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Abstract. Domain-Specific Languages (DSLs) represent a proven ap-
proach to raising the abstraction level of programming. They offer high-
level constructs and notations dedicated to a domain, structuring pro-
gram design, easing program writing, masking the intricacies of under-
lying software layers, and guaranteeing critical properties.
On the one hand, DSLs facilitate a straightforward mapping between a
conceptual model and a solution expressed in a specific programming
language. On the other hand, DSLs complicate the compilation process
because of the gap in the abstraction level between the source and target
language. The nature of DSLs make their compilation very different from
the compilation of common General-Purpose Languages (GPLs). In fact,
a DSL compiler generally produces code written in a GPL; low-level
compilation is left to the compiler of the target GPL. In essence, a DSL
compiler defines some mapping of the high-level information and features
of a DSL into the target GPL and underlying layers (e.g., middleware,
protocols, objects, . . . ).
This paper presents a methodology to develop DSL compilers, centered
around the use of generative programming tools. Our approach enables
the development of a DSL compiler to be structured on facets that rep-
resent dimensions of compilation. Each facet can then be implemented
in a modular way, using aspects, annotations and specialization. Because
these tools are high level, they match the needs of a DSL, facilitating
the development of the DSL compiler, and making it modular and re-
targetable.
We illustrate our approach with a DSL for telephony services. The struc-
ture of the DSL compiler is presented, as well as practical uses of gener-
ative tools for some compilation facets.

1 Introduction

“Generative software development aims at modeling and implementing system
families in such a way that a given system can be automatically generated from
a specification written in one or more textual or graphical domain-specific lan-
guages [7]”.

At the design level, generative software development emphasizes the role of
Domain-Specific Languages (DSLs) as a way to bridge the gap between high-
level modeling and General-Purpose Languages (GPLs). Nevertheless, from the
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programming language viewpoint, there is a lack of methodology and a lack
of tools to support the development of DSL compilers. The purpose of this
paper is to apply some of the mainstream techniques promoted by the generative
programming community to develop DSL compilers.

What is a DSL? From a programmer viewpoint, a DSL is typically created to
model a program family [4]. The commonalities and the variabilities found in
the target program family suggest abstractions and notations that are domain
specific [6]. In contrast with GPLs such as Java or C++, a DSL has a narrow
application scope and must be readable for domain experts.

In general, a program in a textual DSL is a concise set of high-level dec-
larations, focusing on what to compute, as opposed to how to compute it. As
an illustration, consider the telephony domain, and more specifically service
creation. Conceptually, telephony services represent variations in creating, mod-
ifying and terminating a communication between parties. While this program
family in a GPL covers the full implementation of services, its counterpart in a
DSL corresponds to variations of service logic, abstracting over implementation
details.

From a language designer viewpoint, a DSL makes domain-specific informa-
tion an integral part of the programming paradigm. As such the programmer
can be viewed as being prompted by the language to provide domain-specific
information. This information may take the form of domain-specific types, syn-
tactic constructs and notations. It serves domain-specific concerns, such as li-
brary interfacing, optimization, instrumentation, profiling and verification of the
generated code. As of now, there are neither specific methodology, nor dedicated
support tools, well suited to handle the compilation of both the high-level nature
of a DSL and the richness of the built-in domain-specific information.

Challenges in DSL compilation. When mapping a DSL to a GPL, the higher
level the DSL is, the more program generation is needed to bridge the gap with
the target execution environment. Concretely, one program line written in a DSL
commonly compiles into many lines in GPL. For instance, we have developed
a DSL for telephony services, named SPL [2], that compiles into Java. An SPL
program is on average 4 times more concise than its Java counterpart.

Not surprisingly, GPL-translated programs include rather large program tem-
plates. The process of generating these templates can be quite complex, relying
on various conditions, and requiring a number of instantiations by computing
and inserting constants. Without any dedicated tool support, this process can
be quite laborious and error-prone. The resulting generator is often cumbersome
and hard to debug. Additionally, the lack of tool support makes it difficult to
have a modular treatment of the domain-specific concerns exposed by a program.

This paper. We propose a methodology to develop DSL compilers. The key idea
of this methodology is to rely on generative programming tools [8]. These tools
enable modeling the high-level nature of DSLs and the richness of the built-
in domain-specific information in terms of program generation. This modeling
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can be done in the context of various generative programming approaches. Our
methodology is composed of two steps: compiling program logic and performing
generative programming.

