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Chapter 1

Introduction

Synthesis is a tool used to synthesize controllers for discrete event systems. Synthesis operates in a wider
framework than the one used Ramadge and Wonham[6]. Here we consider infinite behaviours as well as
finite ones; moreover, the user can specify some kind of dynamic controllability.

Synthesis is an implementation of algorithms proposed by several authors[3, 8]. We have implemented
operations presented in [2] allowing the synthesis of decentralized controllers; the case of partial observability
is not yet handled.

The tool considers the synthesis problem as a workflow which transforms the couple (system,specification)
into several objects : a multi-parity game, a parity game, a winning strategy and, finally, the controller. Since
Synthesis has been developped as an experimental tool, it does not implement the workflow in a one-step
operation; on the contrary the workflow must be executed step by step. The user has the opportunity to
study generated objects all along the Synthesis workflow.

Synthesis is a command-line oriented program. It is developped on a Linux system but works also on
MacOS platforms. Future works will tackle other Unix-like platforms.

In this primer, we present formal aspects of the synthesis workflow as well as Synthesis in use. Ap-
pendices present the commands allowed by the Synthesis shell and the syntaxes of files supported by the
program.

The first version of this toolbox was implemented by students under the direction of A. Arnold in 2002
and 2003: A. Cailley, S. Canto, H. Desheraud, A.-C. Froment, R. Gobard, S. Labrune, F. Mendes, S. Muhr
and F. Zucconi.

The image used for the cover page of this report is an engraving called “Adam and Eve” made in 1504
by Albrecht Dürer.

Remarks and comments might be sent to the architects of Synthesis:

André Arnold, Gérald Point
LaBRI – UMR CNRS 5800 – Université Bordeaux I

351, cours de la Libération
33 405 Talence Cedex - France

Andre.Arnold@labri.fr, Gerald.Point@labri.fr
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Chapter 2

Starting Synthesis

Synthesis runs as a command interpreter offering history and file completion if it has been compiled with
the GNU Readline library[7]. If the program can be used interactively like a UNIX shell, it can be used also
in a batch mode in order to execute existing script files.

2.1 Getting started

When the program is started a synthesis prompt appears:

point@localhost: ~/tmp
synthesis
synthesis>

From this prompt the user can enter commands or leaves the interpreter. All the commands allowed by
Synthesis are described in Appendix A page 27.

synthesis>print "hello world"

hello world

synthesis>exit

point@localhost: ~/tmp

To leave the program one can use an EOF character (CTRL-D on most systems) or the exit command; in
both cases the history of the commands entered while the session are stored into the file .synthesis his-
tory.syn in the current directory; this file is reloaded the next time Synthesis is started from this directory.

point@localhost: ~/tmp

cat .synthesis_history.syn

print "hello world"

exit

point@localhost: ~/tmp

The program might be executed in batch mode. This mode consists in calling Synthesis with file names;
the program loads (or execute for scripts) each file and terminates. If the command-line option -i is used
then Synthesis does not terminate i.e. after the reading of files the interactive mode is started. Example:

point@localhost: ~/tmp

cat t1.fam test.syn

name A;

x = nu -> <a>x.<b>y;

y = nu -> <a>y;

<initial={x}>.
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print "this is a test"

point@localhost: ~/tmp

synthesis t1.fam test.syn

this is a test

point@localhost: ~/tmp

synthesis -i t1.fam test.syn

this is a test

synthesis>

2.2 Redirection

Synthesis uses a similar notation (but less powerfull) than standard UNIX shells to redirect output streams
into files. The output of a command can be used to create a file (using >) or appended at the end of an
existing file (using >>). If the output file does not exist >> has the same effect than >. Example:

point@localhost: ~/tmp
synthesis -i t1.fam
synthesis>print "// the multi-parity automaton A is translated in a simple" > result.fam
synthesis>print "// parity automaton" >> result.fam
synthesis>parity A >> result.fam
synthesis>exit
point@localhost: ~/tmp
cat result.fam
// the multi-parity automaton A is translated in a simple
// parity automaton
name $$;
T = 2 -> [a, b]T;
y = 2 -> <a>y.[b]T;
x = 2 -> <a>x.<b>y;
<initial={x}>.
point@localhost: ~/tmp

In the current version of Synthesis, just > and >> are implemented; there is no pipe mechanism and the
error stream can not be redirected.

2.3 Input file formats

Synthesis supports several types of files but uses only one command to read them: load. The format of a
file is identified by its extension:

.syn is associated with the script file format. These files contain lists of Synthesis commands. For instance
this is the file format of the history file .synthesis_history.syn seen above.

.mec is associated with Mec 4[1] files restricted to simple transition systems (i.e. not obtained by a synchro-
nized product).

.fam is associated with files describing modal automata (see section 4.1).

.game is associated with files describing parity games (see also section 4.1).

Transition systems, modal automata and games can not be entered directly from the Synthesis prompt.
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2.4 Displaying objects

Any object manipulated by Synthesis can be displayed using the show command. Each object is displayed
using its native format; some translators exist (see Appendix A). In order to determine the objects in use by
the program, one uses show with a type name: processes, automata or games. Example (2.2 continued):

synthesis>point@localhost: ~/tmp
syn -i t1.fam
synthesis>show processes
synthesis>show automata
A
synthesis>show games
synthesis>show A
name A;
T = nu -> [a, b]T;
y = nu -> <a>y.[b]T;
x = nu -> <a>x.<b>y;
<initial={x}>.
synthesis>

2.5 Obtaining help

The user can use the help command in order to obtain some explanation about Synthesis commands. help
without argument lists all commands supported by the program and help cmd gives informations about the
cmd command:

synthesis>help help
help usage :
Show help about commands. Type ’help command-name’ in order to obtain help
about the command ’command-name’
synthesis>

9
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Chapter 3

Synthesis in practice

The purpose of this chapter is to show Synthesis in use. All along these pages we focus on a “small”
problem: to prevent the collision of two trains. The system considered in this chapter is composed of two
trains, T1 and T2, sharing the same railroad. In order to prevent the struck of trains, a deviation track is
added along the main road. The trains can choose to continue on the main track or to follow the deviation.
This system is depicted on the figure 3.1.

