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REGULARIZING EFFECT AND LOCAL EXISTENCE

FOR NON-CUTOFF BOLTZMANN EQUATION

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Abstract. The Boltzmann equation without Grad’s angular cutoff assumption is believed to
have regularizing effect on the solution because of the non-integrable angular singularity of the
cross-section. However, even though so far this has been justified satisfactorily for the spatially
homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous
Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates
for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based
on a generalized version of the uncertainty principle, and analyzing the commutators between
the collision operator and some weighted pseudo-differential operators, we prove the regularizing
effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed
on these solutions. For completeness, we also show that when the initial data has this mild
regularity and Maxwellian type decay in velocity variable, there exists a unique local solution
with the same regularity, so that this solution acquires the C∞ regularity for positive time.

1. Introduction

Consider the Boltzmann equation,

(1.1) ft + v · ∇xf = Q(f, f),

where f = f(t, x, v) is the density distribution function of particles with position x ∈ R3 and
velocity v ∈ R3 at time t. The right hand side of (1.1) is given by the Boltzmann bilinear collision
operator

Q(g, f) =

∫

R3

∫

S2

B (v − v∗, σ) {g(v′∗)f(v′) − g(v∗)f(v)} dσdv∗ ,

which is well-defined for suitable functions f and g specified later. Notice that the collision operator
Q(· , ·) acts only on the velocity variable v ∈ R3. In the following discussion, we will use the
σ−representation, that is, for σ ∈ S2,

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

which give the relations between the post and pre collisional velocities.
It is well known that the Boltzmann equation is a fundamental equation in statistical physics.

For the mathematical theories on this equation, readers can refer to [22, 23, 33, 37, 57], and the
references therein also for the physics backgrounds.

In addition to its special bilinear structure in the collision operator, the cross-section B(v−v∗, σ)
varies with different physical assumptions on the particle interactions and it plays an important
role in the well-posedness theory for the Boltzmann equation. In fact, except for the hard sphere
model, for most of the other molecular interaction potentials such as the inverse power laws, the
cross section B(v − v∗, σ) has a non-integrable angular singularity. For example, if the interaction
potential obeys the inverse power law r−(p−1) for 2 < p <∞, where r denotes the distance between
two interacting molecules, the cross-section behaves like

B(|v − v∗|, cos θ) ∼ |v − v∗|γθ−2−2s, cos θ =
〈 v − v∗
|v − v∗|

, σ
〉
, 0 ≤ θ ≤ π

2
,
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with

−3 < γ =
p− 5

p− 1
< 1, 0 < s =

1

p− 1
< 1.

As usual, the hard and soft potentials correspond to 2 < p < 5 and p > 5 respectively, and the
Maxwellian potential corresponds to p = 5. The fact that the singularity θ−2−2s is not integrable
on a sphere leads to the conjecture that the nonlinear collision operator should behave like a
Laplacian in the variable v to some fractional power. That is,

Q(f, f) ∼ −(−∆v)
sf + lower order terms.

Indeed, consider the Kolmogorov type equation

ft + v · ∇xf = −(−∆v)
sf.

Straightforward calculation by Fourier transformation shows that the solution is in Gevrey class
when 0 < s ≤ 1

2 and is ultra-analytic if 1
2 < s < 1 for initial data only in L2(R3

x × R3
v) if it admits

a unique solution (see [50] for a more general study). However, for the Boltzmann equation, the
gain of Gevrey regularity of solution is a long lasting open problem which has only been proved so
far in the linear and spatially homogeneous setting, [48].

The mathematical study on the inverse power law potentials can be traced back to the work by
Pao [52] in 1970s. And in early 1980s, Arkeryd in [15] proved the existence of weak solutions to the
spatially homogeneous Boltzmann equation when 0 < s < 1

2 , while Ukai in [53] applied an abstract
Cauchy-Kovalevskaya theorem to obtain local solutions in the function space which is analytic in
x and Gevrey in v. However, the smoothing effect of the collision operator was not studied at
that time. Since then, this problem has attracted increasing interests in the area of kinetic theory
and a lot of progress has been made on the existence and regularity theories. More precisely, that
the long-range interactions have smoothing effects on the solutions to the Boltzmann equation was
first proved by Desvillettes for some simplified models, cf. [27, 28]. This is in contrast with the
hard sphere model and the potentials with Grad’s angular cutoff assumption. In fact, for the hard
sphere model, the cross-section has the form (in the σ representation)

