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Abstract

Bayesian Model Calibration is used to revisit the problem of scaling factor calibration for

semi-empirical correction of ab initio calculations. A particular attention is devoted to

uncertainty evaluation for scaling factors, and to their effect on prediction of observables

involving scaled properties. We argue that linear models used for calibration of scaling

factors are generally not statistically valid, in the sense that they are not able to fit

calibration data within their uncertainty limits. Uncertainty evaluation and uncertainty

propagation by statistical methods from such invalid models are doomed to failure. To

relieve this problem, a stochastic function is included in the model to account for model

inadequacy, according to the Bayesian Model Calibration approach. In this framework,

we demonstrate that standard calibration summary statistics, as optimal scaling factor

and root mean square, can be safely used for uncertainty propagation only when large cal-

ibration sets of precise data are used. For small datasets containing a few dozens of data,

a more accurate formula is provided which involves scaling factor calibration uncertainty.

For measurement uncertainties larger than model inadequacy, the problem can be reduced

to a weighted least squares analysis. For intermediate cases, no analytical estimators were

found, and numerical Bayesian estimation of parameters has to be used.

Keywords: Bayesian data analysis, Model calibration, Scaling factor, Vibrational fre-

quency
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1 Introduction

The final stage in the development of a model, after calibration on an experimental dataset and

proper validation, consists in its use for prediction: ”If the experimental dataset is sufficiently

broad, there is a reasonable expectation that the results will be accurate to something like the

target accuracy”.1 The estimation of uncertainty for the results of computational chemistry is

indeed of paramount importance, notably to their use in multiscale modeling.2,3 The concept

of Virtual Measurement has been introduced by Irikura4 to take advantage of the standardized

procedures defined by the Guide to the Expression of Uncertainty in Measurement (also known

as ”the GUM”),5 and to apply them in the case of quantum chemistry modeling. Random

uncertainties have been shown to be very small, and the major uncertainty factor are biases

due to basis-set and/or theory limitations. For quantum chemistry to be predictive, i.e. to

be able to predict observables with confidence intervals, one has to correct for these biases,

which commonly requires semi-empirical corrections. Uncertainty attached to these corrections

have to be considered in the final uncertainty budget, to which they constitute often a major

contribution.

Scaling of harmonic vibrational frequencies is an important example of calibration method

in computational chemistry, where estimation of a vibrational frequency ν is obtained by mul-

tiplying the corresponding harmonic vibrational frequency ω, routinely calculated by standard

computational chemistry codes, by an empirical scaling factor s (Fig. 1)

ν = ω s (1)

Optimal scaling factors have been computed for extensive sets of theory/basis-set combina-

tions.6,7, 8, 9 In the majority of publications about scaling factors, two summary statistics are

provided for each theory/basis-set combination: the optimal scaling factor and the root mean

squares. From a reference dataset of experimental {νi}
N
1 and calculated vibrational frequencies

{ωi}
N
1 the optimal scaling factor obtained by the least-squares procedure is

ŝ =
∑

ωiνi/
∑

ω2
i (2)
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and the quality of the correction is estimated by the root mean squares (rms) value

γ =

(

1

N

∑

(νi − ŝωi)
2

)1/2

(3)

To our knowledge, these values are not explicitly used for uncertainty propagation, but the rms

provides an estimate of the residual uncertainty resulting from the scaling correction (”some-

thing like the target accuracy”,1 or ”a surrogate for uncertainty” according to10).

In a recent article (hereafter referred to as Paper I), Irikura et al.10 treated the problem

of uncertainty propagation from scaled frequencies, and, using procedures advocated by the

GUM,5 insisted that the scaling factor itself is subject to uncertainty, and proposed that this

uncertainty is the major contribution to prediction uncertainty. On the practical side, prediction

uncertainty would be proportional to the calculated harmonic frequency; on the factual side,

these authors declare that scaling factors for vibrational frequencies are accurate to only two

significant figures, whereas all other studies overstate their precision by reporting them with

four figures. This approach has been adopted by the National Institute of Standards and

Technology (NIST) and put into practice in the Computational Chemistry Comparison and

Benchmark DataBase (CCCBDB),9 section XIII.C.2, where all scaling factors are provided

with uncertainties derived according to the procedure of Paper I.