1 2 3 4 5

786

r1 r1 r1

r1r1

r2 r2 r2

r2r2

r2
r1

d1

d2 c2c1

T1 T2

Figure 3.1: T1 comes from the left (at location 1) and T2 comes from the right (at location 5). The possible
moves for T1 are drawn with filled arrows and those for T2 with dashed arrows. Each train can move to the
deviation track (from location 2 for T1 and from 4 for T2).

Each train is modelled using a transition system. The movements of Ti are modelled with the events
ri, ci and di: ci and di are used in place of ri to indicate the change of way of the train. We make this
replacement for two reasons:

• We use two distinct events because Synthesis allows only deterministic processes.

• We distinguish these events from ri because in the next section, ci and di will be considered as
controllable events while ri remains uncontrollable.

Each train is modelled by a transition system which looks like the system on figure 3.1 except that each
state is equiped with loops labelled with the actions of the other train; the figure 3.2 depicts the model of
the train T1. These loops indicate that a movement of a train does not affect the state of the other.

The model of the whole system has 64 states and 112 transitions. Synthesis do not accept composite
transition systems so this model has been obtained by hand:

• Load the models of trains T1 and T2 into Synthesis.

• Synchonize the two transition systems and generate a Mec 4 file containing this synchronized product.

• Edit the file :

– Identify the 8 states where trains are struck and mark them with the property danger.

– Remove useless transitions originating for danger states.

11



1 2 3 4 5
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c1

r2,c2,d2 r2,c2,d2 r2,c2,d2 r2,c2,d2

r2,c2,d2 r2,c2,d2 r2,c2,d2

r2,c2,d2

r1 d1 r1 r1

r1 r1

r1

Figure 3.2: The transition system modelling the train T1. An action of T2 does not change the state of T1.
The initial state is drawn in gray.

– Identify the final state (in this state no more danger exists) and mark it with the property final.

– Save the file and go back into Synthesis.

Now, our goal is to prevent the trains to strike themselves. In order to achieve this objective we are
looking for a controller which leads the trains into the final state and prohibits the paths to a danger state.
Thus, the states of the supervised system (i.e. the system synchronized with the controller) must be a model
of the following modal automaton:

name sys_spec;

x = mu -> ~danger.~final.(<r1>x.[r2,c1,c2,d1,d2]x

+<r2>x.[r1,c1,c2,d1,d2]x

+<c1>x.[r1,r2,c2,d1,d2]x

+<d1>x.[r1,r2,c1,c2,d2]x

+<d2>x.[r1,r2,c1,c2,d1]x

+<c2>x.[r1,r2,c1,d1,d2]x)

+ final.([r1,r2,c1,c2,d1,d2]T);

<initial={x}>.

This automaton can be interpreted as follows:

• Either the system is in the final state (i.e there is no more danger for the trains);

• Either the system is in a state which is neither the final nor a danger state and from this state there
must exist a transition leading the system into a state having the same property or being the final
state.

The reader should have noted the T in the second member of the equation defining x. This T denotes an
implicit state (called top) of the automaton. This state is defined by the following equation : T = nu [*]T
where [∗] is a shorcut replacing all the events of the automaton.

3.1 A centralized controller

In the previous section we have defined the specification (sys spec) that must be satisfied by the controlled
system. In order to obtain the constraint that must be fulfilled by the controller, we compute the quotient
of the specification by the system:

synthesis>load sys.mec spec.fam

Loading file ’spec.fam’

Loading file ’sys.mec’

synthesis>show processes

sys

synthesis>show automata

12



sys_spec

synthesis>controller_spec := quotient sys_spec sys

The last line computes a new modal automaton, controller spec, modelling the expected behaviours
for the controller. Now we are able to compute a correct controller but, with no more specifications, the
result would be a controller that is allowed to control any action of the trains. If the controller is seen as
an automatic switch between tracks then it can’t act on movement actions of the trains (i.e ri); thus, the
events r1 and r2 of the system must be specified uncontrollable:

name controller_additional_spec;

x = nu -> <r1,r2>x.[c1,c2,d1,d2]x;

<initial={x}>.

This automaton specifies that for each state of the controller there must exist at least two transitions,
one labelled with r1 and the other with r2. In order to obtain one controller it remains:

• to compute the product final spec of controller spec with controller additional spec;

• to generate the parity game G computed from final spec;

• to compute a winning strategy S in the game G;

• to generate the controller C from S;

• to synchronize the system and the controller to get the supervised system.

All these steps are done as follows:

synthesis>final_spec := product controller_spec controller_additional_spec

synthesis>G := game final_spec

synthesis>S := strategy G

synthesis>C := minimize(unmark(control S))

synthesis>

synthesis>Csys := sync sys C

synthesis>dot C > C.dot

synthesis>dot Csys >> Csys.dot

The controller is generated using the control command. To obtain C we apply two other operations to
the result of control:

minimize This command reduces the number of states of the process. This is essentially an algorithm
reducing the state space of an automaton; here we consider that all states are accepting but they are
distinguished according to the properties labelling them (e.g. danger or final in our example).

unmark This command removes properties which label the states of a process. This is useful to reduce futher
more the number of states of the controller when calling the minimize command.

The last lines computes the controlled system and outputs the controller and the controlled system into
dot file format[5]. These results are shown on figure 3.3.

3.2 The decentralized case

In the previous section, the system was managed by a global controller which could act on controllable
actions of both trains; the controller was considered as a program managing switches located at position 2
and 4.

Now we consider that there is two independant programs controlling switches. The controller C1 (resp.
C2) at location 2 (resp. 4) can control only the events c1 and d1 (resp. c2 and d2). While the constraint
for the controlled system remains the same than in the centralized case, the additional specifications for the
new controllers indicate that only ci and di are controllables:
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Figure 3.3: The controller and the supervised system generated by Synthesis.

name controller_at_2_additional_spec;

x = nu -> <r1,r2,c2,d2>x.[c1,d1]x;

<initial={x}>.

name controller_at_4_additional_spec;

x = nu -> <r1,r2,c1,d1>x.[c2,d2]x;

<initial={x}>.