B(|v − v∗|, cos θ) = q0|v − v∗|,

where q0 is the surface area of a hard sphere. For singular cross-sections, Grad [38] introduced the
idea to cut off the singularity at θ = 0 so that B(|v−v∗|, cos θ) ∈ L1(S2). This assumption has been
widely accepted and is now called Grad’s angular cutoff assumption which influences a few decades
of mathematical studies on the Boltzmann equation. Under this angular cutoff assumption, the
solution has the same regularity, at least in the Sobolev space, as the initial data. In fact, it was
shown, [34], that the solution has the form

f(t, x, v) = a(t, x, v)f(0, x− vt, v) + b(t, x, v),

when the initial data f(0, x, v) is in some weighted Lpx,v space. Here, a(t, x, v) and b(t, x, v) are

in the Sobolev space Hδ
t,x,v for some δ > 0. And the term f(0, x − vt, v) just represents the free

transport so that it is clear that f(t, x, v) and f(0, x, v) have the same regularity.
One of the main features of the Boltzmann equation is the celebrated Boltzmann’s H theorem

saying that the H-functional

H(t) =

∫

R3×R3

f log fdxdv,

satisfies
dH(t)

dt
+D(t) = 0,

where

D(t) = −
∫

R3×R3

Q(f, f) log fdxdv ≥ 0,
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which is called the entropy dissipation. Notice that D(t) is non-negative and vanishes only when
f is a Maxwellian. The non-negativity of D indicates that the Boltzmann equation is a dissipative
equation. This fact is essentially used in the L1 theory of the Boltzmann equation, [33].

By using the entropy dissipation D and the “Q+ smoothing property”, the formal smoothing
estimate was derived (see the complete references in [6])

‖
√
f(
√
f ∗ 〈v〉−m)‖2

Bδ,2
∞

≤ C‖f‖1−θ
L1 (‖f‖L1 +D(f)

1
2 )θ, δ =

s

1 + s
, θ =

1

1 + s
,

for any constantm > 3. Notice that the above regularity estimate is on
√
f not f itself. Later, some

almost optimal estimates together with some elegant formulas, such as the cancellation lemma, were
obtained in the work by Alexandre-Desvillettes-Villani-Wennberg [6]. By using these analytic tools,
the mathematical theory regarding the regularizing effect for the spatially homogeneous problems
now becomes quite satisfactory, cf. [10, 11, 29, 30, 32, 39, 48, 55], and the references therein.

However, for the spatially inhomogeneous equations, there are much less results. The main
difficulty comes from the coupling of the transport operator with the collision operator, and the
commutators of the differential (pseudo-differential) operators with the collision operator. There
are two progresses achived so far. One is the local existence of solutions between two moving
Maxwellians in [4] by constructing upper and lower solutions. The other is the global existence
of renormalized solutions with defect measures in [12] which becomes weak solutions if the defect
measures vanish. Some theories on the linear kinetic equations were also given in [9] and [18]. In
particular, a generalized uncertainty principle in the view point of Fefferman [35] (see also [45, 46,
47]) was introduced in [9] to study smoothing effects of the linearized and spatially inhomogeneous
Boltzmann equation with non-cutoff cross sections, and partial smoothing effects for nonlinear
Boltzmann equation. In the following analysis, this partial regularity result will also be used.

This paper can be viewed as a continuation of our recent work [9]. Under some mild regularity
assumption on the initial data, we will prove the existence of solutions and their C∞ regularity
with respect to all ( time, space and velocity) variables. Even though it is still not known whether
only some natural bounds, such as total mass, energy and entropy on the initial data, can lead
to the C∞ regularizing effect, the results in this paper firstly justify the C∞ regularizing effect
for the nonlinear and spatially inhomogeneous Boltzmann equation without Grad’s angular cutoff
assumption.

To state the theorems, let us first introduce the notations and assumptions used in this paper
as follows. The non-negative cross-section B(z, σ) for a monatomic gas depends only on |z| and
the scalar product < z

|z| , σ >. In most cases, the collision kernel cannot be expressed explicitly,

but to capture the essential properties, it can be assumed to be in the form of

B(|v − v∗|, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
〈 v − v∗
|v − v∗|

, σ
〉
, 0 ≤ θ ≤ π

2
.

Furthermore, to keep the presentation as simple as possible, and in particular to avoid the
difficulty coming from the vanishing of the cross-section at zero relative velocity, we suppose that
the kinetic factor Φ in the cross-section is modified as

(1.2) Φ(|v − v∗|) =
(
1 + |v − v∗|2

) γ
2 , γ ∈ R.

And without angular cutoff, the angular factor is assumed to have the following singularity.

(1.3) sin θ b(cos θ) ≈ Kθ−1−2s, when θ → 0+,

where 0 < s < 1 and K is a positive constant. In fact γ = 0 corresponds to the Maxwellian
molecule, γ < 0 corresponds to the modified soft potential, and γ > 0 corresponds to the modified
hard potential. In the following analysis, it is clear that s = 1

2 is a critical value. The case when

0 < s < 1
2 will be called the mild singularity.