In the present paper, we revisit the problem of scaling factor calibration and we recast

it in the Bayesian Model Calibration framework, reputed for providing consistent uncertainty

evaluation and propagation.11,12, 13 Section 2 presents the methodological elements used for

calibration and validation procedures, which are applied to representative vibrational frequency

and zero point vibrational energy datasets in Section 3. Bayesian calculations used in this study

are fairly standard, but for the sake of completeness and for readers unfamiliar with statistical

modeling, details are provided in the Appendix .
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Figure 1: Correlation plot between calculated harmonic frequencies ωi and measured frequencies
νi for a set of vibrations extracted from the CCCBDB for the HF/6-31G* combination of
theory/basis-set (dots). The full line is the regression line ν = sω; the dashed line is a visual
aid to appreciate the bias.
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2 Methods

2.1 Statistical model for scaling factor calibration

Considering a measured frequency νobs, one can assume that it is related to the true value νtrue

by

νobs = νtrue + ǫ (4)

where ǫ ∼ N(0, ρ2) is a normal random variable centered at zero, with variance ρ2, representing

the measurement uncertainty in the hypothesis of additive white noise. In the following, we

assume that ρ is known beforehand.

Calculated harmonic vibrational frequencies ω are affected by random errors, related to nu-

merical convergence defined by non-zero thresholds and the choice of starting point in geometry

optimization, and to non-zero thresholds in wave-function optimization.4 It has been shown

that the associated uncertainties are negligible when compared to the measurement uncertain-

ties.4 In the following, one can thus assume that the harmonic vibrational frequencies, being

deterministically calculated, have fixed values.

If one makes the hypothesis of a linear relationship between νtrue and ω, the calibration

model resulting from this analysis is

νobs = sω + ǫ (5)

For a single frequency, there is an optimal scaling parameter ŝ = νobs/ω. As νobs is uncertain,

with standard uncertainty ρ, the value of s cannot be known exactly and has a standard

uncertainty us = ρ/ω. For a calibration dataset with uniform measurement uncertainty ρ, it

can be shown that the optimal value for s is still given by Eq. 2, and its standard uncertainty

by us = ρ/
√

∑N
i=1 ω2

i (c.f. Appendix A.3). Applicability of this formula is subject to one

condition: the model (Eq. 5) should be statistically valid. This means that the residuals
{

νobs
i − ŝωi

}

should have a normal distribution with variance ρ2. Normality is not always

verified, but most important, the variance condition is typically violated when precise data

are used for calibration. The linear model (Eq. 5) is typically unable to reproduce a given

set of measured frequencies within their uncertainty range. In such a case, the width of the
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distribution of residuals is dominated by model misfit, not by measurement uncertainty, and

the model is invalid.

An option would be to seach for a better model than the linear scaling, which is beyond

the purpose of this study. Instead, we consider here that the misfit is not deterministically

predictable. The solution to preserve the linear scaling model in a statistically valid model,

is thus to introduce a stochastic variable ξ to represent the discrepancy between model and

observations

νobs = sω + ξ + ǫ (6)

This equation is similar to the basic statistical model introduced by Kennedy and O’Hagan for

Bayesian calibration of model outputs.11 The discrepancy variable could formally depend on ω,

but we observed that the residuals between model and observations are not notably frequency

dependent (Fig. 2), and the same is assumed for ξ which is considered null in average with

variance σ2

ξ ∼ N(0, σ2) (7)

The calibration equation depends thus on two unknown parameters s and σ.

2.2 Uncertainty propagation

The calibration model (Eq. 6) being linear with regard to uncertain variables s, ξ and ǫ, and

in the hypothesis of normally distributed uncertainties, we can use the standard uncertainty

propagation rules5 to estimate the value and uncertainty on predicted vibrational frequencies:

ν = s ω (8)

V ar(ν) =

(

∂ν

∂s

)2

s=s

V ar(s) +

(

∂ν

∂ξ

)2

ξ=0

V ar(ξ) +

(

∂ν

∂ǫ

)2

ǫ=0

V ar(ǫ) (9)

= ω2V ar(s) + σ2 + ρ2 (10)

The terms due to covariances have been omitted from this equation as the three variables are

independent by hypothesis. In order to provide evaluated predictions of vibrational frequencies,

we need therefore to estimate s, u2
s = V ar(s) and σ2 from the calibration dataset. This is done

in the next section, using Bayesian model calibration.