In order to obtain a controller C1 for the switch at location 2, we have to proceed as explained in Chapter
4: the specifications of the system sys spec have to be divided by those of C2 (i.e. controller at 4 addi-
tional spec) and by the process sys. The resulting quotient is multiplied by the specifications of C1.

synthesis>q := quotient sys_spec controller_at_4_additional_spec sys

synthesis>C1_spec := product q controller_at_2_additional_spec

synthesis>C1 := minimize(unmark(control (strategy (game C1_spec))))

synthesis>dot C1 > C1.dot

The figure 3.4 depicts C1 and the system under its control. One should note that if C1 is the only
controller in use there remains critical scenarii. For instance C1 allows the sequence (r2, r1, d2, r2) which
leads both trains in the same place 2.

Finally, the controller C2 (drawn on figure 3.5) is computed using the following commands:

synthesis>q := quotient sys_spec (sync sys C1)

synthesis>C2_spec := product q controller_at_4_additional_spec

synthesis>C2 := minimize(unmark(control (strategy (game C2_spec))))

synthesis>Csys12 := sync (sync sys C1) C2

synthesis>dot Csys12 > Csys12.dot

The last commands compute the whole controlled system. The result is depicted on the figure 3.6. One
can verify that the controlled system is safe: there is no danger state. Thanks to Synthesis we get a system
for which the trains can not strike themselves.
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Figure 3.4: The controller C1 (upper graph) and the system under its control. One can note that all the
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Chapter 4

Theoretical aspects of Synthesis

From now we consider finite and deterministic processes having finite or infinite behaviours. We denote by
P |= Φ the fact that a process P satisfies a property Φ. Two processes P1 and P2 over the same set of actions
might be synchronized on their common actions; this synchronization is denoted P1 × P2.

From this setup, the controller synthesis problem can be expressed as follows:

(∗) Given a process P and n+1 properties Φ and Ψi for i = 1 . . . n, the problem is to find n processes
Ci such that P × C1 × · · · × Cn |= Φ and, for all i = 1 . . . n, Ci |= Ψi. P ×C1 × · · · × Cn is called
the controlled or supervised system. If n > 1 we say that the control is decentralized.

In the standard Ramadge and Wonham framework[6] we only require that all the prefixes of controlled
behaviours belong in the language defined by Φ; furthermore, Ramadge and Wonham’s framework assumes
a predefined set of controllable and uncontrollable events.

In the context of Synthesis we are also interested by infinite behaviours of the supervised system
and there is no predefined controllable sets. The requirements, that the controlled system must fulfill, are
expressed in terms of μ-calculus formulas. The controllability of events is also expressed by this mean; this
allows the user to describe dynamic controllability.

In [8] this problem is addressed and extended for partial observability in [2]. The authors define division
operations (/) such that the controllers Ci in the problem (∗) verify the following properties:

C1 |= Φ/Ψn/ . . . /Ψ2/P ∧ Ψ1

C2 |= Φ/Ψn/ . . . /Ψ3/(P × C1) ∧ Ψ2

...
Cn |= Φ/(P × C1 × · · · × Cn−1) ∧ Ψn

Now, in order to synthesize expected controllers, we have to find models of μ-calculus formulas. The
problem of finding a model of a μ-calculus formula F is addressed from the game theory point of view:
finding a model for F consists in finding a winning strategy in a parity game G(F ) built from F .

Synthesis implements all operations required to find the controllers Ci’s as expected in the controller
synthesis problem (∗). The production of a controller can be seen as a workflow transforming a process
and μ-calculus formulas (see figure 4.1). In this chapter we formalize the algorithms used to implement this
workflow.

Computation

of the global

specification

Build the

multi-parity

game

G(Θ)

Build the

parity game

G′(Θ)

Compute

a winning

strategy

σ

Generate

the

controller

Q

�
�
�
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P

Φ

Ψ Θ = Φ/P ∧ Ψ

Θ G(Θ) G′(Θ) σ Q

Figure 4.1: The Synthesis workflow
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4.1 Processes, modal automata, games and strategies

A process is a vector P = 〈A, Λ, S, δ, λ, s0〉 where A is its set of actions, S is its set of states, s0 is the
initial state and δ is the transition function defined from S × A to S. Λ is a set of atomic propositions and
λ : S → 2Λ is the labelling function associating to each state a set of propositions supposed true in the state.

Given two processes Pi = 〈Ai, Λi, Si, δi, λi, s0i〉 for i = 1, 2, the product of P1 and P2 is the process
P1 × P2 = 〈A1 ∪ A2, Λ1 ∪ Λ2, S, δ, λ, (s01, s02)〉 where:

• S = {(s1, s2) ∈ S1 × S2 | ∀p ∈ Λ1 ∩ Λ2, p ∈ λ1(s1) ⇐⇒ p ∈ λ2(s2)}
• δ((s1, s2), a) = (δ1(s1, a), δ2(s2, a)) if δ1(s1, a) and δ2(s2, a) are defined

• λ((s1, s2)) = λ1(s1) ∪ λ2(s2).

Given an alphabet A and a set of atomic propositions Λ, a modal automaton is a set of equations of the
form:

xi
ρ(x)
=

∨
j∈Ji

⎛
⎝ ∧

p∈Ki,j⊆Λ

p ∧
∧

q∈Li,j⊆Λ

¬q ∧
∧

a∈A

(a)xa,i,j

⎞
⎠

where xi, xa,i,j are states of the automaton, p and q are atomic propositions and (a) denotes 〈a〉 or [a]. ρ(x)
assigns to each equation a vector of natural numbers called ranks.

More formally a modal automaton is a vector A = 〈A, Λ, X, R, Δ, x0, ρ〉 where A is an alphabet of actions,
X is its state space and x0 is the initial state, Λ is a set of atomic propositions, and:

• Δ : X → 2R assigns to each state a set of rules taken from the set R ⊆ 2Λ × 2Λ × 2A × XA. A rule
r ∈ R represents one conjunction of the equation system; r is a vector 〈P, N, E, σ〉 such that:

– P ⊆ Λ (resp. N ⊆ Λ) is a set of positive (resp. negative) atomic propositions and P ∩ N = ∅;
– E is the set of actions that are existentially quantified;

– σ : A → X is a mapping assigning to each action the equation that must be satisfied after the
given action.

• ρ : X → N
n is a mapping assigning to each state its rank. If n = 1 we say that ρ is a parity condition

otherwise it is a multi-parity condition.

Sometimes we use a particular state � (top). For this state we set: Δ(�) = 〈∅, ∅, ∅, A × {�}〉 and
ρ(�) = 〈0, . . . , 0〉.