First, the DSL program logic is translated into an abstract GPL representa-
tion. This representation is abstract because it includes operations whose inter-
pretation is not necessarily defined yet; it may thus not be executable. Although
abstract, this translation generates a representation that encodes domain-specific
information and that is localized in code regions of interest for further compila-
tion treatment. In doing so, the representation is amenable to generative tools
that represent the second step of our methodology.

Generative programming tools are used to define the compilation of domain-
specific facets of a DSL in terms of program generation processes. One category
of facets addresses the mapping of a DSL program into a target execution envi-
ronment. A second category of facets is devoted to the compilation of language
abstractions. A third category of facets defines code generation processes that
are specific to the subject DSL program. This approach modularizes the pro-
cess of generating a DSL compiler. Furthermore, each generative programming
approach provides a paradigm, associated abstractions and tools dedicated to a
specific family of program generation. The compiler developer can thus choose
the most appropriate generative programming approach for a given facet.

Our approach is illustrated by three generative programming approaches,
namely AOP [13], annotations [3], and program specialization [5, 10]; conceptu-
ally other approaches can be considered. AOP is well-suited to introduce cross-
cutting behaviors in GPL-translated programs (e.g., prologue and epilogue code
of API invocations). Annotations enable non-functional concerns to be intro-
duced in the compilation process (e.g., resource management). Program special-
ization can address optimization-oriented program generation (e.g., customiza-
tion of software components).

Refining facets further leads us to distinguish between functional and non-
functional facets. On the one hand, the functional facets define program genera-
tion processes that make the GPL-translated program executable. On the other
hand, non-functional facets enrich the language execution in terms of require-
ments like performance, reliability and security.

Contributions.

– A methodology to develop DSL compilers. We define a methodology
to develop a DSL compiler. We introduce a GPL-translated abstract rep-
resentation of the program logic. This representation is structured so that
further compilation can produce a spectrum of implementation variants.

– A novel use of generative programming tools. Our methodology re-
lies on a novel use of generative programming. This methodology facilitates
the generative programming process required by DSL compilation: high-
level generative programming paradigms can be used to modularly process
domain-specific information and abstractions.

– A case study. We use our methodology to develop a compiler for a DSL ded-
icated to the creation of telephony services. We present aspects, annotations
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and specialization opportunities that model various compilation dimensions
of this DSL.

Outline. The rest of this paper is organized as follows. Section 2 introduces our
case study, a DSL for telephony services. Section 3 presents our methodology to
develop a DSL compiler. Section 4 focuses on compiling the program logic. Sec-
tion 5 and 6 presents the compilation of functional and non-functional language
units. Finally, Section 7 discusses our approach, and Section 8 concludes.

2 Case Study

Our approach to developing DSL compilers is illustrated by a DSL to create
telephony services. We choose the Session Initiation Protocol (SIP) [14, 15] as
the underlying signaling protocol. This protocol is used for Voice over IP (VoIP)
and third generation mobile phones. It is standardized by the IETF1 and adopted
by the ITU.2

SIP is a rapidly emerging protocol that places telephony into mainstream
computer science. It is combined with a number of existing protocols to handle
various aspects of communications (e.g., transport and real-time streaming).
It relies on the client-server model. SIP platforms provide rich programming
interfaces in languages like C# and Java. The general-purpose nature of these
programming interfaces make them very large and intricate to use. This situation
is demonstrated by JAIN SIP, a standardized Java interface to SIP [9, 16], which
consists of 130 classes and more than 3000 methods.

The need for a DSL in this domain stems from three main reasons. First,
modern telephony is a software intensive area because of the host of new func-
tionalities it offers. Second, programming telephony services now requires ex-
tensive expertise in SIP and its companion protocols, distributed programming,
networking, and SIP programming interfaces. Third, a study of existing tele-
phony services shows that programming a service logic in a given platform with
a GPL is quite a laborious and error-prone process [1]. It requires recurring code
patterns as the prologue and epilogue of invocations of the SIP programming
interface.

We have developed a DSL named Session Processing Language (SPL) that
enables telephony services to be defined concisely, using high-level abstractions
and notations [2]. SPL enables the programmer to concentrate on the service
logic, abstracting over low-level intricacies such as the protocol details and the
underlying platform programming interface.

An SPL program defines a telephony service to which users can subscribe.
The session is a key notion in SPL; it structures the development of a telephony
service. A session consists of a set of handlers and a state. A handler defines a
treatment for a protocol request or a platform event. A handler may be omitted,

1 IETF: Internet Engineering Task Force.
2 ITU: International Telecommunications Union.
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if no service logic is associated with it. A state allows some data to be main-
tained across a set of handlers. SPL offers different kinds of sessions that form
a hierarchy. A simple counter service written in SPL, exhibiting this hierarchy,
is displayed in Figure 1.