6



(A)

(B)

Figure 2: Residuals between calculated harmonic frequencies ωi and measured frequencies νi for
a set of vibrations extracted from the CCCBDB for the HF/6-31G* combination of theory/basis-
set (dots). (A) bottom: residuals as a function of ω. In order to suppress the grouping effect
linked with frequencies, the residuals were also plotted as a function of their order in the
reference set (A)-top. (B): plot of the cumulative density function (CDF) for the residuals
against a normal CDF shows that globally there is very little deviation from normality.

7



2.3 Bayesian Model Calibration (BMC)

2.3.1 General case

Starting from the statistical calibration model (Eq. 6), one derives the following expression for

the posterior probability density function of the parameters, given a set of N measured and

calculated frequencies (details are reported in Appendix A.1)

p(s, σ|
{

νobs
i , ρi, ωi

}N

i=1
) ∝

1

σ
∏N

i=1 (σ2 + ρ2
i )

1/2
exp

(

−
1

2

N
∑

i=1

(

νobs
i − sωi

)2

σ2 + ρ2
i

)

(11)

Inferences from this pdf have to be done generally by numerical methods,12 as will be applied

later to zero point vibrational energies. For vibrational frequencies, we first derive an adapted,

simplified, model.

2.3.2 The case of negligible measurement uncertainties

In the commonly met situation where the amplitude of ξ is much larger than the other sources

of uncertainty (σ ≫ ρ), we can consider the approximate measurement model

νobs
i = sωi + ξ (12)

for which the posterior pdf can be simplified to

p(s, σ|
{

νobs
i , ωi

}N

i=1
) ∝

1

σN+1
exp

(

−
Nγ2

2σ2

)

exp

(

−
(s − s)2

∑N
i=1 ω2

i

2σ2

)

(13)

This expression is amenable to analytical derivation of the estimates for the parameters (see

Appendix A.2):

• the average value for s is identical to the optimal value provided by least-squares analysis

s = ŝ;

• the standard uncertainty on s, us is related to the rms γ by the formula

us = γ
√

N/ ((N − 3)
∑

ω2
i );

• the estimate of σ2 is related to γ according to σ2 = γ2 N/(N − 3).
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Using these estimates, we can establish an explicit expression for the standard uncertainty of

ν:

uν = γ

√

N

N − 3

(

ω2

∑

i ω
2
i

+ 1

)

(14)

Confidence intervals can be defined for prediction purpose, e.g. the 95% confidence interval for

ν, assuming the normality of uncertainty is given by

CI95(ν) = [ŝω − 1.96 uν, ŝω + 1.96 uν] (15)

It can be seen that for large calibration sets of few hundreds of frequencies
√

N/(N − 3) ≃ 1

and ω2/
∑

i ω
2
i ≪ 1, and thus

uν ≃ γ (16)

In such conditions, it is thus possible to derive directly confidence intervals from the the sum-

mary calibration statistics ŝ and γ provided by the reference literature.6,7, 8

2.4 The Multiplicative Uncertainty (MU) method

Irikura et al.,10 after a thorough analysis of the uncertainty sources, established that the major

contribution to uncertainty propagation would be the uncertainty on the scaling factor ŝ. They

estimate us from the weighted variance of s with weights ai = ω2
i . This weighting scheme is

derived in two steps: (1) they propose that the probability density function (pdf) for the scaling

factor is a linear combination of pdf’s for individual scaling factors in the reference set; and (2)

from the comparison of the expression of the average value derived from this proposition with

the least-squares solution Eq.2. This way, they obtain a standard uncertainty

u∗

s ≃

(

1
∑

ω2
i

∑

ω2
i (si − ŝ)2

)1/2

(17)

which can be related to γ by u∗

s ≃ γ
√

N/
∑

ω2
i . This uncertainty is different, and generally

smaller, than the dispersion of s values within the calibration set

σs =

(

1

N

∑

(si − ŝ)2

)1/2

(18)
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The uncertainty on a scaled frequency is then reduced to

uν ≃ ωu∗

s (19)

hence the name of ”Multiplicative Uncertainty” (MU) used hereafter.

The salient feature of Eq. 19 is that uncertainty should be proportional to the calculated

harmonic frequency. But, if one observes correlation plots for reference datasets (e.g. Fig.