A modal automaton accepts processes. A process P is accepted by a modal automaton A is denoted by
P |= A. This acceptance relation is defined in terms of winning strategies in games built from A and the
accepted processes.

A multi-parity game is a vector G = 〈V, V0, V1, v0, E, Ω〉 where V = V0 � V1 is the set of positions and v0

is the starting position, E ⊆ V × V denotes allowed moves between positions (if (v, v′) ∈ E then v′ is called
a successor of v) and Ω : V → N

n is a function assigning to each state a vector of natural numbers called
ranks (or priorities); if n = 1 the game is called a parity game.

We consider games with two players 0 and 1, pushing a token over positions in V . A play is a sequence of
positions starting at v0. A turn proceeds in the following way: if the token is in a position v ∈ V0 then the
player 0 chooses v′ a successor of v, otherwise the player 1 makes the choice. Once the token is moved onto
v′ a new turn is started. If a player can not move the token (i.e there is no edge outgoing from v in E) he
looses the play. Infinite plays are allowed; in this case, for a play v0v1 . . . , the player 0 wins if the greatest
rank encountered infinitely often in the sequence is even (in the case of multi-parity games, the condition
must hold for each component of Ω(vi)).

A play is maximal if it is infinite or terminates in a position without outgoing edge. So, a maximal play is
winning for player 0 if it satisfies the parity condition or ends in a vertex belonging to V1 without successor.
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For every sequence of vertices �v ending in a vertex v from V0, a strategy σ for player 0 is a function such
that σ(�v) ∈ V . We require σ(�v) to be defined if v has a successor.

A play respects a strategy σ if it is a finite or infinite sequence of positions v0v1 . . . such that vi+1 =
σ(v0 . . . vi) for every i with vi ∈ V0.

A strategy for player 0 is winning from a vertex v if and only if every maximal play starting in v and
respecting the strategy is winning for player 0. We say that a strategy for player 0 is winning if it is winning
from every position from which there exists a winning strategy for player 0.

4.2 Product and quotient operations

4.2.1 Product of modal automata

We consider two modal automata Ai = 〈A, Λ, Xi, Ri, Δi, x0i , ρi : Xi → N
ni〉 for i = 1, 2 and we build the

automaton A1 ×A2 which verifies: P |= A1 ×A2 if and only if P |= A1 and P |= A2.
A1 ×A2 is the vector 〈A, Λ, X, R, Δ, x0, ρ〉 defined by:

• X = X1 × X2 and x0 = (x01 , x02)

• Δ((x1, x2)) = {r1 × r2 | ri = 〈Pi, Ni, Ei, σi〉 ∈ Δi(xi) for i = 1, 2} where r1 × r2 is the product of rules
r1 and r2 which is defined if P1 ∩N2 = ∅ and P2 ∩N1 = ∅ by the vector 〈P, N, E, σ〉 with P = P1 ∪P2,
N = N1 ∪ N2, E = E1 ∪ E2 and σ(a) = (σ(x1), σ(x2)).

The transformation of modalities can be seen as a table:

r2\r1 〈.〉 [.]
〈.〉 〈.〉 〈.〉
[.] 〈.〉 [.]

• ρ is defined from X into N
n1+n2 by the concatenation of ranks from A1 and A2: ρ((x1, x2)) =

ρ1(x1).ρ2(x2).

4.2.2 Quotient A/P

Given a modal automaton A = 〈A, Λ, X, R, Δ, x0, ρ〉 and a process P = 〈A, Λ, S, δ, λ, s0〉, we compute a
modal automaton, noted A/P , such that for any process Q: P ×Q |= A ⇐⇒ Q |= A/P . A/P is the vector
〈A, Λ, X/, R/, Δ/, x0/, ρ/〉 such that:

• X/ = (X × S) ∪ {�}.
• Δ((x, s)) = {r/s | r ∈ Δ(x)}. If r = 〈P, N, E, σ〉 then r/s is defined if and only if P ∩ (Λ \ λ(s)) = ∅,

N∩λ(s) = ∅ and forall a ∈ E, δ(s, a) is defined. If r/s exists then it is the vector r/s = 〈P/, N/, E/, σ/〉
defined by:

– P/ = P ∪ λ(s)

– N/ = N ∪ (Λ \ λ(s))

– E/ = E

– σ/(a) =
{

(σ(x), δ(s, a)) if δ(s, a) is defined
� otherwise

• x0/ = (x0, s0)

• ρ/((x, s)) = ρ(x)
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4.2.3 Quotient A1/A2

Given two modal automata Ai = 〈A, Λ, Xi, Ri, Δi, x0i , ρi : Xi → N
ni〉 we compute a modal automaton,

noted A1/A2, such that for any process Q, Q |= A1/A2 ⇐⇒ ∃P, P |= A2 ∧ P × Q |= A1. A1/A2 is the
vector 〈A, Λ, X/, R/, Δ/, x0/, ρ/〉 such that:

• X/ = (X1 × X2) ∪ {�}.

• Δ((x1, x2)) = {r1/r2 | r1 ∈ Δ1(x1) ∧ r2 ∈ Δ2(x2)}. If ri = 〈Pi, Ni, Ei, σi〉 then r1/r2 is defined if and
only if P1 ∩ N2 = ∅ and N1 ∩ P2 = ∅. If r1/r2 exists then it is the vector r1/r2 = 〈P/, N/, E/, σ/〉
defined by:

– P/ = P1 ∪ P2

– N/ = N1 ∪ N2

– E/ = E1

– σ/(a) =
{

(σ1(x1), σ2(x2)) if a ∈ E1 ∪ E2

� otherwise

The transformation of modalities can be seen as a table:

r2\r1 〈.〉 [.]
〈.〉 〈.〉 [.]
[.] 〈.〉 �

• x0/ = (x01 , x02)

• ρ/ : X → N
n1+n2 is the concatenation of ranks from A1 and A2: ρ((x1, x2)) = ρ1(x1).ρ2(x2).

4.3 From modal automaton to game

Let A = 〈A, Λ, X, R, Δ, x0, ρ : X → N
n〉 be a modal automaton. In this section we construct a game G(A)

such that A is satisfiable (i.e. there exists a process P such that P |= A) if and only if there exists a winning
strategy from the initial position of G(A).

