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Fisher Distribution for Texture Modeling of
Polarimetric SAR Data

Lionel Bombrun,Student Member, IEEE,and Jean-Marie Beaulieu

Abstract—The multi-look polarimetric SAR covariance matrix
is generally modeled by a complex Wishart distribution. For
textured areas, the product model is used and the texture
component is modeled by a Gamma distribution. In many cases,
the assumption of Gamma distributed texture is not appropriate.
The Fisher distribution does not have this limitation and can
represent a large set of texture distributions. As an example,
we examine its advantage for an urban area. From a Fisher
distributed texture component, we derive the distribution of the
complex covariance matrix for multi-look polarimetric SAR data.
The obtained distribution is expressed in term of the KummerU
confluent hypergeometric function of the second kind. Those
distributions are related to the Mellin transform and second kind
statistics (Log-statistics). The new KummerU based distribution
should provide in many cases a better representation of textured
areas than the classicK distribution. Finally, we show that
the new model can discriminate regions with different texture
distribution in a segmentation experiment with synthetic textured
polarimetric SAR images.

Index Terms—Polarimetric SAR images, Fisher distribution,
Texture, KummerU, Classification, Segmentation.

I. I NTRODUCTION

Synthetic Aperture Radar (SAR) data are the result of
a coherent imaging system that produces the speckle noise
phenomenon. The intensity and phase of the backscatter signal
are modeled by a complex Gaussian distribution. For multi-
look one channel SAR data, the intensity follows a Gamma
distribution. For multi-look multichannel Polarimetric SAR
(PolSAR) data, the covariance matrix should be used. For fully
developed speckle, the covariance matrix follows the complex
Wishart distribution [1]. These distributions, that characterize
the speckle noise phenomenon, have been generally used for
SAR data analysis. It is assumed that land cover backscatter
characteristics are homogeneous (uniform or not textured)over
the area. This is not the case for forest areas, for example. For
textured scenes, the ”product model” has been proposed [2].
The observed signal is the product of a positive scalar texture
componentµ with the speckle component. For polarimetric
SAR data, this model assumes that the texture component is
independent of the polarization. The texture term is generally
modeled by a Gamma distribution. The observed signal then
follows a K distribution. This model has been largely used
and seems particularly appropriate for forest areas. Others
distributions (Weibull) or approximations to theK distribution
have been proposed.
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More recently, second-kind statistics (or Log-statistics) have
been used and seem to be particularly appropriate to take into
account the multiplicative aspect of speckle noise. For one
channel SAR data, the Fisher distribution is used to model the
observed signal for the classification of urban areas [3]. The
distribution provides good approximations of different land
cover types.

This paper shows how the Fisher distribution could be used
to model the observed signal for multichannel polarimetric
SAR data of textured scenes. The Fisher distribution is used
to model only the texture componentµ. We first present the
Wishart distribution for homogeneous areas and introduce the
product model. In section III, we derive the distribution of
the observed covariance matrix for Fisher distributed texture.
The new pdf involves KummerU function. We examine the
texture histogram of an urban area to show the advantage of
this approach. Finally, we apply the new pdf in a segmentation
experiment on synthetic data with varying texture distributions.

II. COVARIANCE MATRIX DISTRIBUTION

A. Pdf for homogeneous scenes

One-look Polarimetric SAR data are completely charac-

terized by the scattering matrixS =

[

Shh Shv

Svh Svv

]

. Shv is

the scattering component for horizontally polarized transmit-
ting antenna and vertically polarized receiving antenna. For
the monostatic case, the reciprocity assumption holds. The
cross-polarization termsShv and Svh are equal. The radar
backscattering signal is described by the target scattering
vectorx =

(

Shh, Svv,
√

2Shv

)T
where T is the transposition

operator. For homogeneous (no textured) scene (denoted by
subscript h) and fully developed speckle, the pdf ofx follows
a zero mean multivariate complex Gaussian distribution [1].

The L-look covariance matrix,Zh =
1

L

L
∑

k=1

xkx
H
k , follows

the complex Wishart distribution [1]

pZh
(Zh|Σh) =

LLp|Zh|L−p exp
{

−L tr
(

Σh
−1

Zh

)}

π
p(p−1)

2 Γ(L) · · ·Γ(L − p + 1)|Σh|L
(1)

whereΣh = E
[

xx
H
]

is the population covariance matrix.
E [·], tr (·) and | · | are respectively the expectation, the trace
and the determinant operator. The superscriptH denotes the
complex conjugate transposition.p is the dimension of the
target scattering vectorx (p = 3 for the reciprocal case).