1, ω > 2000 cm−1), this is not the case. When contrasted with the BMC approach, one

understands that the multiplicative approach ”absorbs”, at least partially, model inadequacy

in u∗

s. It is thus implicitly assumed in this approach that the model (Eq. 5) is in a statistical

regime, although it is not. These points will be illustrated and discussed in the next section.

3 Applications and discussion

3.1 Vibrational frequencies

We illustrate the BMC and MU approaches on the HF/6-31G* combination of theory/basis-set.

The reference dataset, plotted in Fig. 1, has been downloaded from the NIST/CCCBDB in

July 2008.9

3.1.1 Calibration

Using the BMC model and estimators on the reference set, we obtain ŝ = 0.8984 ± 0.0005,

and σ̂ = 45.3 ± 0.6 cm−1 (Table 1), which is consistent with the value of the rms obtained

by Merrick et al.8 for the same theory/basis-set combination. For this dataset, the CCCBDB

proposes ŝ = 0.899± 0.025. We cross-checked this value using Eq. 17 (Table 1). The standard

uncertainty on ŝ evaluated by both methods differ thus by a factor 50, which is expected to

have noticeable effect on prediction uncertainty. In order to visualize this effect, we plotted the

95 percent confidence intervals in both cases (Fig. 3). It is immediately visible that the the MU

approach has a tendency to underestimate uncertainty at low frequencies and to overestimate

it at high frequencies. In comparison, the BMC approach is more balanced.
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Summary stat. MU BMC

ŝ σs γ(cm−1) us %CI95 us σ(cm−1) %CI95

All frequencies (2738)
Full set 0.8984 0.069 45.3 0.024 - 0.0005 45.3 -
Calibration set 0.8986 45.3 0.024 - 0.0007 45.3 -
Validation set - - - - 83.0 - - 94.6

Frequencies between 3180 and 3500 cm−1 (479)
Full set 0.9050 0.0087 28.7 0.0087 - 0.0004 28.8 -
Calibration set 0.9052 23.3 0.0071 - 0.0005 23.4 -
Validation set - - - - 95.0 - - 95.4

Table 1: Statistical estimates and validation for MU and BMC models for vibrational frequencies extracted from the CCCBDB for the HF/6-
31G* combination of theory/basis-set.

11



Figure 3: Confidence intervals at 95% level calculated with Bayesian Model Calibration (left col-
umn) and Multiplicative Uncertainty (right column) methods, in two representative frequency
regions from the calibration dataset for the HF/6-31G* combination of theory/basis-set (dots).
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3.1.2 Validation

In order to comfort the observations of the previous section (3.1.1), we split the calibration

dataset in two subsets by using the odd indexes for calibration, and the even ones for validation

(the frequencies being ordered per molecule, this provides a quasi-random selection with regard

to frequency value). In this case, one gets slightly different values of the parameters, as reported

in Table 1. Using these values, we generate 95% confidence intervals and calculate the frequency

of inclusion of the experimental values of the validation subset within these intervals (Fig. 3).

For a consistent estimator, one should find a frequency close to 95%. BMC succeeds for 94.7%,

whereas the MU model succeeds for only 83% of the frequencies in the validation set (Table 1).

Considering the size of tha samples, the difference is significative, and the consistency of the

multiplicative uncertainty approach in this context can be questioned.

3.1.3 Test on a restricted frequency scale

As stated in Paper I, ”to apply the fractional bias correction, it is important to select a class

of frequencies similar to the ones to be estimated”. For instance, if one selects in the reference

set only those frequencies between 3180 and 3500 cm−1, one gets a much more uniform picture

than with the full reference set. The calibration procedure was done with this limited set of 479

frequencies, providing ŝ = 0.9050± 0.0087 (Table 1). In this case, we note that the uncertainty

factor for s is practically identical to the standard deviation calculated from the sample (0.00869

vs. 0.00871): u∗

s ≃ σs. Due to the restricted frequency range, one has indeed ω2
i /
∑

i ω
2
i ≃ 1/N

(cf. Eqs 17 and 18).

The restricted set has been split in two using index parity, as before. The scaling factor

obtained by MU from the calibration subset is now ŝ = 0.9052 ± 0.0071, and 95.0% of the

validation frequencies fall within the 95% confidence interval. This result is now identical to

the one obtained with BMC (Table 1), the confidence intervals obtained by both methods being

indistinguishable.