The game G(A) = 〈V, V0, V1, v0, E, Ω : V → N
n〉 is defined as follows:

• V0 = X and V1 = R

• v0 = x0

• E ⊆ V × V is defined by:

– for all x ∈ X and for all r ∈ Δ(x), (x, r) ∈ E

– for all r =< p, n, e, σ >∈ R and for all x ∈ σ(e), (r, x) ∈ E

• And the ranks of positions is defined as follows:

– for all v ∈ V0, Ω(v) = ρ(v)

– for all v ∈ V1, Ω(v) = 〈0, . . . , 0〉
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4.4 From multi-parity to parity

Let G = 〈V, V0, V1, v0, E, Ω : V → N
n〉 be a game with a multi-parity acceptance condition and with a starting

position v0. Let r = v0v1 . . . be an infinite play with its associated sequence of ranks Ω(r) = Ω(v0)Ω(v1) . . . .
This play is winning for player 0 if, for each i = 1 . . . n, limj→∞ sup(Ω(vj)[i]) is even (where Ω(vj)[i] denotes
the ith component of Ω(vj).

In this section we present an algorithm transforming the multi-parity game G into an equivalent parity
game G′. This algorithm is derived from [4] and is proposed by A. Arnold. Let us define the game G′.

Let maxi = max{Ω(v)[i] | v ∈ V } be the maximal rank reached by each component of Ω; we shall note
L = Σmaxi. We consider the set of shuffles M�� ⊆ (N × {1, . . . , n})�:

M�� = (max1, 1)(max1 − 1, 1) . . . (1, 1)�� . . .��(maxn, n)(maxn − 1, n) . . . (1, n)

The word (max1, 1) . . . (1, 1) . . . (maxn, n) . . . (1, n) ∈ M�� is noted M0.
For example, if n = 2, max1 = 3 and max2 = 2 then M�� = 312111��2212 = { 2212312111, 2231122111,

2231211211, 2231211112, 3122122111, 3122211211, 3122211112, 3121221211, 3121221112, 3121112212} (we use
superscripts xy in place of (x, y)). Each element of M�� can be considered as a mapping from [1, L] into
N × {1, . . . , n}.

Given a word w ∈ M�� and a vector of parities �p = 〈p1, . . . , pn〉 ∈ N
n we define:

• pos(w, �p) = min{i ∈ [1, L] | ∃j, w(i) = (pj , j)} is the index of the first pj occuring in w.

• ρ(w, �p) = w(pos(w, �p))

• succ(w, �p) = w′ is the shuffle such that if ρ(w, �p) = (p, k) then:

– w′ = w if p is odd;

– w′ starts like w without letters (p′, k) such that p′ ≤ p, and terminates with (p, k)(p−1, k) . . . (1, k)
if p is even.

• l(w, �p) = L − pos(w, �p) + 1 is the length of the suffix of w starting at position pos(w, �p)

For example, if w = 313222211211 and �p = 〈2, 2〉 then pos(w, �p) = 3, ρ(w, �p) = (2, 2) and succ(w, �p) =
313221112212.

The parity game G′ = 〈V ′, V ′
0 , V ′

1 , E′ ⊆ V ′ × V ′, Ω′ : V ′ → N〉, v′0〉 is built from G as follows. Each
position from V ′ is a triple from V × M�� × N. Starting from the initial position v′0 = (v0, succ(M0, Ω(v0)),
l(M0, Ω(v0))),we add an edge from (v, m, l) to (v′, m′, l′) if (v, v′) ∈ E, m′ = succ(m, Ω(v′)) and l′ =
l(m, Ω(v′)). Ω′ is defined by:

Ω′((v, succ(m, Ω(v)), l)) = 2l +
{

2 if ρ(m, Ω(v)) = (p, k) and p is even
1 if p is odd

Theorem 1 Let r = v0 . . . be a maximal play of G. r is winning for player 0 in G iff its corresponding play
in G′ is winning for player 0.

Proof The finite case is straightforward. Let’s consider the infinite case.
Let r′ = (v0, s0, l0)(v1, s1, l1) . . . be the play in G′ corresponding to r. s0 = succ(M0, Ω(v0)) and for all

i > 0, si denotes the shuffle word succ(si−1, Ω(vi)). For i = 1 . . . n, we note mi = limj→∞ sup(Ω(vj)[i]) the
maximal rank of the ith component of Ω for the positions appearing infinitely often along r (i.e. r is winning
iff all wi’s are even).

r′ is infinite so, there exists a position, say (vk, sk, lk), such that the corresponding suffix of r′, (vk, sk, lk)
(vk+1, sk+1, lk+1) . . . , contains only the positions repeated infinitely often.

⇒ Here we assume that r is winning.

One can remark that, due to the definition of succ and to the shuffle structure, all the couples (p, i)
such that p ≤ mi are “accumulated” at the end of the memory words when mi is even. Thus, there
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exists k′ ≥ k such that for all j ≥ k′, sj = s.wj where s is a constant word (s contains all the letters
(p, i) with p > mi) and wj is a shuffle of the n words (mi, i)(mi−1, i) . . . (1, i) and, for all (vj , sj , lj), we
have lj ≤ Σmi. Due to the shuffle structure, each wj starts with some ml which is repeated infinitely
often; so there exists a position where (ml, l) is selected (infinitely often) and for which lj takes its
maximal value Σmi. ml is even so the rank associated to the position is the maximal value 2Σmi + 2;
we can concluded that r′ is winning.

⇐ Now we assume that r is not winning i.e. there exists i0 such that mi0 is odd. Every mi is repeated
infinitly often and odd mi’s do not modify memory words. Thus, for some odd parity mk, there exists
a position from which the memory words have the form sj = s.(mk, k).wj where s contains no mi

and remains constant along r′ and wj is modified by even mi’s. Since s.(mk, k) is never modified and
mk occurs infinitely often, there exists an edge between two positions (vc−1, s.(mk, k).wc−1, lc−1) and
(vc, s.(mk, k).wc−1, lc) such that Ω(vc) = 〈. . . , mk, . . . 〉.
The rank associated to the position (vc, s.(mk, k).wc−1, lc) is equal to 2lc +1 which is odd and repeated
infinitely often. This ranks is maximal since lc is maximal thus r′ is not winning for player 0.