1 service Counter {
2 processing {
3 local void log (int);
4
5 registration {
6 int count;
7
8 response outgoing REGISTERREGISTER() {
9 count = 0;
10 return forward;
11 }
12
13 void unregisterunregister() {
14 log (count);
15 }
16
17 dialog {
18 response incoming INVITEINVITE() {
19 response resp = forward;
20 if (resp != /SUCCESS) {
21 return forward 'sip:secretary@company.com'; 
22 } else {
23 count++;
24 return resp;
25 }
26 }}}}}

Fig. 1. The counter service in SPL

The innermost session is the dialog: it manages a communication between
parties. A dialog is created by the INVITE request, confirmed by the ACK request,
and terminated by the BYE request. A dialog session defines handlers for the SIP
requests and platform events pertaining to the communication management. In
the counter service, an INVITE handler is defined to process incoming calls. This
handler systematically forwards (i.e., routes) a call to the user who subscribed
to this service. If this forward does not succeed (e.g., the user is busy), the
call is forwarded to a secretary. Otherwise, the call is accepted, a counter is
incremented, and the response is returned to the caller. The session variable
count used in this handler is defined in the session surrounding a dialog, namely
the registration session. Such a session is created for each user of the counter
service that registers on the SIP platform by sending the REGISTER request.
This session defines a state that consists of a unique variable (count), initialized
in the REGISTER handler. A user is unregistered either when his registration lease
expires or when the REGISTER request contains a zero-lease. Both situations are
viewed by SPL as a unique event named unregister, for which a handler can
be defined in the SPL program. In our example, the unregister handler invokes
a function that logs the counter, when the session is terminated. At the top of
the session hierarchy is the service session. Such a session is created when the
service is deployed on the platform and deleted when it is undeployed.
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SPL abstracts over a number of protocol and platform issues among which
is the statefulness of a transaction. Let us explain this issue because it illus-
trates the gap between SPL and a SIP platform. This issue will later be used in
examples. A transaction consists of a request and the response it triggers. Exist-
ing SIP platforms provide separate interface entries for processing requests and
responses. A telephony program may process a request and its response inde-
pendently; such a transaction is said to be stateless. Alternatively, a telephony
program may need to match a response with the original request to continue
some treatment initiated when the request got processed. Such a transaction is
said to be stateful because it requires the platform to retain enough information
to link a response to the original request. SPL abstracts over these implemen-
tation details. As shown in the INVITE handler, when the INVITE request is
forwarded, the response is treated within the same handler. Statefulness of the
transaction is determined by analyzing the service. In fact, SPL offers stateful-
ness throughout the session hierarchy. In our example, the count variable is used
in both the registration and dialog sessions. When a SIP message is processed
by an SPL program, its GPL-translated version executes some code to trigger
the corresponding handler and to extract the appropriate state.

3 A Methodology to Develop DSL Compilers

Our starting point in developing a DSL compiler is to define a direct translation
of the program logic into a GPL representation. This translation is direct in that
it generates abstract GPL code, not necessarily executable, where DSL mecha-
nisms are not yet expanded but rather left uninterpreted. Although abstract, this
translation encodes domain-specific information into the GPL representation, in
a context where it can later be interpreted.

In our telephony case study, for example, while the routing of a SIP message
in SPL is not concerned with statefulness, this property is explicitly encoded in
the GPL-translated version.

The GPL-translated program logic can then be the input to various inter-
pretations guiding two compilation dimensions: functional and non-functional
language units. On the one hand, the functional units of the language are in-
tended to complement the GPL-translated program logic to make it executable.
On the other hand, the non-functional units of the language address implemen-
tation refinements or enrichments. The compilation of functional units varies
with respect to both the target GPL and the target execution environment. In
addition to these dimensions, the compilation of non-functional units may vary
with respect to requirements like performance, reliability and security.

Whether or not functional, the compilation of DSL units can be decomposed
into treatments that are inherent to either the target execution environment, the
language or the program. These three categories of treatment are named facets.

The goal of the execution environment facet is to bridge the gap between
the DSL execution model, possibly implicit, and the target execution environ-
ment. The DSL execution model is supposed to be high level and portable,
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abstracting over the intricacies of the target execution environment. The execu-
tion environment facet is intended to generate the necessary code to interface
the GPL-translated program logic with the underlying layers. Considering the
SPL case, the execution environment facet bridges the gap between the explicit
event-handling architecture of JAIN SIP and the implicit SPL model based on
request handlers. For example, default request handlers need to be introduced
to create and delete session states, whenever an SPL program does not define
handlers for the corresponding requests.