It appears thus that in restrictive conditions, the MU method can be valid for reference

sets where the individual scaling factors are uniformly distributed with regard to the harmonic

frequencies. In such case however, the uncertainty is reduced to a conventional unweighted
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standard deviation.

3.1.4 Uncertainty propagation

The relative importance of both factors u2
s and σ2 (ρ = 0 in this example) in Eq. 10 can be

evaluated on the example of a calculated harmonic frequency in the higher range ω = 3000

cm−1 (Table 2). In this case, the uncertainty on the scaling factor contributes only to one

thousandth of the total prediction variance.

For any practical purpose, the uncertainty on the scaling factor of vibrational frequencies can

therefore be neglected. The uncertainty on σ is also much too small to be relevant for confidence

intervals calculation. One can thus safely apply the uncertainty propagation formula (Eq. 16),

using the rms provided by most reference articles dealing with scaling factors calibration.6,7, 8

3.2 Zero Point Vibrational Energies

We consider ZPVE as a an additional test because the reference datasets are considerably

smaller than for the vibrational frequencies (e.g. 39 molecules in the Z1 set of Merrick et

al.8), which is expected to enhance the role of the uncertainty on the scaling factor. In the

absence of a systematic review of measurement errors for ZPVE of polyatomic molecules, we

consider in the following that they can be neglected. The uncertainties reported by Irikura14

for diatomic molecules are indeed very small (on the order of 0.01 cm−1), but transposition to

larger molecules is not straightforward.

Using our measurement model and estimators on the reference set, one gets ŝ = 0.9135 ±

0.0027 and σ̂ = 0.73 ± 0.09 kJ mol−1 (Table 3), which is consistent with the rms obtained

by Merrick et al.8 for the HF/6-31G* theory/basis-set combination. Relative uncertainties on

these parameters have been increased by one order of magnitude, compared with the vibrational

frequencies case. The validation exercise shows once more that the Multiplicative Uncertainty

model fails to provide correct confidence intervals, with a score of only 0.63 for CI95.

In such a case of small reference dataset, it is interesting to check if the approximate formula

(Eq. 16) for uncertainty propagation which was validated for large sets of vibrational frequen-

cies begins to break down, i.e. the contribution of the multiplicative term involving us stays
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negligible or not, for the larger ZPVE values. For instance, if one considers a calculated ZPVE

of 100 kJ mol−1, one has uν =
√

(100 ∗ 0.0027)2 + 0.732 = 0.78 kJ mol−1, to be compared to

γ = 0.71 kJ mol−1. It is to be noted also that the uncertainty on σ might contribute at the same

level, uσ = 0.09 kJ mol−1. Taking all uncertainty sources into account trough Eq. 51 by Monte

Carlo Uncertainty Propagation, one gets uν = 0.77 kJ mol−1. Apparently, the fluctuations of

σ do not have an effect and only the uncertainty on the scaling factor has a noticeable effect,

albeit quite small.

In the same conditions, for the combination B3LYP/6-31G*, one gets γ = 0.423 kJ mol−1

and uν = 0.472 kJ mol−1, to be compared with an exact value of uν = 0.466 kJ mol−1

(Table 3). There is globally only a 10% increase compared to the rms γ. In this range of

ZPVEs, γ still provides a good approximation of the uncertainty factor (Table 2). However,

the amplitude of the discrepancy between γ and uν will probably increase with the size of

the molecule. In consequence, for uncertainty propagation with ZPVEs, notably for large

molecules, it would be safer to use the full UP formula (Eq. 14), involving the multiplicative

uncertainty factor. Compilations of scaling factors should thus report the easily calculated

value of us = γ
√

N/ ((N − 3)
∑

ω2
i ), in addition to the rms γ.

3.2.1 Non-negligible experimental uncertainties

When the measurement uncertainty becomes comparable to the rms, model discrepancy should

be vanishing, and confidence intervals for prediction should include the measurement uncer-

tainty, i.e. u2
ν = ω2u2

s + σ2 + ρ2. In the absence of an exhaustive compilation of experimental

uncertainties on measured ZPVE, we performed simulations assuming a uniform uncertainty

distribution over the full dataset. In order to test the sensitivity of the model parameters to

this uncertainty, we repeated the estimations of previous section, using Eq. 27, for different

values of ρ between 0.1 and 1.0 kJ mol−1. The results are reported in Fig. 4.

