer unre-
stricted programming interfaces and languages.

Verifiability. The platform must be able to verify
automatically that a user-defined service is well-formed
and can be successfully executed by the signalling server.
This needs to be verified at the time the service is sub-
mitted, since discovering a fault at run time can lead calls
to being lost. Moreover, it must ensure call completion,
that is, the service completely executes in a finite amount
of time and eventually performs a signalling action. This
property is ensured in the Vocal platform thanks to a
syntactic verification performed on a service when it is



submitted. In contrast, nothing is done in the SER plat-
form, where the interaction between external modules
can compromise the termination of a service.

Performance. Because a signalling platform is
usually intensively solicited, it must run on high-
performance equipment to process calls at high rates.
Although a telephony platform can be configured to han-
dle standard call processing, it may not be fit to handle an
arbitrary set of telephony services, whether or not writ-
ten by untrusted users. Indeed, it is difficult to assess
the resource consumption of telephony services, and thus
how their execution might affect the rate at which calls
are processed. In SER, C-modules can perform arbitrary
computations and slow down the call processing rate. In
contrast, the performance impact of MSPL scripts could
be more easily estimated due to the restrictions of this
language.

Resource control. Introducing programmability in a
domain such as telephony raises a number of challenges.
One of these challenges relates to the cost of services that
are deployed on a platform. The cost of services, ex-
pressed in terms of resource usage, serves a number of
purposes including the admission control of services, the
platform configuration, and the definition of billing poli-
cies.

Based on our domain analysis, we define a resource
as being either an operation to perform or an entity to ac-
quire, whose unsuccessful completion can block the exe-
cution of a service. This definition covers more than the
conventional, general-purpose resources such as CPU,
memory, and bandwidth. It introduces domain-specific
resources that can be classified in four categories: (1)
signalling actions (e.g., proxy, forward, redirect), (2)
non-signalling actions, carried out by the platform (e.g.,
DNS request, SIP registration, and lookup for users lo-
cation), (3) entities available on the telephony platform
(e.g., PSTN lines and authentication), and (4) external
services (e.g.,Web servers, e-mail, and RPC call).

To ensure the successful execution of services, a re-
source control mechanism must be introduced. To do
so, for a given service, resource analysis and control can
be performedstatically and/ordynamically. On the one
hand, static analysis and control of resources has the ad-
vantage of occurring at compile time and thus not incur-
ring any run time overhead. However the lack of execu-
tion context may lead to over-estimate the resources re-
quired by the service and does not permit the availability
of the resources required by the service at invocation time
to be checked.

On the other hand, dynamic analysis and control of
resources can exploit the execution context, and thus
check the availability of the resources required by the
service. The main drawback of this strategy is that it
incurs a run-time overhead, making it difficult to meet

the stringent performance constraints of the telephony do-
main. Also, deferring resource checks at run time may
lead to disrupt the processing of a telephone call, if the
service consumes an excessive amount of resources. Yet,
this strategy is used by most existing SIP signalling plat-
forms: they monitor resource allocation at run time and
terminate any ill-behaved service.

The traditional static/dynamic stage separation is too
coarse-grained when analyzing and controlling the re-
source requirements of a telephony service. Instead, we
propose to perform this process over four stages [6]: (1)
design and compilation, (2) platform deployment, (3) ser-
vice invocation, and (4) service execution. The infor-
mation needed to control the resources varies from one
stage to another. In fact, a service may be rejected at
any stage of the process, if information available at the
stage enables the over-consumption of resources to be de-
tected. This stepwise process is fundamental to enable
ill-behaved services to be detected as early as possible.

4 Assessment

In this section, we review the requirements that must
be fulfilled by a SIP platform to enable services to be cre-
ated. We provide some insights resulting from the differ-
ent platforms we studied. Finally, we propose a language
approach to addressing all of these requirements.

Summary

Table 1 summarizes the requirements to be consid-
ered when enabling programming of telephony services.
It assesses each requirement with respect to the SIP plat-
forms covered by our study. As can be observed, no
platform adresses the complete list of the requirements,
although each of them takes steps towards fulfilling this
list. As a continuation of our study, we have been design-
ing and developing a programming language dedicated to
the telephony domain that would fulfill all of the above
mentioned requirements.

Discussion

The key feature of SIP is its programmability. Com-
bined with its simplicity, this programmability has al-
lowed SIP to be widely adopted as thede-factostandard
for VoIP. To fully exploit programmability without sacri-
ficing the safety and security of the platform, the require-
ments discussed earlier must be addressed.

Multi-level programming is needed to develop more
evolved services than basic filtering. By offering high-
level abstractions, a language is more accessible to users
with limited programming experience and little domain
expertise. Nevertheless this accessibility must not allow
untrusted users to develop error-prone or malicious ser-
vices.