The language facet is concerned with the interpretation and expansion of
language mechanisms, whether or not explicit in the GPL-translated program
logic. Such a facet generates recurring code patterns intrinsic to the language.
For example, routing operations of all SPL services need to be analyzed to deter-
mine their statefulness. This information is made explicit in the GPL-translated
program logic by adding some information in each invocation of the routing
operations.

Lastly, the program facet invokes compiler treatments that are specific to the
subject program. For instance, in the case of SPL, the request handler necessi-
tates specific state extraction operations, depending on what session variables
occur. Such a treatment is specific to a given SPL service and thus part of the
program facet.

4 Compiling The Program Logic

The goal of compiling the logic of a program is to produce a representation
that abstracts over implementation details while being amenable to generative
programming tools. To be applied successfully, generative programming tools
generally introduce some constraints on the program structure and may require
program generation parameters. Program structure is needed to make the GPL-
translated program logic match the granularity of the program entities manipu-
lated by the generative programming tools. The program generation parameters
are typically needed to customize the program generation process or the execu-
tion generated program. These parameters may correspond to compilation data
that are domain-specific information and are encoded in the translated program
or/and in generative programming declarations (e.g., an aspect declaration).

Our approach enables the program generation process to be modularized:
each module is responsible for a “slice” of program generation needed to com-
pile a given DSL. This modularization is particularly well-fitted to explore the
implementation scope offered by the high-level nature of a DSL.

An example of a GPL-translated program logic is displayed in Figure 2. It is
the SPL program (showed in Figure 1) compiled into Java for a JAIN SIP inter-
face [16]. This interface is typical of a client-server model in that it requires a tele-
phony service to implement a SipListener interface, providing processRequest
and processResponse methods. Additionally, a method is declared to handle
various platform timeouts. Also, private methods have been introduced to handle
the registration and un-registration of the service owner, as well as the forward-
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ing of call invitations (responses are treated in processResponse). As can be
noticed in handler INVITE, for example, the service logic has been straightfor-
wardly translated into Java: expressions manipulating variables are reproduced
verbatim; message routing is translated into invocations of sendRequest for the
SPL forward and sendResponse for the returning responses.

1 public class public class Counter Counter implements implements SipListener {SipListener {
2 [...]
3 private void handler_REGISTERhandler_REGISTER (Request rq, String method) {
4 count = 0;
5 sendRequest (false, rq_request);  /**  SPL, line 10  **/
6 }
7 private void handler_unregisterhandler_unregister (Request rq, String method) {
8 local.log (count);  /**  SPL, line 14  **/
9 sendRequest (false, rq_request); /**  SPL: default behavior  **/
10 }
11 private void handler_INVITEhandler_INVITE (Request rq, String method) {
12 sendRequest (true, rq_request);  /**  SPL, line 19  **/
13 }
14
15 public void processRequest (RequestEvent requestEvent) {
16 String method = rq_request.getMethod();  
17 if (method.equals (Request.REGISTER)) {  /**  SPL, line 5  **/
18 if (!registrar.hasExpiresZero (rq_request)) {
19 if (!registrar.hasRegistration (rq_request)) {  /**  SPL, line 8  **/
20 handler_REGISTER (rq_request, method);
21 } else {  /**  SPL: default behavior  **/
22 sendRequest (false, rq_request);
23 } 
24 } else if (registrar.hasRegistration (rq_request)) {  /**  SPL, line 13  **/
25 handler_unregister (rq_request, method);
26 } else {  /**  SPL: default behavior  **/
27 sendRequest (false, rq_request);
28 }
29 } else if (method.equals (Request.INVITE)) { /** SPL, line 18  **/
30 handler_INVITE (rq_request, method);
31 } else {  /**  SPL: default behavior  **/
32 sendRequest (false, rq_request);
33 }
34 }
35
36 public void processResponse (ResponseEvent responseEvent) {
37 String method = rs_request.getMethod();
38 rs_responseCode = rs_response.getStatusCode();  
39 if (method.equals (Request.INVITE)) {  /**  SPL, line 18  **/
40 if (rs_responseCode >= 300) {  /**  SPL, line 20  **/
41 AddressFactory addressFactory = getAddressFactory(); 
42 SipURI sipURI = addressFactory.createSipURI ("secretary", "company.com");
43 rs_request.setRequestURI (sipURI); 
44 sendRequest (false, rs_request);  /** SPL, line 21  **/
45 } else {
46 count++; 
47 sendResponse (true, rs_response);  /**  SPL, line 24  **/
48 }
49 } else {  /**  SPL: default behavior  **/
50 sendResponse (false, rs_response);
51 }
52 }
53
54 public void processTimeout (TimeoutEvent timeoutEvent) {[...]}
55 }}

Fig. 2. Java-translated program logic
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Let us now examine how to compile the program logic using generative pro-
gramming approaches.