As expected from the properties of the posterior pdf, the average/optimal value of the

scaling factor is insensitive to the amplitude of ρ. Moreover, we observe only a slight increase of

us from 0.002 to 0.004. A transition from a constant us, defined by the ρ = 0 limit, to a linear

increase consistent with the weighted least squares limit (Eq. 50) is observed around ρ = γ,

where both limits intersect. A closer look shows that the transition occurs indeed at values of
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ρ slightly smaller than γ, in a region (ρ ≃ 0.35) where us displays a minimum.

The evolution of σ is more dramatic: it displays a sharp decrease and falls down to zero

as soon as the measurement uncertainty reaches and overpasses the value of the rms γ. For

values of ρ below 0.25, σ obeys to the σ2 +ρ2 = γ2 law (represented as a dashed line in Fig. 4),

but the calculated decrease becomes much faster in the transition zone. The uncertainty on σ

increases notably in the transition region observed for s.

In the limit of large experimental uncertainties, the uncertainty propagation formula can be

written as

u2
ν = ω2u2

s + ρ2 (20)

= ρ2
(

1 + ω2/
∑

ω2
i

)

(21)

In this region of large measurement uncertainty, the inadequacy variable ξ becomes useless, as

the calibration with the scaling factor alone enters a statistical regime.

4 Conclusion

A reanalysis of scaling factors calibration in the aim of providing quantified predictions shows

that for large validation sets of accurate data, as used for vibrational frequencies, faithful

prediction uncertainties can be derived from the standardly reported optimal scaling factor and

rms. For much smaller datasets of a few dozens of data, as in the case of ZPVEs, uncertainty

on the scaling factor should also be reported. The following limit formulas have been validated

and are proposed for uncertainty propagation from a given calculated harmonic frequency ω:

• large calibration sets of precise data (ρ ≪ γ): uν(ω) = γ;

• small calibration sets of precise data (ρ ≪ γ): uν(ω) = γ
√

N
N−3

(1 + ω2/
∑

i ω
2
i );

• sets of data with large uniform uncertainty (ρ ≥ γ): uν(ω) = ρ
√

1 + ω2/
∑

i ω
2
i .

A general estimation framework, based on Bayesian Model Calibration, has been defined for

those cases where the limit conditions defined above are not met.

The Multiplicative Uncertainty method proposed by Irikura et al.10 (uν ≃ ωγ
√

N/
∑

ω2
i )

has been shown to be inconsistent when large frequency ranges are considered. It could not
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ω (HF/6-31G*) ω2u2
s σ2 ν ± uν

Freq. 3000 2.25 2052.09 2695±45 cm−1

ZPVE 100 kJ mol−1 0.029 0.194 98.12±0.47 kJ mol−1

Table 2: Uncertainty propagation with calibrated model for a set of 2738 vibrational frequencies
extracted from the CCCBDB for the HF/6-31G* combination of theory/basis-set and for a set
of 39 ZPVE of the Z1 set for the B3LYP/6-31G* combination.

Figure 4: Evolution of measurement model parameters with the amplitude of an hypothetical
uniform experimental measurement uncertainty ρ on ZPVE; B3LYP/6-31G* combination of
theory/basis-set (green squares with error bars). The brown vertical dashed line indicates the
value of the rms γ. Top panel: the red dashed lines represent the 1σ confidence interval in
the limit of null experimental uncertainty; the blue dashed line represent the 1σ confidence
interval in the weighted least squares limit. Bottom panel: the red dashed line represents the
σ2 + ρ2 = γ2 law, truncated to positive values of σ.
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Summary stat. MU BMC

ŝ σs γ(kJ mol−1) us %CI95 us σ(kJ mol−1) %CI95

HF/6-31G*
Full set 0.9135 0.0607 0.71 0.0161 - 0.0027 0.73±0.09 -
Calibration set 0.9078 0.77 0.0214 0.0052 0.83±0.14
Validation set 0.63 0.95

B3LYP/6-31G*
Full set 0.9812 0.0375 0.42 0.0103 - 0.0017 0.44±0.05 -
Calibration set 0.9825 0.45 0.0134 0.0032 0.48±0.08
Validation set 0.68 1.00

Table 3: Statistical estimates and validation for MU and BMC models for a set of 39 ZPVEs of the Z1 set for the HF/6-31G* and B2LYP/6-31G*
combinations of theory/basis-set.
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be recovered by the Bayesian approach, except when the dataset spans a restricted frequency

range, in which case it is reduced to a trivial, unweighted, standard deviation. The use of the

scaling factor uncertainties as reported presently (November 2008) in the CCCBDB9 cannot

therefore be recommended.