It is now well known that the singularity of the collision kernel (1.3) implies a sub-elliptic
estimate in the velocity variable v (see [6]). In the following analysis, we need a precise weighted
sub-elliptic estimate in the velocity variable. Indeed, we will show that for γ ∈ R and 0 < s < 1,
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if f ≥ 0, 6≡ 0 , f ∈ L1
2

⋂
L logL(R3

v), there exists a constant C > 0 such that for any function
g ∈ H1(R3

v) we have

(1.4) C−1‖ΛsvWγ/2g‖2
L2(R3

v) ≤ (−Q(f, g), g)L2(R3
v) + C‖f‖L1

γ̃(R3)‖g‖2
L2

γ+/2
(R3

v),

where γ̃ = max(γ+, 2 − γ+), γ+ = max{γ, 0}. Here Wl = Wl(v) = (1 + |v|2)l/2 = 〈v〉l , l ∈ R, is
the weight function in the variable v ∈ R3.

Similar sub-elliptic estimates, proved first in [6] and then in many other works such as [51], have
been used crucially at least in the following two aspects:

i) the proof of the regularizing effect of the cross-section on the solutions to the spatially homo-
geneous Boltzmann equations, see [10, 11, 32, 39, 48];

ii) the proof of existence of solutions to the nonlinear and spatially inhomogeneous Bolztmann
equation [4, 12, 57].

In this paper, we will apply it to the study of smoothing effect for the spatially inhomogeneous
and nonlinear Boltzmann equation.

It is now well understood, see [13], that Landau equation corresponds to the grazing limit of
Boltzmann equation. However, while Landau operator involves usual partial differential operators,
it should be kept in mind that fractional differential operators appear in the Boltzmann case,
see [2]. Therefore, the analysis on the Boltzmann equation is more involved because it requires
the essential use of the harmonic analysis. More precisely, we shall use a generalized uncertainty
principle which was introduced in [9], and the estimation of commutators used in the work [49] for
the study of hypo-elliptic properties.

Throughout this paper, we shall use the following standard weighted (with respect to the velocity
variable v ∈ R3 ) Sobolev spaces. For m, l ∈ R, set R7 = Rt × R3

x × R3
v and

Hm
l (R7) =

{
f ∈ S ′

(R7); Wl(v) f ∈ Hm(R7)
}
,

which is a Hilbert space. Here Hm is the usual Sobolev space. We will also use the function spaces
Hk
l (R6

x, v) and Hk
l (R3

v) when the variables are specified where the weight is always with respect to

v ∈ R3.
Since the regularity property to be proved here is local in space and time, for convenience, we

define the following local version of weighted Sobolev space. For −∞ ≤ T1 < T2 ≤ +∞, and any
given open domain Ω ⊂ R3

x, define

Hm
l (]T1, T2[×Ω × R3

v) =
{
f ∈ D ′

(]T1, T2[×Ω × R3
v);

ϕ(t)ψ(x)f ∈ Hm
l (R7) , ∀ϕ ∈ C∞

0 (]T1, T2[), ψ ∈ C∞
0 (Ω)

}
.

The first main result giving the smoothing effect on the solution can be stated as follows.

Theorem 1.1. (Regularizing effect on solutions)
Assume that 0 < s < 1, γ ∈ R, −∞ ≤ T1 < T2 ≤ +∞ and let Ω ⊂ R3

x be an open domain.
Let f be a non-negative function belonging to H5

l (]T1, T2[×Ω × R3
v) for all l ∈ N and solving the

Boltzmann equation (1.1) in the domain ]T1, T2[×Ω × R3
v in the classical sense. Furthermore, if,

f satisfies the non-vacuum condition

(1.5) ‖f(t, x, ·)‖L1(R3
v) > 0,

for all (t, x) ∈]T1, T2[×Ω, then we have

f ∈ H+∞
l (]T1, T2[×Ω × R3

v),

for any l ∈ N, and hence

f ∈ C∞(]T1, T2[×Ω; S(R3
v)).

With this theorem, a natural question is whether the Boltzmann equation has solutions satisfying
the assumptions imposed in the Theorem 1.1. In this aspect, let us recall that solutions constructed
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in [4, 12] do not works for our purpose because of the lack of the weighted regularity H5
l , and see

also [53] for Gevrey class solutions.
Thus, the second main result in this paper is about the local existence and uniqueness of solution

for the Cauchy problem of the non-cutoff Boltzmann equation. We consider the solution in the
function space with Maxwellian type exponential decay in the velocity variable. Precisely, for
m ∈ R, set

Em0 (R6) =
{
g ∈ D′(R6

x,v); ∃ ρ0 > 0 s.t. eρ0<v>
2

g ∈ Hm(R6
x,v)
}
,

and for T > 0

Em([0, T ]× R6
x,v) =

{
f ∈ C0([0, T ];D′(R6

x,v)); ∃ ρ > 0

s.t. eρ〈v〉
2

f ∈ C0([0, T ]; Hm(R6
x,v))

}
.