4.1 Aspect-Oriented Programming

The AOP approach consists of a join point language, to identify locations in
the program execution, and an advice language, to define additional behavior at
these locations [11].

Our goal is to produce a GPL-translated program logic that matches the
expressivity of the join point language. That is, to structure the translated pro-
gram so that it matches the granularity of the join point identification and the
semantics of the associated advice. Conceptually, to fit the AOP approach, DSL
compilation must introduce specific code structuring and communicate compi-
lation data.

The GPL-translated program logic needs some structuring when some code
is to be inserted at some program point. Identifying the target program point
requires language entities such as a method definition or invocation, variable
occurrences, and declarations. As a result, a sequence of commands may need to
be placed into a method in a translated program to enable code to be inserted
before, after, or around its execution. The top of Figure 2 shows private methods
that have been introduced by the DSL compiler to easily insert code as the
prologue and epilogue of invocations of SPL request handlers.

Compiling the program logic also involves collecting or computing informa-
tion about the DSL program that needs to be made explicit in the translated
program. This strategy separates the production of the information and its ex-
ploitation, leaving its interpretation to other compilation passes. In the context
of AOP, passing information can either be made by adding extra arguments to
operations or by introducing specific instance variables. The latter case is further
discussed in Section 5.2.

In principle, functional DSL units correspond to aspects that can performed
statically since, intuitively, these aspects refine the static compilation process. In
contrast, non-functional units may compile into both static and dynamic aspects.
Static aspects may be used to expand the implementation of specific operations,
whereas dynamic aspects may define conditional monitoring actions.

A key advantage of our approach is to permit a DSL compiler to be designed
and structured in terms of modules, that is, aspects. Each aspect defines a specific
DSL behavior whose cross-cutting nature makes it an ideal target for AOP.

4.2 Annotations

Annotations can be included in the translated program to make some infor-
mation explicit as the DSL program gets mapped into a lower-level represen-
tation. Annotations are traditionally used as extra information describing non-
functional language issues.
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Like aspects, annotations modularize the compilation of a DSL in that they
introduce information that are later interpreted with respect to a given annota-
tion processor.

Different sets of annotations have different goals. There may be annotations
to make resource management explicit, or annotations intended to trigger check
pointing of some state. When compiling the program logic, the aim is to generate
annotations that are as self-contained as possible to minimize the work of the
annotation processor occurring at a later phase. To do so, the location of an
annotation is a key parameter. Also, arguments to the annotation may be needed
as additional input to the annotation process.

4.3 Program Specialization

Program specialization is another use of a generative programming tool for
DSL compilation. It addresses the optimization of DSL implementation building
blocks. The idea is that a DSL can often be seen as a language gluing software
components together. Because these components can be glued in a variety of
contexts they must be highly generic. While this approach has obvious soft-
ware engineering advantages, in practice, it may entail a significant performance
penalty. To alleviate this problem, program specialization enables generic soft-
ware components to be customized with respect to the context in which they
are used. Because software components are invoked by compiler-generated code,
the customization contexts can be determined by definition of the DSL compiler.
Furthermore, since components are fixed, or slowly evolving, their specializabil-
ity can be determined precisely. As a result, this program transformation can be
made fully predictable, which is not the case for arbitrary program transforma-
tions like most program optimizations.

5 Compiling Functional Units

Compilation of functional units fits particularly well with AOP: it incrementally
refines the semantics of language mechanisms, whether or not explicit in the
source program. We do various forms of code expansion triggered by method
names and instance variables.

We use a wide-spread and well-tested AOP tool, AspectJ [12], to define the
compilation of various functional units needed for SPL. Limitations discussed
in the following examples are not intrinsic to the AOP approach but are rather
specific to AspectJ tool. These limitations are further discussed in Section 7.

5.1 Execution Environment Facet

The goal of functional execution environment facets is to bridge the gap between
the DSL execution model and the target execution environment. In our case
study, these facets are intended to generate the necessary code to interface the
program logic with the underlying JAIN SIP platform.
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public aspectpublic aspect Environment {Environment {

public Request Counter.rq_request;
public SipProvider Counter.rq_sipProvider;

pointcut processRequestprocessRequest(): execution(public void Counter.processRequest (RequestEvent));
before(RequestEvent rq_Event, Counter obj): processRequestprocessRequest() && args(rq_Event) && target(obj) {
obj.rq_request = rq_Event.getRequest();
obj.rq_sipProvider = (SipProvider) rq_Event.getSource();

}
[...]