Encoding M��: The multi-parity game is unfolded using elements of M��. The length of each shuffle
generated by the algorithm is L = Σmaxi the sum of maximal ranks of the game. This length can be
reduced to L/2 by replacing each parity p by �p

2� in all the algorithm.
One can remark that all words generated from M0 using the succ operation have the following property:

if w = w1(2p, i)(2p − 1, i)w2 ∈ M�� then for all �p ∈ N
n, succ(w, �p) = w′

1(2p, i)(2p − 1, i)w′
2. In other words,

succ preserves the consecutivity of (2p, i) and (2p − 1, i). Since we start with the word M0 (which has the
property), any word w generated by the algorithm is such that, if 1 ≤ 2p ≤ maxi then (2p, i)(2p − 1, i) is a
factor of w. We call M ′

�� ⊆ M�� the set of words generated from M0.
Each word of M ′

�� can be encoded using half of its letters by replacing each couple (2p, i)(2p − 1, i) by
(p, i). In fact, instead of starting with M0 we start with �M0

2 � = (�max1
2 �, 1) . . . (1, 1) . . . (�maxn

2 �, n) . . . (1, n)
and each multi-parity �p = 〈p1, . . . , pn〉 of G is translated into � �p

2� = 〈�p1
2 �, . . . , �pn

2 �〉. Then, instead of
looking for some (pj , j) into a word of M ′

��, we look for (�pj

2 �, j) into a successor of �M0
2 �. In order to

compute the successors of �M0
2 � we just have to ensure that moves of (�pj

2 �, j) are the same than those of
(pj , j)(pj − 1, j) and that the good parity is assigned to each position. In order to ensure this condition we
just have to test the parity of p in place of �p

2� in the definitions of succ and Ω′:

• succ(w, �p) = w′ is the shuffle such that if ρ(w, �p) = (�p
2�, k) then:

– w′ = w if p is odd;

– w′ starts like w without letters (p′, k) such that p′ ≤ �p
2�, and terminates with (�p

2�, k)(�p
2� −

1, k) . . . (1, k) if p is even.

• Ω′((v, succ(m, Ω(v)), l)) = 2l +
{

2 if ρ(m, Ω(v)) = (�p
2�, k) and p is even

1 if p is odd

4.5 Computation of a winning strategies

Given a parity game G(A) we compute winning strategies in G using algorithms similar to those presented in
[3]. The algorithms are not exactly the same because, in the framework of Synthesis, acceptance conditions
for infinite plays are defined using the maximal parity occuring infinitely often. In this section we present
the main ideas of the (adapted) algorithms taken from [3].

4.5.1 Memories over odd priorities

Given a parity game G = 〈V, V0, V1, v0, E, Ω〉 we denote by d its maximal priority that we assume to be
odd (if d is even we consider d + 1). For each odd priority p ∈ {1, . . . , d} we denote np the size of the set
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{v ∈ V | Ω(v) = p}. Now we define the set of memories:

M(G) = {⊥,�} ∪
∏

1≤p≤d,p odd

{0, . . . , np}

In the sequel we will consider the vectors �0 = (0, . . . , 0) and �n = (n1, . . . , nd). In [3] the game G is said
to be �n-bounded.

M(G) is ordered by the relation ≺ defined for all �m = (m1, . . . , md), �m′ = (m′
1, . . . , m

′
d) ∈ M(G)\{⊥,�}

by:

• ⊥ ≺ �m ≺ �
• �m ≺ �m′ ⇐⇒ ∃i ∈ {1, . . . , d}, mi < m′

i ∧ ∀j > i, mj = m′
j

Now we define some functions defining transformations of �m = (m1, . . . , mp) ∈ M(G) for a given priority
p:

• up(�m, p) =

⎧⎨
⎩

� if �m = �
inc(�m, p) if p is odd
zero(�m, p) if p is even

where:

– zero(�m, p) = (0, . . . , 0, mp+1, . . . , md)

– inc(�m, p) =

⎧⎨
⎩

(0, . . . , 0, mp + 1, mp+2, . . . , md) if p ≤ d and mp < np

inc(�m, p + 2) if mp = np and p < d
� otherwise

• down(�m, p) =

⎧⎨
⎩

⊥ if �m = ⊥
dec(�m, p) if p is odd
max(�m, p) if p is even

where:

– max(�m, p) = (n1, . . . , np−1, mp+1, . . . , md)

– dec(�m, p) =

⎧⎨
⎩

(n1, . . . , np−2, mp − 1, mp+2, . . . , md) if p ≤ d and 0 < mp

dec(�m, p + 2) if mp = 0 and p < d
⊥ otherwise

4.5.2 Winning strategies and controller synthesis

In order to get winning strategies in a parity game G = 〈V, V0, V1, v0, E, Ω〉 we need to compute a mapping
Mmax : V → M(G). We obtain Mmax using the following algorithm:

1. For each v ∈ V , set Mmax(v) to �n

2. Find a position v such that down( �m′, Ω(v)) ≺ Mmax(v) where

�m′ =
{

max{Mmax(v′) | (v, v′) ∈ E} if v ∈ V0

min{Mmax(v′) | (v, v′) ∈ E} if v ∈ V1

3. If v does not exist then the algorithm returns.

4. If v exists then we set Mmax(v) to down( �m′, Ω(v))

5. Repeat from step 2.
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For every v ∈ V we define W (v) = {v′ | (v, v′) ∈ E ∧ up(Mmax(v), Ω(v)) � Mmax(v′)}.
The mapping W allows us to build memoryless strategies which are winning from v0: given a position

v ∈ V0 a winning strategy consists to select a successor into W (v). Of course, if no such successor exists for
v0 then no winning strategy has been found and we can not generate a valid controller.

Every memoryless strategy τ : V → V such that τ(v) ∈ W (v) allows us to generate one controller Cτ .
In particular one might be interested by two classes of controllers corresponding to two classes of strategies.
These strategies select the positions which, respectively, minimize or maximize the mapping Mmax in the
set W (v):

• τmin(v) ∈ {v′ ∈ W (v) | ∀v′′ ∈ W (v), Mmax(v′) � Mmax(v′′)}
• τmax(v) ∈ {v′ ∈ W (v) | ∀v′′ ∈ W (v), Mmax(v′′) � Mmax(v′)}
Controllers generated with a τmax strategy are the most permissive ones while those generated with τmin

are the most despotic.