Theorem 1.2. Assume that 0 < s < 1/2 and γ + 2s < 1. Let f0 ≥ 0 and f0 ∈ Ek00 (R6) for some
4 ≤ k0 ∈ N. Then there exists T∗ > 0 such that the Cauchy problem

(1.6)

{
ft + v · ∇xf = Q(f, f),
f |t=0 = f0,

admits a non-negative and unique solution in the function space Ek0 ([0, T∗] × R6).
Furthermore, if we assume that the initial data f0 is in E5

0 (R6) and does not vanish on a compact
set K ⊂ R3

x, that is,

‖f0(x, ·)‖L1(R3
v) > 0, ∀ x ∈ K,

then we have the regularizing effect on the above solution, that is, there exist 0 < T̃0 ≤ T∗ and a
neighborhood V0 of K in R3

x such that

f ∈ C∞(]0, T̃0[×V0; S(R3
v)).

Moreover, if γ ≤ 0, the non-negative solution of the Cauchy problem (1.6) is unique in the
function space C0([0, T∗]; Hm

p (R6)) for m > 3/2 + 2s, p > 3/2 + 4s.

Remark 1.3. For the inverse power law potential r−(p−1), the condition that 0 < s < 1/2, γ+2s <
1 corresponds to 3 < p <∞ which includes both soft and hard potentials.

At the moment, it is not clear whether we can relax the regularity assumption initially made on
the solutions. Note that for example, the condition that f ∈ L1∩L∞(R7) is enough to give a mean-
ingful sense to a weak formulation for the spatially inhomogeneous Boltzmann equation. However,
the analysis used here can not be applied to this case, and so further study is needed. On the
other hand, the above two theorems give an answer to a long lasting conjecture on the regularizing
effect of the non-cutoff cross-sections for the spatially inhomogeneous Boltzmann equation.

Finally in the introduction, let us review some related works on the regularizing effect and the
existence of solutions for the Landau equation. The regularizing effect from the Landau collision
operator has been rather well studied. See [31, 24, 13] for the spatially homogeneous case. For
the spatially inhomogeneous problem, a regularizing result was obtained in [26], where the H8

regularity is assumed on the solutions to start with. And similar result was also recently proved
for the Vlasov-Maxwell-Landau and the Vlasov-Poisson-Landau systems, cf. [25] and the refer-
ences therein. As for the existence of solutions, see [31] where unique weak solutions for spatially
homogeneous case have been constructed with rather general initial data, and see [36] where the
classical solutions for the spatially inhomogeneous case have been constructed in a periodic box
with small initial data.

The rest of the paper will be organized as follows. First of all, in the next section, we will use the
pseudo-differential calculus to study the upper bounds on the collision operator, to give the precise
coercivity estimate due to the singularity in the cross-section and to estimate the commutators
between some pseudo-differential operators and the nonlinear collision operators. In Section 3,
the regularizing effect will be proved under the initial regularity assumption on the solution. The
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strategy of the proof is as follows. We first choose some suitable mollifiers such that the mollified
solutions can work as the test functions for the weak formulation of the problem. We then establish
a small gain of the regularity in the velocity variable, by using the coercivity estimate coming from
the singularity of the cross section. On account of the generalized uncertainty principle, a small gain
of the regularity in the space and time variables can be derived. The H+∞ regularity now follows
from an induction argument. Finally, in Section 4, local solutions to the non-cutoff Boltzmann
equation which meet the initialization condition of Theorem 1.1 are constructed by a family of
cutoff Boltzmann equations with time local uniform bounds independent of cutoff parameter in
some weighted Sobolev space. The uniform bounds are established by the aid of time dependent
Maxwellian type weight functions introduced in [53, 54]. The convergence of the approximate
solutions follows from the compactness argument, while the uniqueness of the solutions can also
be proved by using the sharp upper bounds of the collision operator.

2. Pseudo-differential calculus

With the non-cutoff cross section, the Boltzmann collision operator is a (nonlinear) singular
integral operator with respect to v ∈ R3

v. In the linearized case, it behaves like a pseudo-differential
operator. We study, in this section, the pseudo-differential calculus on the Boltzmann operator.
It is one of the key analytic tools for proving the regularizing effect of the non-cutoff Boltzmann
equation. Notice that even though the regularity proved in this paper is local in space and time
variables, the collision operator is non-local in the space of v variable. Moreover, since the kinetic
factor in the cross-section is of the form 〈v〉γ which may not be bounded, we need to consider
the multiplication by the weight function Wl(v) to the pseudo-differential operators. Hence, they
are not the standard pseudo-differential operators of order 0 on the usual Sobolev space. In other
words, we consider the pseudo-differential operators with unbounded coefficients on the weighted
Sobolev space Hm

l (R3
v). The variable (t, x) is considered as parameter for the collision operators

in this section.

2.1. Upper bound estimates. We shall need some functional estimates on the Boltzmann col-
lision operator in the proof. The first one given below is about the boundedness of the collision
operator in some weighted Sobolev spaces, see also [5, 7, 39] .