I would like to stress out that the validity of the formulas for uncertainty propagation

depends to some extent on the normality of the residuals νi − ŝωi of the linear regression.

Inspection of histograms of residuals (see e.g. Fig.1 in Ref.7) shows that this is not always the

case. The customary approach to choose an optimal theory/basis-set combination is to assess

their performance by the rms alone, maybe weighted by computational cost considerations.6,7, 8

One could also consider a ”normality criterion” in order to reject theory/basis-set combinations

providing non-normal residuals and from which the summary statistics cannot be used faithfully

for uncertainty propagation. Analysis of restricted ranges of data as presently done by some

authors for vibrations8 is one way to improve the normality of residuals.

Semi-empirical correction of ab-initio results by scaling is presently very common and effi-

cient for many observables. It certainly would be a large step towards the general applicability

of uncertainty propagation, if statistically pertinent estimators were systematically reported in

the literature devoted to the calibration of these correction models.
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A Appendix

A.1 Bayesian analysis of scaling factor calibration model

We consider the measurement model

νobs
i = sωi + ξ + ǫi (22)
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where ǫi ∼ N(0, ρ2
i ) is the measurement uncertainty of νobs

i , and ξ ∼ N(0, σ2) is a discrepancy

function between the linear model and the observations. This model has two unknown param-

eters, s and σ, to be estimated on a calibration dataset consisting of N calculated harmonic

frequencies {ωi}
N
i=1, and their corresponding observed frequencies

{

νobs
i

}N

i=1
.

In the Bayesian data analysis framework,15,12 all information about parameters can be ob-

tained from the joint posterior pdf p
(

s, σ|
{

νobs
i , ρi, ωi

}N

i=1

)

. In order to simplify the notations,

we will omit in the following the list indices when they are not necessary.This pdf is obtained

through Bayes theorem

p(s, σ|
{

νobs, ρ, ω
}

) ∝ p({ν} |s, σ, {ρ, ω}) p(s, σ) (23)

where p(
{

νobs
}

|s, σ, {ρ, ω}) is the likelihood function and p(s, σ) is the prior pdf.

As the difference between observation and corrected frequency has a normal distribution

νobs
i − sωi ∼ N(0, σ2 + ρ2

i ) (24)

the likelihood function for a single observed frequency is

p(νobs
i |s, σ, ρi, ωi) =

(

2π
(

σ2 + ρ2
i

))

−1/2
exp

(

−
1

2

(

νobs
i − sωi

)2

σ2 + ρ2
i

)

(25)

Considering that all frequencies are measured independently (with uncorrelated uncertainty)

the joint likelihood is the product of the individual ones, i.e.

p
({

νobs
}

|s, σ, {ρ, ω}
)

=

N
∏

i=1

(

2π
(

σ2 + ρ2
i

))

−1/2
exp

(

−
1

2

N
∑

i=1

(

νobs
i − sωi

)2

σ2 + ρ2
i

)

(26)

As there is a priori no correlation between s and σ, we use a factorized prior pdf p(s, σ) =

p(s)p(σ). In the absence of a priori quantified information on s, a uniform pdf p(s) = cte is

used. For σ,we have to consider a positivity constraint, and we use a Jeffrey’s prior, p(σ) ∝ σ−1.

The posterior pdf is finally defined up to a proportionality factor which is irrelevant for the

following developments

p(s, σ|
{

νobs, ω, ρ
}

) ∝ σ−1
N
∏

i=1

(

σ2 + ρ2
i

)

−1/2
exp

(

−
1

2

N
∑

i=1

(

νobs
i − sωi

)2

σ2 + ρ2
i

)

(27)
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A.2 Case of negligible measurement uncertainties

For the analysis of vibrational frequencies, it is generally considered that experimental uncer-

tainties are negligible (ρi = 0). The general expression for the posterior pdf (Eq. 27) can be

simplified accordingly to

p(s, σ|
{

νobs, ω
}

) ∝ σ−N−1 exp

(

−
1

2σ2

N
∑

i=1

(

νobs
i − sωi

)2

)

(28)

Using the identity
N
∑

i=1

(

νobs
i − sωi

)2
= (s − ŝ)2

∑

ω2
i + Nγ2 (29)

it can be written in a convenient factorized form

p(s, σ|
{

νobs, ω
}

) ∝ σ−N−1 exp

(

−
Nγ2

2σ2

)

exp

(

−
(s − s)2

∑

ω2
i

2σ2

)

(30)

from which we can derive analytical estimates for the parameters and their uncertainties.