SER Vocal SIP Servlet MS Live Communi-
cations Server

Multi-level Not addressed Not addressed Through an XML Through MSPL
Programming configuration file
Abstraction Level Low-level interface High-level CPL High-level Java High-level C#

language interface interface
Untrusted Users Not adressed Trusted and untrusted Not adressed Not adressed

Verifiability Difficult Easy Difficult Easy in MSPL
Difficult in C#

Resource Control standard resource reservation (DiffServ, IntServ, RSVP) but no advanced control

Table 1. Requirements for programming telephony services

The safety and the security of services depend on
domain-specific properties that can be identified at four
different levels: (1) telephony domain, (2) SIP signalling
protocol, (3) SIP signalling platform, and (4) telephony
services. Checking these properties in a service is a ma-
jor step towards ensuring its safe and secure execution.

The overall performance of a signalling platform can
be significantly degraded by a resource-greedy service.
Thus, operations that restrain the consumption of re-
sources must be introduced. However, considering the
complexity of a resource control mechanism, it should
not be directly exposed to the end user.

Existing signalling platforms rely on various pro-
gramming paradigms. In fact, each platform offers its
own paradigm. Consequently, a service targeted to a spe-
cific platform can not be easily ported to another one.
Reusing an existing service on a different platform re-
quires completely rewriting the code to suit the new tar-
get.

To overcome the above mentioned limitations, we
propose to introduce a domain-specific language. The
design and implementation of this language is based on
a thorough domain analysis of telephony services.

Our language is portable in that it can be targeted to
different platforms. Its dedicated nature is represented
by domain-specific abstractions and notations that ease
service programming. A service written in our language
is compiled into the native programming interface of the
target platform (e.g., CPL, SER scripting language, SIP-
Servlet, MSPL/C#).

5. Conclusion and Future Work

The convergence of telephony and computer net-
works have brought a host of new functionalities to the
domain of telecommunications. However, this evolution
should lead telephony services to be developed by an in-
creasing number of non-expert programmers. To make
this evolution worse, the existing techniques to program
server extensions are rather low-level and/or unrestricted.

These shortcomings make the programming of telephony
services an error-prone process, jeopardizing the robust-
ness of the platform.

In this context, a safe and high-level language is
needed to enable the programmer to concentrate on the
service logic without dealing with the low-level details,
while implementing robust services. Such a language
must fulfill requirements inherent to the telephony do-
main. Finally, it is designed independently of a given
platform so as to enable services to be portable across
different platforms.

Based on the domain analysis of the telephony and
the study of a variety of existing signalling platforms,
we have identified the key requirements for a language
dedicated to this application area. We are now design-
ing this language. It should provide the programmer with
high-level constructs that abstract over low-level details
of a SIP platform and underlying protocols. Thanks to
its domain-specific nature, it should have semantic re-
strictions and include domain-specific extensions. These
features should enable specific analyses to ensure critical
safety and security properties at compile time [1, 2].

Acknowledgment

This work has been partly supported by theConseil
Régional d’Aquitaineunder contract 20030204003A and
Microsoft Research Ltd under contract 2004-364.

References

[1] C. Consel.Domain-Specific Program Generation; Inter-
national Seminar, Dagstuhl Castle, chapter From A Pro-
gram Family To A Domain-Specific Language, pages 19–
29. Number 3016 in Lecture Notes in Computer Science,
State-of-the-Art Survey. Springer-Verlag, 2004.

[2] C. Consel and L. Réveillère. Domain-Specific Pro-
gram Generation; International Seminar, Dagstuhl Cas-
tle, chapter A DSL Paradigm for Domains of Services: A
Study of Communication Services, pages 165–179. Num-



ber 3016 in Lecture Notes in Computer Science, State-of-
the-Art Survey. Springer-Verlag, 2004.

[3] L. Dang, C. Jennings, and D. G. Kelly.Practical VoIP
Using Vocal. O’Reilly, July 2002.

[4] iptel.org. SER Developer’s guide, Sept. 2003.
[5] A. Kristensen. SIP Servlet API 1.0 Specification. Java

Specification Request 116, Java Community ProcessSM

Program, Feb. 2003.
[6] F. Latry. Étude de la Qualité de Service dans un envi-

ronnement distribué : Application au domaine de la Télé-
phonie sur IP. Master’s thesis, University of Bordeaux,
June 2004.

[7] J. Lennox. Services for Internet Telephony. PhD thesis,
Columbia University, Jan. 2004.

[8] Microsoft. Live Communications Server 2003 : Reference
and Deployment Guide, Oct. 2003.

[9] J. Rosenberg, J. Lennox, and H. Schulzrinne. Program-
ming internet telephony services.IEEE Internet Comput-
ing Magazine, Mar. 1999.

[10] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP :
Session initiation protocol. Request for Comments 3261,
The Internet Engineering Task Force, 1895 Preston White
Drive, Suite 100, Reston, VA 20191-5434 – USA, June
2002.

[11] H. Schulzrinne and J. Lennox. Call processing language
framework and requirements. Request for Comments
2824, The Internet Engineering Task Force, May 2000.