Theorem 2.1. Let 0 < s < 1 and γ ∈ R. Then for any m, α ∈ R, there exists C > 0 such that

(2.1.1) ‖Q(f, g)‖Hm
α (R3

v) ≤ C‖f‖L1

α++(γ+2s)+
(R3

v)‖g‖Hm+2s

(α+γ+2s)+
(R3

v)

for all f ∈ L1
α++(γ+2s)+(R3

v) and g ∈ Hm+2s
(α+γ+2s)+(R3

v) .

Remark 2.2. .
(1) The collision operator Q(f, g) has different characters with respect to f and g: (2.1.1) shows
that, in some sense, it is linear with respect to the second factor in the velocity variable v because
the action of differentiation of Q(f, g) with respect to v goes only on g when considered in the
Sobloev space. This is clear for the Landau operator which is the grazing limit of the Boltzmann
operator.
(2) The estimate (2.1.1) is in some sense optimal with respect to the order of differentiation (exact
order of 2s) and also with respect to the order of the weight in v coming from the cross-section.
In [39], the cases of both the modified hard potential and Maxwellian molecule type cross-sections
corresponding to 0 ≤ γ < 1 are discussed. Let us also mention that a similar estimate was given
in [8], but it is not optimal in terms of weight and differentiation. However, its proof is more
straightforward as it only uses the Fourier transformation of collision operator (Bobylev’s type
formula [16] and see also the Appendix of [6]). Notice that for our purpose, the precise estimate
(2.1.1) is needed.

Proof of Theorem 2.1 :
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Firstly, we consider the case when α = 0. To prove (2.1.1) in this case, it suffices to show for
any m ∈ R

(2.1.2)

∣∣∣∣
(
Q(f, g), h

)
L2(R3

v)

∣∣∣∣ ≤ C||f ||L1
(γ+2s)+

(R3
v)||g||Hm+2s

(γ+2s)+
(R3

v)||h||H−m(R3
v).

The proof needs some harmonic analysis tools based on the dyadic decomposition. It is similar to
the proof in [39], where the hard potential case γ ≥ 0 was studied. Interested readers may refer to
the papers [5, 6, 39] for more details even though we will keep the paper self-contained.

Recall
(
Q(f, g), h

)
L2(R3

v)
=

∫

R6

∫

S2

b(cos θ)f(v∗)Φ(|v − v∗|)g(v){h(v′) − h(v)}dσdv∗dv,

where Φ(|v − v∗|) = Φ(|v′ − v′∗|) = 〈v′ − v′∗〉γ . Set

F (v, v∗) = Φ(|v − v∗|)g(v),
and write

(
Q(f, g), h

)
L2(R3

v)
=

∫

R6

∫

S2

b(cos θ)f(v∗)F (v, v∗){h(v′) − h(v)}dσdv∗dv

=

∫

R3

f(v∗)(U1 − U2)dv∗.
(2.1.3)

Then we have (formally) by Fourier inverse formula,

U1 ≡
∫

R3

∫

S2

b(cos θ)F (v, v∗)h(v
′)dσdv =

∫

R3

∫

R3

H(ξ, η, v∗)F̂ (ξ, v∗)ĥ(η)dξdη,

where (also formally)

H(ξ, η, v∗) =

∫

R3

∫

S2

b(k · σ)eiv·ξ−iv
′·ηdσdv

=

∫

R3

eiv·ξ−i
v+v∗

2 ·η
[ ∫

S2

b(k · σ)e−i
|v−v∗|

2 σ·ηdσ
]
dv

=

∫

R3

eiv·ξ−i
v+v∗

2 ·η
[ ∫

S2

b(η̃ · σ)e−i
|v−v∗|

2 |η|σ·kdσ
]
dv , (η̃ = η/|η|)

=

∫

R3

eiv·ξ−i
v+v∗

2 ·η
[ ∫

S2

b(η̃ · σ)e−i|η|
v−v∗

2 ·σdσ
]
dv

=

∫

S2

b(η̃ · σ)e−iv∗·η
−
[ ∫

R3

eiv·(ξ−η
+)dv

]
dσ

=

∫

S2

b(η̃ · σ)e−iv∗·η
−

dσ δ(ξ − η+),

with

η− =
1

2
(η − |η|σ), η+ =

1

2
(η + |η|σ),

so that

U1 =

∫

R3

[ ∫

S2

b(η̃ · σ)e−iv∗·η
−

dσ
]
F̂ (η+, v∗)ĥ(η)dη.

On the other hand,

U2 ≡
∫

R3

∫

S2

b(cos θ)F (v, v∗)h(v)dσdv

=
[ ∫

S2

b(cos θ)dσ
] ∫

R3

F̂ (η, v∗)ĥ(η)dη

=

∫

R3

[ ∫

S2

b(η̃ · σ)dσ
]
F̂ (η, v∗)ĥ(η)dη,
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because formally we have
∫

S2

b(cos θ)dσ =

∫

S2

b(η̃ · σ)dσ = const.