}}

Fig. 3. An aspect for an execution environment facet

The aspect program presented in Figure 3 introduces code that implements
the SPL model in terms of the JAIN SIP event-handling architecture. To do so,
the inserted code extracts the current request message from the event object
generated by JAIN SIP. Dispatch over the type of request can then be done
to invoke the appropriate Java-translated SPL handler. In addition, code to
extract the sipProvider object is generated to enable further processing of the
SIP message (e.g., message headers and transaction creation).

Thanks to the functional execution environment facet presented above, the
Java-translated program logic does not have to deal with the intricacies of the
underlying JAIN SIP platform. Such a strategy helps to isolate target-dependent
program generation in compiler modules, corresponding to aspects.

5.2 Language Facet

Functional language facets are concerned with the interpretation and expansion
of language mechanisms. In our case study for example, state management and
statefulness of routing operations require generating recurring code patterns.
The corresponding aspects are discussed below.

State management. As illustrated in Figure 2, the Java-translated program logic
does not include code for attaching a state to a session, and managing this state
across the session life-cycle. For example, the state associated with a registration
session needs to be created when processing a REGISTER request and deleted
either when the request failed or the session ends. We have developed a language
facet in AOP dedicated to state management. An excerpt of this facet is depicted
in Figure 4.

The first advice specifies the code to execute for creating a registration
state when processing a REGISTER request. However, since the handler for the
REGISTER request is not mandatory in SPL, the corresponding method may not
be present in the Java-translated program. If so, some code must be inserted to
catch a REGISTER request and create the registration state. However, the pattern
matching capability of the pointcut language does not permit to test the non-
existence of a method invocation. To remedy this problem, this information is
encoded as flags introduced into the aspect program. These flags enable the ap-
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public aspect public aspect Language {Language {

private boolean handler_REGISTER   = true;
private boolean handler_REREGISTER = false;
private boolean handler_unregister = true;

pointcut registerregister(): execution(private void Counter.handler_REGISTER (Request, String));
before(Request rq, String method, Counter obj): registerregister() && args(rq, method) && target(obj) {
State state = new State();
int ident   = obj.env.getId (obj.rq_request);
obj.env.setEnv (ident, state);
obj.state = state;

}

pointcut processRequestprocessRequest(): execution(public void Counter.processRequest (RequestEvent));
before(Counter obj): processRequestprocessRequest() && target(obj) {
if (!handler_REGISTER) {
String method = obj.rq_request.getMethod();
if (method.equals (Request.REGISTER)) {
if (!obj.registrar.hasExpiresZero (obj.rq_request)) {
if (!obj.registrar.hasRegistration (obj.rq_request)) {
State state = new State();
int ident   = obj.lib.env.getId (obj.rq_request);
obj.lib.env.setEnv (ident, state);
obj.state = state;

}}}}}
[...]

}}

Fig. 4. An aspect for a language facet (1)

propriate advice to be selected, as illustrated by the use of the handler REGISTER
flag.

Statefulness. In the Java-translated program logic, the first argument of the
sendRequest method determines the statefulness of the routing operation. This
information has been made explicit in the Java-translated program logic thanks
to an analysis of the SPL program. The aspect program shown in Figure 5
describes the recurrent code fragment that needs to be executed when processing
such an operation. In this example, calls to sendRequest are compiled into
either stateless or stateful routing operations depending on the value of its first
argument.

public aspect public aspect Language {Language {
[...]
pointcut rq_sendRequestrq_sendRequest(): call(public void Counter.sendRequest (boolean,Request)) &&
(withincode(public void Counter.processRequest (..)) || withincode(* Counter.handler_* (..)));

void around(boolean b, Request r, Counter obj): rq_sendRequestrq_sendRequest() && args(b,r) && target(obj) {
try {
if (b) {

ClientTransaction ct = obj.rq_sipProvider.getNewClientTransaction (r);
ct.sendRequest();
return;

} else {
obj.rq_sipProvider.sendRequest (r);
return;

}
} catch (Exception ex) {}

}
[...]

}}

Fig. 5. An aspect for a language facet (2)
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The use of functional language facets enables the translated program to be
closer to the program logic. For example, state management requires a precise
understanding of the SIP protocol to determine when sessions need to be created
and deleted. Such intricacies are factorized into the language facet, preventing
the compiler writer to address all the DSL implementation issues at once.