B. The product model

For textured areas, the observed covariance matrixZ can
be written as the product of a texture parameterµ with



2

the covariance matrix for homogeneous surface,Z = µZh.
Generally the texture is polarimetric dependent andµ is
represented by a matrix. But in this Letter,µ is assumed to be
a positive scalar parameter. The probability density function
of the covariance matrixZ can be derived by the following
equation [2] [4] [5]:

pZ(Z|Σh, α) =

∞
∫

0

pZh
(Z|µΣh) pµ(µ|α) dµ (2)

whereα is the parameter set of texture distribution.
For forest areas, the gamma distribution has been widely

used to model the texture. The associated covariance matrix
follows aK distribution, so named because it uses the modified
K-Bessel function of the second kind [4].

With high resolution images of man-made objects, the
Fisher distribution has been successfully introduced to model
the SAR clutter [3]. In next section, the advantage of this
distribution family for texture modeling is examined and the
covariance matrix pdf is derived analytically.

III. SCENE TEXTURE DISTRIBUTION

A. Fisher distribution

The pdf of the Fisher distribution is defined by 3 parameters
as:

pµ(µ) =
Γ(L + M)

Γ(L)Γ(M)

L
Mm

( Lµ

Mm

)L−1

(

1 +
Lµ

Mm

)L+M
(3)

with L > 0,M > 0. The Fisher distribution is not related to
electromagnetic wave theory. It involves the Mellin transform
and second kind statistics.

B. Benefit of Fisher distribution

The ability of Fisher distribution to model real data is
examined. An 8-look L-band polarimetric SAR image (50×50
pixels) is extracted from an urban area of the Oberpfaffenhofen
test site. Pixel texture values are computed by maximum like-
lihood estimation ( [5], see Eq. 20). For each pixel, the texture
componentµ is estimated from the observed pixel covariance
matrix Z and the estimated homogeneous covariance matrix
of the segment. The texture histogram is approximated by
Gamma and Fisher pdf. The Fisher parameters are estimated
from both moment and log-moment values (see [3] or [6] for
cumulants statistics). Fig. 1 shows the real data histogramwith
Gamma and Fisher approximation curves.

The Fisher distribution curves give the best estimate of the
texture histogram. Indeed, Fisher distributions are Pearson VI
solutions and cover a large range of distributions [3] [6]. It is
not confined to urban scenes. It fits reasonably forested and
agricultural fields. ParametersL andM control the comport-
ment of the head and tail of the distribution. Fisher distribution
is equal to the Mellin convolution of a Gamma distribution
by an inverse Gamma distribution. Fisher distribution can be
viewed as a generalization of Gamma distributions. In this
example, the log-moment estimation method provides a better
estimate than the moment based method [3] [6].

Fig. 1. Texture modeled by Gamma and Fisher pdf

C. KummerU distributed covariance matrix

As the Fisher distribution fit well a large range of SAR
clutter [3], it is of great interest to derive the covariancematrix
pdf for a Fisher distributed texture. The pdf shown in Eq. 4
(at the top of the next page) is obtained by substituting Eq. 1
and Eq. 3 inside Eq. 2.

By moving out of the integral the terms independent ofµ,
the integral term becomes:

I =

∞
∫

0

exp

{

−L

µ
tr
(

Σh
−1

Z
)

}( Lµ

Mm

)L−1

µLp

(

1 +
Lµ

Mm

)L+M
dµ (5)

If we replace the texture variableµ by t =
Mm

L
1

µ
in Eq. 5,

we get:

I =

( L
Mm

)Lp−1
∞
∫

0

exp

{

−L tr
(

Σh
−1

Z
)

L
Mm

t

}

tLp+M−1

(1 + t)
L+M

dt

(6)
Abramowitz and Stegun have shown the following relation

[7, Eq. 13.2.5] which links an integral to the confluent hyper-
geometric function of the second kind (KummerU, denoted by
U (·) in Eq. 7).

Γ(a)U(a, b, z) =

∞
∫

0

exp (−zt) ta−1 (1 + t)
b−a−1

dt (7)

with < (a) > 0 and< (z) > 0.

Next, by using the substitutionz =
L tr

(

Σh
−1

Z
)

L
Mm

, a =

Lp+M andb = 1+Lp−L in Eq. 6 and by combining Eq. 4,
Eq. 6 and Eq. 7; it can be demonstrated that the covariance
matrix for a Fisher distributed texture has a pdf that uses a
KummerU function (see Eq. 8 at the top of the next page). In
the following, such pdf will be named KummerU distribution.