Therefore, we have the following generalized Bobylev formula
(
Q(f, g), h

)
L2(R3

v)

=

∫

R3

f(v∗)
[ ∫

R3

∫

S2

b(η̃ · σ)
{
e−iv∗·η

−

F̂ (η+, v∗) − F̂ (η, v∗)
}
ĥ(η)dηdσ

]
dv∗

=

∫

R3

f(v∗)
[ ∫

R3

∫

S2

b(η̃ · σ)
{
eiv∗·η

+

F̂ (η+, v∗) − eiv∗·ηF̂ (η, v∗)
}

× eiv∗·ηĥ(η)dηdσ
]
dv∗.

(2.1.4)

Notice that the above derivation is only formal for non-cutoff cross-section because we can not
split the gain and loss term in this case. However, the derivation can be easily justified as a limit
process of cutoff cross-sections when we combine the gain term and loss term together.

We now introduce the dyadic decomposition in R3
v as follows:

∞∑

k=0

φk(v) = 1 , φk(v) = φ(2−kv) for k ≥ 1 with 0 ≤ φ0, φ ∈ C∞
0 (R3),

and

supp φ0 ⊂ {|v| < 2}, supp φ ⊂ {1 < |v| < 3}.
Take also φ̃0 and φ̃ ∈ C∞

0 such that

φ̃0 = 1 on {|v| ≤ 2}, supp φ̃0 ⊂ {|v| < 3},
φ̃ = 1 on {1/2 ≤ |v| ≤ 3}, supp φ̃ ⊂ {1/3 < |v| < 4}.

Furthermore, we assume that all these functions are radial. Since it follows from |v′ − v∗| ≤
|v − v∗| ≤

√
2|v′ − v∗| that

φ̃k(v
′ − v∗)φk(v − v∗) = φk(v − v∗) = φ̃k(v − v∗)φk(v − v∗), k ≥ 0,

we get

(
Q(f, g), h

)
L2(R3

v)
=

∞∑

k=0

∫

R6

∫

S2

b(cos θ)f(v∗)Fk(v, v∗){hk(v′, v∗) − hk(v, v∗)}dσdv∗dv,

where

(2.1.5) Fk(v, v∗) = φk(v − v∗)Φ(|v − v∗|)g(v), hk(v, v∗) = φ̃k(v − v∗)h(v).

Similar to (2.1.4), we can obtain

(
Q(f, g), h

)
L2(R3

v)
=

∞∑

k=0

∫

R3

f(v∗)
[ ∫

R3

∫

S2

b(η̃ · σ)
{
eiv∗·η

+

F̂k(η
+, v∗) − eiv∗·ηF̂k(η, v∗)

}

× eiv∗·ηĥk(η, v∗)dηdσ
]
dv∗

=

∫

R3

f(v∗)
∞∑

k=0

Kk(v∗)dv∗.

In the following, we will estimate
∑∞

k=0 |Kk(v∗)|, regarding v∗ as a parameter.
By setting

Ωk =
{
σ ∈ S2 ; η̃ · σ ≥ 1 − 21−2k〈η〉−2

}
,

and
˜̂
Fk(η, v∗) = eiv∗·ηF̂k(η, v∗),

˜̂
hk(η, v∗) = eiv∗·ηĥk(η, v∗),
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we split Kk(v∗) into

Kk(v∗) =

∫

R3

∫

S2∩Ωk

b(η̃ · σ)
{˜̂
Fk(η

+, v∗) − ˜̂Fk(η, v∗)
}˜̂
hk(η, v∗)dηdσ

+

∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)
{˜̂
Fk(η

+, v∗) − ˜̂Fk(η, v∗)
}˜̂
hk(η, v∗)dηdσ

=Kk
1 (v∗) +Kk

2 (v∗).

Note that ∫

S2∩Ωk

θ2 b(cos θ)dσ = 2π

∫

{θ∈[0,π/2]; sin(θ/2)≤2−k〈η〉−1}
sin θ b(cos θ)θ2dθ(2.1.6)

≤ C〈η〉2s−22k(2s−2), if 0 < s < 1,

∫

S2∩Ωc
k

b(cos θ)dσ = 2π

∫

{θ∈[0,π/2]; sin(θ/2)≥2−k〈η〉−1}
sin θ b(cos θ)dθ(2.1.7)

≤ C〈η〉2s22ks, for any s > 0.

It follows from (2.1.7) that

|Kk
2 (v∗)| ≤

∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)
∣∣∣˜̂Fk(η+, v∗) − ˜̂Fk(η, v∗)

∣∣∣
∣∣∣˜̂hk(η, v∗)

∣∣∣dηdσ(2.1.8)

≤
(∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)〈η〉2m+2s
(∣∣∣˜̂Fk(η+, v∗)

∣∣∣
2

+
∣∣∣˜̂Fk(η, v∗)

∣∣∣
2)
dηdσ

)1/2

×
(∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)〈η〉−2m−2s
∣∣∣˜̂hk(η, v∗)

∣∣∣
2

dηdσ

)1/2

≤C22ks
∥∥〈Dv〉m+2sFk(v, v∗)}

∥∥
L2 ||〈Dv〉−mhk(v, v∗)||L2 .