5.3 Program Facet

Functional program facets are concerned with the generation of code that is spe-
cific to a program. For example, creation and manipulation of the state attached
to a session depends on the session variables and the handlers that use them.

Such a situation is illustrated by the SPL program shown in Figure 1, where
the count variable is used in the REGISTER handler (line 9). This variable occur-
rence leads to the declaration of an aspect, displayed in Figure 6, that inserts
the class definition State and the methods to access the instance variable. Fur-
thermore, this aspect specifies that each occurrence of the count variable in the
Java-translated program logic must be replaced by an access to the state.

public aspect public aspect Program {Program {

public int Counter.count;
public class public class State State implements implements Lib.State {Lib.State {
private int count;
void setCount (int x) { count = x; };
int getCount () { return count; };

}}

pointcut set_count(): set (int Counter.count);
void around(int count, Counter obj): set_count() && args(count) && target(obj) {
obj.state.setCount(count);

}

pointcut get_count(): get (int Counter.count);
int around (Counter obj): get_count() && target(obj){
return obj.state.getCount();

}
}}

Fig. 6. An aspect for a program facet

Functional program facets allow defining DSL compilation at the granularity
of a program, using implicit or explicit information from the source program.

6 Compiling Non-Functional Units

Non-functional DSL units are compiled by exploiting information that refines
or extends the resulting program implementation. Just like functional units,
compilation of non-functional units cover all of the DSL facets, that is, execution
environment, language and program.
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6.1 Execution Environment Facet

Program specialization [5, 10] has been successfully used to customize an ex-
ecution environment according to a specific usage context. In our case study,
the JAIN SIP platform is responsible for invoking specific methods in the Java-
translated program logic for processing requests and responses. When no method
is defined in the Java program, the platform does not need to pass the SIP mes-
sage to the SPL service. Instead, it can directly perform the default platform
behavior. Such a filtering of messages is similar to packet filtering in networking
where only packets of interest are channeled to the application layer. Program
specialization has already been applied in this context [18] and has demonstrated
its benefits. In our case study, a similar strategy would aim to specialize the mes-
sage filtering of the JAIN platform with respect to request names of interest to
a program logic.

This approach enables automatically and systematically specializing highly
generic software components, such as JAIN SIP components, according to a
customization context derived from the program logic, such as an SPL service.
Beyond performance, specialization opens opportunity to reduce the foot-print
of a software layer.

6.2 Language Facet

Chander et al. [3] have recently proposed an approach to resource-bounds check-
ing. Their approach limits the resource usage accordingly to a policy, specify-
ing the resources that a program can use, along with the corresponding usage
bounds. The key idea is to ensure that for each operation that consumes re-
sources, an adequate amount is still available. They propose to annotate a pro-
gram with a consume e command specifying that e units of resource are used,
and with an acquire e command specifying that e units of resources must be
reserved. One of the advantages of this approach is to make it possible to use
a theorem-prover to prove that adequate checks are being performed to guaran-
tee correct resource usage for a given program. The verifier is composed by two
components: a safety condition generator that extracts logical predicates (safety
conditions) whose validity implies resource-usage safety and a prover that proves
the predicates.

Figure 7 illustrates the use of this approach. The left of this figure shows
an SPL program where a list of callers is defined: three persons authorized to
contact the service owner. If not authorized, a call is redirected to a list of four
operators until one of them picks up the phone. In the telephony domain, the
forwarding action represents a critical resource because it triggers a chain of
operations that may be costly in the telephony platform.

The Java-translated program logic is displayed in the right of Figure 7. An-
notations have been introduced for routing operations and the loop command.
Through annotation analysis, we can determine that this example requires, at
worst, the reservation of four resource units (acquire 4 ), corresponding to the
case where no operator picks up the phone. As a result, we can assure that
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service limit_forward {
processing {

uri<4> operators = <...>;
uri<3> callers = <...>;

registration {
dialog {

response incoming INVITEINVITE() {
foreach (caller in callers) {
if (FROM == caller) 
return forward; 

}
return forward operators;

}}}}}

public void processRequest(RequestEvent requestEvent) {
[...]
if (method.equals (Request.INVITE)) {  
//@ acquire 4
Header f_h = rq_request.getHeader(FromHeader.NAME);
String FROM = f_h.toString();
int i = 0;
int size = callers.size();
while (i < size) {  
String caller = (String)callers.get(i);
if (FROM.compareTo (caller) == 0) {  
//@ consume 1
rq_sipProvider.sendRequest(rq_request);    
return;

}
i++;
}
//@ inv(i <= 3, 3 - i)
//@ consume 4
rq_sipProvider.sendRequest(operators, rq_request);
return;  
} 

}
[...]