Controller synthesis Now we are able to built a model for a modal automaton A = 〈A, Λ, X, R, Δ, x0, ρ〉.
As specified in Section 4.3, A is transformed into a parity game G(A) = 〈V, V0, V1, v0, E, Ω〉 where V0 = X
correspond to the states of the automaton, the initial position is the initial state v0 = x0 and V1 = R is the
set of its rules. A memoryless strategy for player 0 in G(A) is thus a mapping from X into R.

For each memoryless strategy τ : X → R one can create a valid controller (without labelling) Cτ =
〈A, ∅, X, δ, ∅, x0〉 where the transition function δ : X × A → X is defined as follows: for all x ∈ X , δ(x, a) =
σ(a) where σ is the successor function of the rule τ(x) = 〈P, N, E, σ : A → X〉 ∈ R.
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Appendix A

Commands

This appendix lists the current commands implemented into Synthesis. From the shell prompt the user
might execute the help command in order to get some informative message about allowed commands. The
reader can find the BNF syntax of the Synthesis script at the page 33.

I/O commands

In general the commands of Synthesis print some message to the user. By default a command prints its
output on the standard output of the program (i.e. the console). Using the same notation than UNIX shells,
the outputs of Synthesis commands might be redirected (>) into a file or appended at the end (>>). Indeed,
this redirection mechanism is the only way proposed by Synthesis to save objects.

dot object1 . . . objectn: This command displays its arguments into the dot[5] file format. Its arguments
must be graph-based objects i.e. processes and games. Each type of object has its own layout. The
figure below depicts the result generated by dot applied to the following process and game.

transition_system P;

1 |- a -> 2, b -> 3;

2 |- a -> 3;

3 |- b -> 2;

<initial={1};P={2};M={3}>.

game GP;

E1@1 -> A2, -> A3;

A2@2 |- a -> E1;

A3@2 |- b -> E1;

<initial={E1}>.

3
M

2
P

b
a

1
initial

b

a

E1
1

A3
2

A2
2

b

a

load filename1 . . . f ilenamen: With this command Synthesis reads the files specified by filenamei (no
wildcard substitution is implemented in the current version); existing objects are replaced by those
readed from files. For each filenamei the file format is identified using the filename extension. The
extension recognized by Synthesis are:

.syn for synthesis scripts;

.mec or .mec4 for Mec 4 transition systems;
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.fam for automaton specifications;

.game for parity games.

mecv object1 . . . objectn: This command translates processes and modal automata into Mec V[9] file format.
Processes are translated into AltaRica nodes. Automata translation is not yet implemented but they
will be translated into the equation systems supported by Mec V.

print arg1 . . . argn: This command is usefull only when Synthesis is used in batch mode. It prints its
arguments as strings of characters; when printed, the arguments are separated by newlines. Example:

synthesis>print hello world

hello

world

synthesis>print "hello world"

hello world

synthesis>

show object1 . . . objectn: This command prints its arguments in their native format (see the load command).
Of course, if objects with different types are showed into a same file, the user will not be able to reload
it later.

Synthesis pipeline

control g: This command generates a process (a transition system) from the game g. We assume that the
game argument is the result of a computation made with the command strategy i.e. the computation
of winning strategies in the game. The resulting process is computed with the algorithm presented in
Section 4.5.2.

game a: It computes a parity game from the automaton a (see Section 4.1). The acceptance condition used
by a might be a parity or multi-parity condition; in both cases the acceptance condition is translated
into a parity condition.

minimize p: This command implements an algorithm for minimizing the number of states in a word-
automaton. The initial partition of the state space is the intersection of atomic properties of the
process p; we consider that all states are accepting. The following figures show the result of minimize
on a process with different sets of properties; in the first case both states 2 and 3 have the property m
while in the second case, only 3 has it:
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parity a: This command translates the model-automaton a doted with a multi-parity condition into an
automaton with parity condition. This operation is implicitly done by the command game. This
command implements the algorithm presented in Section 4.4.

product a1 a2: It computes the intersection of the modal automata a1 and a2. The acceptance condition
of the resulting automaton is a multi-parity condition. The algorithm is presented in Section 4.2.1.

quotient a a|p: This command implements the quotient of a modal automaton by a process or by another
automaton. The acceptance condition of the resulting automaton is a multi-parity condition. The
algorithms are presented in Sections 4.2.2 and 4.2.3.

strategy g: This command computes winning strategies for the game g. We apply the algorithm of Bernet,
Janin and Walukiewicz presented in Section 4.5. The result of this command is a game (which is a
subgraph of g) representing the strategies computed by the algorithm. With this result the user can
generate a process with the command control.

sync p1 p2: This function computes the synchronized product of two processes p1 and p2. The function
checks the consistency of state sets (marks) of processes. It might emit a warning message if it fails to
synchronize two states because of inconsistency in their sets of marks. This is shown on the following
example:

synthesis>show P

// # states = 3

// # transitions = 4

transition_system P;

3 |- b -> 2;

2 |- a -> 3;

1 |- a -> 2,

b -> 3;

<initial = {1}; P = {2}; M = {3}>.

synthesis>show PP

// # states = 3

// # transitions = 2

transition_system PP;

1 |- a -> 3;

3 |- a -> 2;

<initial={1};P={3};M={}>.

synthesis>

synthesis>sync P PP

warning : states ’3’ and ’2’ are \

inconsistent w.r.t their properties:

A: -P M

B: -P -M

29



// # states = 2

// # transitions = 1

transition_system $$;

1_1 |- a -> 2_3;

2_3 |- ;

<P = {2_3}; M = {}; initial = {1_1}>.

synthesis>

unmark p|a: This command removes propositional constants from its argument. The following lines show
the unmarking of a process:

synthesis>show P

// # states = 3

// # transitions = 4

transition_system P;

3 |- b -> 2;

2 |- a -> 3;

1 |- a -> 2,

b -> 3;

<initial = {1}; P = {2}; M = {3}>.

synthesis>unmark P

// # states = 3

// # transitions = 4

transition_system $$;

0 |- b -> 1;

1 |- a -> 0;

2 |- a -> 1,

b -> 0;

<initial = {2}>.

synthesis>

Memory management

collect: Some type of objects used by Synthesis are allocated by pages. This command is used to decrease
the memory consumption; it tells Synthesis to free each page containing only unused objects. The
user might evaluate the memory usage using the pool command.