IV. H IERARCHICAL SEGMENTATION

Once the covariance matrix pdf for a Fisher distributed clut-
ter is found, criterion can be easily derived for segmentation



3

pZ(Z|Σh,L,M, m) =

∞
∫

0

LLp|Z|L−p exp

{

−L

µ
tr
(

Σh
−1

Z
)

}

π
p(p−1)

2 Γ(L) · · ·Γ(L − p + 1)µLp|Σh|L
Γ(L + M)

Γ(L)Γ(M)

L
Mm

( Lµ

Mm

)L−1

(

1 +
Lµ

Mm

)L+M
dµ (4)

pZ(Z|Σh,L,M, m) =
LLp|Z|L−p

π
p(p−1)

2 Γ(L) · · ·Γ(L − p + 1)|Σh|L
Γ(L + M)

Γ(L)Γ(M)

( L
Mm

)Lp

Γ (Lp + M)U (a, b, z) (8)

or classification of PolSAR data. In this paper, the hierarchical
segmentation algorithm proposed by Beaulieu and Touzi [8] is
adapted to the KummerU distributed covariance matrix. The
segmentation process can be divided into three steps:

1) Definition of initial partition.
2) For each 4-connex segments pair, the stepwise criterion,

SC, is computed. Then, we find and merge the two
segments which minimize the criterion.

3) Stop if the maximum number of merges is reached,
otherwise go to step 2.

A. Stepwise criterion

The criterion used in the hierarchical algorithm is based
on the log-likelihood function. IfSi andSj are two adjacent
segments, the stepwise criterion (SCi,j ) is expressed as [8]:

SCi,j = MLL (Si) + MLL (Sj) − MLL (Si ∪ Sj) (9)

where MLL(·) is the segment maximum log-likelihood func-
tion.

1) For the Wishart distribution:the stepwise criterion is
derived from Eq. 1:

SCi,j = L(ni + nj) ln |CSi∪Sj
| − Lni ln |CSi

|
−Lnj ln |CSj

| (10)

whereCSi
is the mean covariance matrix calculated over the

ni pixels of the segmentSi. It is the best likelihood estimated
of Σ for the Si segment.

2) For the KummerU distribution: the maximum log-
likelihood function for segmentS is derived from Eq. 8. After
removing terms that will be cancelled in the stepwise criterion,
the log-likelihood function can be rewritten as (see Eq. 11 at
the top of the next page).
L̂, M̂ and m̂ are respectively the estimated of the Fisher

parametersL, M andm by the log-cumulants method [3] [6].
Ch is the best likelihood estimate ofΣh for the segmentS.

B. Segmentation of a synthetic image

The hierarchical segmentation algorithm proposed by
Beaulieu and Touzi [8] has been implemented with the Kum-
merU criterion (Eq. 11). For real data, the between region
variation of the covariance matrix is often more important
than the variation of the texture distribution. We use a synthetic
image to consider only texture distribution variations. Fig. 2(b)
shows the simulated texture image (200 × 200 pixels). It
contains four100 × 100 Fisher realizations generated by the

texture 1
L=5

M=10
m=1

texture 2
L=5

M=30
m=1

texture 3
L=10

M=10
m=1

texture 4
L=10

M=30
m=1

(a) (b)

(c)

Fig. 2. (a) image containing the 4 segments (ground truth) and Fisher param-
eters used in the simulation (b) 4-areas synthetic texture image (200 × 200),
(c) Fisher distributions used for the simulation

inversion of the cumulative repartition function. Those Fisher
distributions are presented in Fig. 2(c). The speckle is con-
structed from a Wishart distribution with the same parameters
over the whole image (8-look). Wishart samples are generated
using the algorithm proposed by Odell and Feiveson [9]. Then,
the PolSAR dataset is generated by multiplying the texture
image by the homogeneous covariance matrix (speckle). The
segmentation algorithm is executed with an initial partition
where each segment is a bloc of10 × 10 pixels. The initial
partition is composed of 400 segments.

Tab. I shows the Kolmogorov distance between the Fisher
distributions used in the simulation. Note that this distance
is rather small (from0.049 to 0.102). Segmentation of the
simulated data is a difficult task because the same Wishart
distribution is used and texture are quite similar, as can be
observed in Fig. 2(b)
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MLL (S) = − nL ln |Ch| + n ln
{

Γ(L̂ + M̂)
}

− n ln
{

Γ(L̂)
}

− n ln
{

Γ(M̂)
}

+ nLp ln

(

L̂
M̂m̂

)

+ n ln
{

Γ(Lp + M̂)
}

+
∑

Zk∈S

ln

{

U

(

Lp + M̂; 1 + Lp− L̂;
L tr

(

Ch
−1

Zk

)

L̂
M̂m̂

)}

(11)

(a) (b)

(c)

Fig. 3. Partitions with 5 segments produced by (a) KummerU criterion, (b)
Wishart criterion, (c)K criterion

TABLE I
KOLMOGOROV DISTANCE BETWEEN THE4 TEXTURES.

textures 1-2 1-3 1-4 2-3 2-4 3-4
dK 0.049 0.074 0.102 0.063 0.092 0.072

C. Segmentation result

The segmentation result with 5 segments is shown in Fig.3.
For comparison, the result obtained from the Wishart and the
K distribution based criteria are presented [8]. The best result
is obtained with the KummerU criterion.