Fig. 7. Annotations for a language facet

enough resources have been reserved before the program execution. Note that
our consume annotations are made explicit in the translated program but they
could just as well be incorporated in a library by extending the existing JAIN
API.

This example illustrates the use of an existing tool to perform some non-
functional processing of DSL programs. That is, resource-bounds checking is
introduced by re-using an existing annotation language and underlying tools.
In doing so, the DSL compiler writer is guided by the annotation language to
determine the required non-functional information to be provided in the trans-
lated program. This strategy prevents him from re-doing an analysis of this
non-functional domain. Furthermore, annotations allow a modularization of the
compiler in that their processing is left to a later phase, performed by dedicated
existing tools.

6.3 Program Facet

Unlike functional program facets that define compiler treatments specific to a
subject program, non-functional program facets correspond to information col-
lected on a given program. If we consider the example shown in Figure 7, an
extension of the annotation approach could collect the acquire annotations for
each SPL handler, to compute the maximum number of routing operations per-
formed by the SPL program. This number could then be used by a security policy
of the execution environment. In doing so, some restrictions could be enforced
on the number of routing operations performed by an SPL program, to preserve
the platform performance. This enforcement can occur prior to the program ex-
ecution with respect to currently available resources. This process could be seen



16

as admission control. The approach could be extended to all of the resources
consumed by a program. As a result, a telephony service would be accompanied
by a list of the resources required for its execution.

Note that this program facet is different from the language facet, presented
in Section 6.2. Indeed, the language facet did not address resource consump-
tion globally to the service; it only ensured that a consumed resource had been
previously allocated.

An important issue in the telephony domain is service billing. By examining
the kind of compilation treatments on billing operations, one can observe that it
amounts to defining non-functional aspects, analogous to monitoring activities
(e.g., logging). As an example, some timer could be enabled in the handler that
starts a call session, and disabled in the handler terminating a call.

7 Discussion

Our methodology for DSL compiler development is to translate the logic of a
program into a GPL representation that is amenable to generative program-
ming approaches. One of these approaches relies on AOP to introduce specific
behaviors at some locations in the GPL-translated program.

Our methodology for DSL compiler development heavily relies on generative
programming approaches and corresponding tools. In doing so, their features,
or even limitations, need to be take into account when developing the compiler.
Concretely, limitations regarding AOP were discussed earlier. In fact, they did
not concern the approach but rather the AspectJ tool used for our experiments.
For example, variable introduction is only possible at the level of a class, not
inside a method. Moreover, AspectJ aspects are context-insensitive in that they
cannot directly manipulate the variables that are in the scope of a cross-cutting
point. This feature would permit defining finer grained advice and improve the
quality of the generated code.

The generality of meta-programming [17] makes it an alternative approach to
AOP, as well as most other generative programming approaches. In this context,
a DSL compiler resembles an interpreter annotated so as to execute the static
language actions and to produce code for the dynamic language actions. Meta-
programming tools give a fine-grained control over program generation, which
can occur at any program point. A key issue that needs to be explored is how
to modularize DSL compilation with meta-programming, to mimic what we do
with AOP, annotations and program specialization.

8 Conclusion and Future Work

In this paper, we present a new methodology to develop DSL compilers. Our
methodology is composed of two steps: compiling program logic and performing
generative programming. Compiling a program logic produces a GPL-translated
representation that abstracts over implementation details while being amenable
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to generative programming tools. These tools allow to model the high-level na-
ture of DSLs, and the richness of the built-in domain-specific information, in
terms of program generation.

Our approach modularize the program generation process of a DSL com-
piler. Each generative programming approach provides a paradigm, associated
abstractions and tools, dedicated to a specific family of program generation. The
compiler developer can thus choose the most appropriate generative program-
ming approach for a given compilation dimension.

We have used our methodology to develop a compiler for a DSL dedicated to
the creation of telephony services. We present aspects, annotations, and special-
ization opportunities that model various compilation dimensions of this DSL.
This case study demonstrates that a DSL can make use of generative program-
ming approaches and techniques in very effective ways. In essence, a DSL exposes
information about programs that can be mapped by our approach into the realm
of generative programming.

Compared to traditional approaches for compiler development, our methodol-
ogy enables to have a modular treatment of the domain-specific concerns exposed
by a program. The resulting compilation process of a DSL is made simpler and
less error-prone.
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