Here, we have used the change of variables η → η+, which is regular because the Jacobian is
computed, with k = η/|η|, as

∣∣∣∂(η+)

∂(η)

∣∣∣ =
∣∣∣1
2
I +

1

2
σ ⊗ k

∣∣∣ = 1

8
(1 + k · σ) =

1

4
cos2

θ

2
.

It should be noted that after this change of variable, θ plays no longer the role of the polar angle
because the “pole” k now moves with σ and hence the measure dσ is no longer given by sin θdθdφ.
However, the situation is rather good because if we take k

+ = η+/|η+| as a new pole which is
independent of σ, then the new polar angle ψ defined by cosψ = k

+ · σ satisfies

ψ =
θ

2
, dσ = sinψdψdφ, ψ ∈ [0,

π

4
],

and thus θ works almost as the polar angle. Therefore, noting the fact that 〈η〉 ≤ 2〈η+〉 ≤ 2〈η〉 we
have ∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)〈η〉2m+2s
∣∣∣˜̂Fk(η+, v∗)

∣∣∣
2

dηdσ ≤ C

∫

R3
η+

D0(η
+)
∣∣∣˜̂Fk(η+, v∗)

∣∣∣
2

dη+

with

D0(η
+) =

∫

S2∩Ωc
k

b(η̃ · σ)〈 η(η+, σ) 〉2m+2sdσ

≤ C

∫

S2∩Ωc
k

〈 η(η+, σ) 〉2m+2sθ−2−2sdσ

≤ C〈η+〉2m+2s

∫ π/4

2−k〈η+〉−1

ψ−2−2s sinψdψ ≤ 22ks〈η+〉2m+4s ,
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which implies (2.1.8). Notice that for p = 0, 1, 2,

∣∣∣2
k(2s−p)|v − v∗|pφk(v − v∗)Φ(|v − v∗|)

〈v∗〉(γ+2s)+

∣∣∣ ≤ C
〈v − v∗〉γ+2s

〈v∗〉(γ+2s)+
φk(v − v∗)(2.1.9)

≤ C〈v〉(γ+2s)+φk(v − v∗).

Then, recalling (2.1.5) and using (2.1.9) with p = 0 we have

|Kk
2 (v∗)| ≤C〈v∗〉(γ+2s)+

∥∥∥∥
〈Dv〉m+2s

〈v∗〉(γ+2s)+
{22ksFk(v, v∗)}

∥∥∥∥
L2

||〈Dv〉−mhk(v, v∗)||L2

≤C〈v∗〉(γ+2s)+
(
‖φ̃k(v − v∗)〈Dv〉m+2sg‖2

L2
(γ+2s)+

+ 2−k‖〈Dv〉m+2sg‖2
L2

(γ+2s)+

)1/2

×
(
‖φ̃k(v − v∗)〈Dv〉−mh‖2

L2 + 2−k‖〈Dv〉−mh‖2
L2

)1/2

:=C Γk(v∗),

where Γk(v∗) stands for the quantity defined by this right hand side up to a constant multiple.
On the other hand, to estimate Kk

1 (v∗), write

{˜̂
Fk(η

+, v∗) − ˜̂Fk(η, v∗)
}˜̂
hk(η, v∗) =

{˜̂
Fk(η

+, v∗) − ˜̂Fk(η, v∗)
}{˜̂

hk(η, v∗) − ˜̂hk(η+, v∗)
}

−η− ·
(
∇˜̂Fk

)
(η+, v∗)

˜̂
hk(η+, v∗)

−
∫ 1

0

{(
∇˜̂Fk

)
(η+ + τ (η − η+), v∗) −

(
∇˜̂Fk

)
(η+, v∗))dτ

}
· (η − η+)

˜̂
hk(η+, v∗).

Correspondingly, we decompose Kk
1 (v∗) into

Kk
1 (v∗) = Kk,1

1 (v∗) +Kk,2
1 (v∗) +Kk,3

1 (v∗).

For the variable transformation η −→ η+ = 1
2 (η + |η|σ), we denote its inverse transformation

η+ −→ η by ψσ(η
+). Then

Kk,2
1 (v∗) = −

∫

R3

∫

S2∩Ωk

b
( ψσ(η+)

|ψσ(η+)| · σ
) ∣∣∣∣
∂(ψσ(η

+))

∂(η+)

∣∣∣∣

× η−(σ) ·
(
∇˜̂Fk

)
(η+, v∗)

˜̂
hk(η+, v∗)dη

+dσ

= 0 , with η−(σ) = ψσ(η
+) − η+,

because σ1, σ2 ∈ S2 ∩Ωk are symmetric with respect to each other in the sense that, cf Figure ??,

η−(σ1) = ψσ1(η
+) − η+ = −(ψσ2(η

+) − η+) = −η−(σ2).