The evaluation of segmentation result is a difficult problem.
Fig.4 presents curves similar to Receiver Operator Charac-
teristic (ROC) curves that clearly show the advantage of the
KummerU criterion. For a pixelx, let Sx be the set of pixels
belonging to the same output segment asx and let Tx be
the set of pixels belonging to the same input ground truth
region asx. Cx is the complement ofTx and |T | is the
size of the setT (the number of pixels in the set). For each

pixel x, we define the detection ratio as
|Sx ∩ Tx|

|Tx|
and the

false alarm ratio as
|Sx ∩ Cx|

|Cx|
. By taking the average values

of these ratios over the whole image, we obtain measures
corresponding to the detection probabilitypd and the false
alarm probabilitypfa. The segmentation process starts with a

Fig. 4. ROC curves

(a) (b)

(c)

Fig. 5. Segmentation for a given false alarm probabilitypfa = 0.05 for (a)
KummerU criterion (5 segments), (b) Wishart criterion (29 segments), (c)K
criterion (11 segments)

partition of 400 segments. At each iteration, a new partition
is produced by merging 2 segments. The ROC curves are
obtained by calculatingpd andpfa for each partition.

In Fig. 4, the ROC curve for the KummerU distribution
is better than the curves for the Wishart distribution andK
distribution. Whenpfa = 0.05, the detection probability is
much better for the KummerU criterion (0.85) than for the
Wishart andK distribution criterion (0.3) and the correspond-
ing partitions, shown in Fig.5, contain respectively 5, 29 and
11 segments. This shows the advantage of using a criterion that
can discriminate between a large range of texture distributions.
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Fig. 6. 2 forest areas and 2 urban areas (30x30 pixels) are selected into the
Oberpfaffenhofen image.

D. Criterion comparison with real data

In real application, the speckle covariance matrix difference
is often more important than the texture difference. This would
seriously limit the advantage of the KummerU distribution.
The evaluation of the benefit of the KummerU distribution
in real application is an involved task. We present a simple
case with 2 forest areas and 2 urban areas (30x30 pixels)
manually selected into the Oberpfaffenhofen image (Fig. 6).
The presented criteria are calculated for each region pair
(Table. II). A small value indicates that the 2 regions of thepair
are similar. For the Wishart distribution, the distance between
the 2 urban regions (10290) is larger than the difference
between any urban region and any forest region. This indicates
that the Wishart criterion will have difficulty to separate urban
areas from forest areas. This is not the case for theK and
KummerU distribution where the urban1-urban2 distance (340
for K and 68 for KummerU) is smaller than the urban-
forest distances. The KummerU criterion considers the 2 urban
regions more similar than do theK criterion (68 vs 340). This
will facilitate the grouping of urban regions.

Forest1 and Forest2 regions are equally similar, independent
of the texture model employed (SC' 200). Texture appears
unimportant for these forest classification.

Moreover, the KummerU distribution can tends to merge
segments from different class. The Forest1-Forest2 criterion
is only twice lower than the Urban1-Forest1 criterion for the
KummerU distribution, whereas this ratio is about 3 for theK
distribution.

V. CONCLUSION

In this paper, the efficiency of using a Fisher distribution to
model the texture of polarimetric SAR data has been shown.
Then, with the product model hypothesis, the covariance ma-
trix distribution for a Fisher textured clutter has been derived.
The pdf has been mathematically established and expressed
as a function of the confluent hypergeometric function of
the second kind (KummerU). Next, this distribution has been
implemented on a hierarchical segmentation algorithm by
calculating the log-likelihood function. Comparisons with the
Wishart andK distributions have been done for synthetic tex-
tured scenes. ROC curves reveal that the use of an appropriate

TABLE II
BETWEEN REGION SIMILARITY COMPARISON FOR THEWISHART, THE K

DISTRIBUTION AND THE KUMMERU DISTRIBUTION

Urban 1 Urban 2 Forest 1
Wishart distribution

Urban 2 10290
Forest 1 6850 7178
Forest 2 6826 7238 201

K distribution
Urban 2 340
Forest 1 645 1221
Forest 2 609 975 199

KummerU distribution
Urban 2 68
Forest 1 471 1499
Forest 2 436 1244 200

texture distribution is useful to segment textured polarimetric
SAR images.

A complete analysis of the interplay between polarimetric
variability and scalar texture must be carried out to have a bet-
ter understanding of the segmentation algorithm performances.

Future developments could involve the combination of
Wishart and KummerU based criterion for the segmentation of
mixed images with textured and no textured areas. An other
perspective of this work could be the adaptation of the Wishart
classifier to the KummerU distribution [10].
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