pools: This command displays some statistics about the memory usage. This command is useful when lots
of objects have been freed using the remove command; in this case the user can collect the memory
not actually used by Synthesis.
Some type of objects are allocated by pages. The pools command displays informations about this
pages. The output of pools is something like the following table:

synthesis>pools

compute pools

# P # O/P b/O free mem

Strategy PREDs : 1 1024 8 1024 8.00kb

Game AE Edges : 3 690 12 1354 24.26kb

Game EA Edges : 1 1024 8 847 8.00kb

Game Positions : 3 349 24 737 24.54kb

Automaton Edges : 8 690 12 600 64.69kb

Automaton Rules : 2 690 12 560 16.17kb

Automaton States: 2 421 20 330 16.45kb

SID Dico : 1 1024 8 807 8.00kb

table of symbols size = 217

Each line of the previous table concerns a type of objects; it indicates: the number of currently allocated
pages (#P), the number of objects by page (#O/P), the number of bytes used by one object (b/O), the
number of currently unused objects (free) and the memory required to store all this objects (mem).
Of course, when free � #P×#O/P, a call to collect will have a significant effect on the memory
consumption of Synthesis.

remove objid1 . . . objidn: An object remains in the memory space of Synthesis until its replacement (any
identifier might be assigned a new object). The user has the choice to explicitly remove objects from
memory using this command. The reader should note that the memory used by an object is not freed;
the object is just marked as reusable. In order to actually liberate the objects the user must call the
collect command.

30



Leaving the program

exit: This command might be used in place of EOF (i.e. CTRL-D on many systems) in order to terminate
Synthesis. When the program terminates it saves the history of commands (if the program has
been compiled with the GNU readline library) into the file .synthesis history.syn in the current
directory; this history is reloaded when Synthesis is restarted (from the same directory).
If this command is used into a script then the Synthesis interpreter don’t execute commands after
the exit. Example:

point@raoul: ~/tmp

cat script.syn

print "the first ’print’ command is executed"

exit

print "the second ’print’ command is not executed"

point@raoul: ~/tmp

synthesis script.syn

the first ’print’ command is executed

point@raoul: ~/tmp
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Appendix B

Syntaxes

Synthesis scripts

script-file ::= list-of-commands

list-of-commands ::= redirected-command-or-assignment
::= redirected-command-or-assignment ; command-list

redirected-command-or-assignment ::= command-or-assignment > string
::= command-or-assignment >> string
::= command-or-assignment

command-or-assignment ::= command
::= assignment

command ::= identifier parameter-list

assignment ::= identifier := command

parameter-list ::= parameter parameter-list
::=

parameter ::= identifier
::= integer
::= string
::= ( command )

integer ::= [0-9][0-9]*

identifier ::= [a-zA-Z_][a-zA-Z0-9_]*

string ::= "[^"]*\"

MEC4 File Format

mec4-file ::= list-of-transition-systems

list-of-transition-systems ::= transition-system list-of-transition-systems
::=

transition-system ::= transition system ident attributes ; transition-system-body

transition-system-body ::= list-of-states sets-of-states

list-of-states ::= list-of-states ; state
::= state
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state ::= state-name attributes |- transitions

transitions ::= list-of-transitions
::=

list-of-transitions ::= transition , list-of-transitions
::= transition

transition ::= event-name -> state-name attributes

event-name ::= name

sets-of-states ::= ; < list-of-set-of-states > .
::= .

list-of-set-of-states ::= set-of-states
::= set-of-states ; list-of-set-of-states

attributes ::= < list-of-attributes >
::=

list-of-attributes ::= attributes ; list-of-attributes
::= attributes

attribute ::= ident = id-int
::= ident

set-of-states ::= ident = { list-of-state-name }
::= ident = { }

list-of-state-name ::= state-name , list-of-state-name
::= state-name

state-name ::= name

name ::= ident
::= integer

id-int ::= ident
::= integer

ident ::= [0-9_]*[A-Za-z_\^][A-Za-z0-9_\^]*

integer ::= [0-9]+

FAM File Format

fam-file ::= list-of-automata

list-of-automata ::= automaton list-of-automata
::=

automaton ::= name ident automaton-width ; states properties

automaton-width ::= < width = integer >
::=

states ::= state-list

state-list ::= state
::= state state-list

state ::= kind-of-state = ranks -> rules
::= kind-of-state = ranks -> ;

ranks ::= ranks1
::= ranks2
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ranks1 ::= mu
::= nu

ranks2 ::= < integer-list >

integer-list ::= integer , integer-list
::= integer

rules ::= rule-list ;

rule-list ::= simple-rule + rule-list
::= simple-rule

simple-rule ::= labels ( members )
::= labels conjunction
::= conjunction

labels ::= label-list

label-list ::= label . label-list
::= label .

label ::= ident
::= ~ ident

members ::= member

member ::= conjunction + member
::= conjunction

conjunction ::= transitions

transitions ::= transition . transitions
::= transition

transition ::= < ident-list > any-kind-of-state
::= [ ident-list ] any-kind-of-state

ident-list ::= id-int
::= id-int , ident-list

properties ::= < property-list > .

property-list ::= property ; property-list
::= property

property ::= ident = { list-of-states }
list-of-states ::= any-kind-of-state , list-of-states

::= any-kind-of-state

any-kind-of-state ::= sort-of-state
::= T

kind-of-state ::= id-int

id-int ::= integer
::= ident

ident ::= [A-Za-z\_][A-Za-z0-9\_]*

integer ::= [0-9]+

GAME File Format

game-file ::= list-of-games
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list-of-games ::= game list-of-games
::=

game ::= game ident ; game-edges initial-position

game-edges ::= game-edge ;
::= game-edge ; game-edges

game-edge ::= eve-edges
::= adam-edges

eve-edges ::= ident @ number eve-target-list
::= ident @ number

eve-target-list ::= -> ident
::= -> ident , eve-target-list

adam-edges ::= ident @ number |- adam-target-list
::= ident @ number |-

adam-target-list ::= ident -> ident
::= ident -> ident , adam-target-list

initial-position ::= < initial = { ident } > .

ident ::= [A-Za-z\_][A-Za-z0-9\_]*

number ::= [0-9]*
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