A.2.1 Estimation of s

The marginal density for s is obtained by integration over σ

p(s|
{

νobs, ω
}

) =

∫

∞

0

dσ p(s, σ|
{

νobs, ω
}

) (31)

∝

∫

∞

0

dσ σ−N−1 exp

(

−
1

2σ2

N
∑

i=1

(

νobs
i − sωi

)2

)

(32)

∝

(

N
∑

i=1

(

νobs
i − sωi

)2

)−N/2

(33)

which can be rewritten as

p(s|
{

νobs, ω
}

) ∝

(

1 +
(s − ŝ)2

∑

ω2
i

Nγ2

)

−N/2

(34)

which has the shape of a Student’s distribution16

Stt(x) ∝

(

1 +
x2

n

)

−(n+1)/2

(35)
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Posing n = N − 1 and x2 = (N − 1)/N (s − ŝ)2
∑

ω2
i /γ

2, we can directly use the properties of

the Student’s distribution

E[x] = 0; Var[x] = n/(n − 2) (36)

to derive

s = ŝ (37)

u2
s = γ2 N

(N − 3)
∑

ω2
i

(38)

A.2.2 Estimation of σ

The marginal density for the standard uncertainty of the stochastic variable ξ is

p(σ|
{

νobs, ω
}

) =

∫

∞

−∞

ds p(s, σ|
{

νobs, ω
}

) (39)

∝
1

σN+1
exp

(

−
Nγ2

2σ2

)
∫

∞

−∞

ds exp

(

−
(s − ŝ)2

∑

ω2
i

2σ2

)

(40)

∝
1

σN
exp

(

−
Nγ2

2σ2

)

(41)

Using the formula
∫

∞

0

dx x−ne−a/x2

=
1

2
Γ

(

n − 1

2

)

/a(n−1)/2 (42)

one obtains readily the following estimates

σ̂ = γ (43)

σ = γ

√

N

2

Γ [(n − 2)/2]

Γ [(n − 1)/2]
(44)

σ2 =
N

N − 3
γ2 (45)

uσ = γ

√

N

N − 3
−

N

2

(

Γ [(n − 2)/2]

Γ [(n − 1)/2]

)2

(46)

A.3 Case of very large measurement uncertainties

When model discrepancy is negligible compared to measurement uncertainties, i.e. when the

standard linear model is in a statistical regime, one recovers standard statistical analysis, the
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Bayesian analog to weighted least squares. The posterior pdf for s is then

p(s|
{

νobs, ω, ρ
}

) ∝
N
∏

i=1

ρ−1
i exp

(

−
1

2

N
∑

i=1

(

νobs
i − sωi

)2

ρ2
i

)

(47)

from which one obtains

ŝ =
∑

(

ωiν
obs
i /ρ2

i

)

/
∑

(

ω2
i /ρ

2
i

)

(48)

u2
s = 1/

∑

(

ω2
i /ρ

2
i

)

(49)

For uniform experimental uncertainty over the dataset, the scaling factor uncertainty varies

linearly with ρ

us = ρ/
√

∑

ω2
i (50)

A.4 Uncertainty propagation

In the Bayesian framework, the posterior pdf p(s, σ|
{

νobs, ρ, ω
}

) can be used to estimate the

uncertainty of predicted frequencies

p(ν ′|ρ′, ω′,
{

νobs, ρ, ω
}

) =

∫

dsdσ p(ν ′|s, σ, ρ′, ω′)p(s, σ|
{

νobs, ρ, ω
}

) (51)

where

p(ν ′|s, σ, ρ′, ω′) ∝ (σ2 + ρ′2)−1/2 exp

(

−
(ν ′ − sω′)2

2(σ2 + ρ′2)

)

(52)

results from the stochastic model (Eq. 12). This integral has generally to be evaluated numer-

ically.
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