Write Kk,1
1 (v∗) into

Kk,1
1 (v∗) = −

∫ 1

0

∫ 1

0

(∫

R3

∫

S2∩Ωk

b(η̃ · σ)
{(

∇˜̂Fk
)
(η+ + τ(η − η+), v∗) · (η − η+)

}

×
{(

∇˜̂hk
)
(η+ + s(η − η+), v∗) · (η − η+)

}
dηdσ

)
dτds.
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Since |η − η+|2 = |η−|2 = |η|2 sin2(θ/2) and that the change of variable η+ + τ(η − η+) → η is
also regular (see the page 2044 of [9]), (2.1.6) implies

|Kk,1
1 (v∗)| ≤C

∫ 1

0

∫ 1

0

(∫

R3

∫

S2∩Ωk

θ2 b(η̃ · σ)〈η〉2
∣∣∣
(
∇˜̂Fk

)
(η+ + τ(η − η+), v∗)

∣∣∣

×
∣∣∣
(
∇˜̂hk

)
(η+ + s(η − η+), v∗)

∣∣∣dηdσ
)
dτds

≤C
∫ 1

0

∫ 1

0

(∫

R3

∫

S2∩Ωk

θ2 b(η̃ · σ)〈η〉2+2s+2m
∣∣∣
(
∇˜̂Fk

)
(η+ + τ(η − η+), v∗)

∣∣∣dηdσ
)1/2

×
(∫

R3

∫

S2∩Ωk

θ2 b(η̃ · σ)〈η〉2−2s−2m
∣∣∣
(
∇˜̂hk

)
(η+ + s(η − η+), v∗)

∣∣∣dηdσ
)1/2

dτds

≤C2k(2s−2)‖〈η〉2s+m
(
∇˜̂Fk

)
‖L2(R3)‖〈η〉−m

(
∇˜̂hk

)
‖L2(R3).

Hence, we obtain by using (2.1.9) with p = 1 that

|Kk,1
1 (v∗)| ≤C〈v∗〉(γ+2s)+

∥∥∥∥
〈Dv〉m+2s

〈v∗〉(γ+2s)+
{2k(2s−1)(v − v∗)Fk(v, v∗)}

∥∥∥∥
L2

× ‖2−k(v − v∗)hk(v, v∗)‖H−m

≤C〈v∗〉(γ+2s)+
(
‖φ̃k(v − v∗)〈Dv〉m+2sg‖2

L2

(γ+2s)+
+ 2−k‖〈Dv〉m+2sg‖2

L2

(γ+2s)+

)1/2

×
(
‖φ̃k(v − v∗)〈Dv〉−mh‖2

L2 + 2−k‖〈Dv〉−mh‖2
L2

)1/2

,

which has the same bound Γk(v∗) as in the previous case up to a constant factor. Finally, we
consider

Kk,3
1 (v∗) = −

∫ 1

0

∫ 1

0

( ∫

R3

∫

S2∩Ωk

b(η̃ · σ)
{(

∇2˜̂Fk
)
(η+ + τs(η − η+), v∗)τ(η − η+)2

}

×
{˜̂
hk(η+, v∗)

}
dηdσ

)
dτds.

Then, by using (2.1.9) with p = 2, we have

|Kk,3
1 (v∗)| ≤C〈v∗〉(γ+2s)+

∥∥∥∥
〈Dv〉m+2s

〈v∗〉(γ+2s)+
{2k(2s−2)(v − v∗)

2Fk(v, v∗)}
∥∥∥∥
L2

‖hk(v, v∗)‖H−m

≤CΓk(v∗).

Therefore, it follows from the Schwarz inequality that
∣∣∣∣
(
Q(f, g), h

)
L2(R3

v)

∣∣∣∣ ≤ C||f ||L1
(γ+2s)+

×

×
( ∞∑

k=0

{‖φ̃k(v − v∗)〈Dv〉m+2sg‖2
L2

(γ+2s)+
+ 2−k‖〈Dv〉m+2sg‖2

L2
(γ+2s)+

}
)1/2

×
( ∞∑

k=0

{‖φ̃k(v − v∗)〈Dv〉−mh‖2
L2 + 2−k‖〈Dv〉−mh‖2

L2}
)1/2

≤ C||f ||L1
(γ+2s)+

||g||Hm+2s

(γ+2s)+
||h||H−m ,

which yields (2.1.2). Now the proof of Theorem 2.1 is complete for the case α = 0.
To prove (2.1.1) for the case when α 6= 0, it suffices to show that

(2.1.10)

∣∣∣∣
(
Q(f, g), 〈v〉αh

)
L2(R3

v)

∣∣∣∣ ≤ C||f ||L1
α++(γ+2s)+

(R3
v)||g||Hm+2s

(α+γ+2s)+
(R3

v)||h||H−m(R3
v).
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The argument is the same as the one for α = 0 except the estimation on hk(v, v∗) in (2.1.5) which
must be replaced by

φ̃k(v − v∗)〈v〉αh(v) = 〈v〉αhk(v, v∗).
We can write

〈v〉αhk(v, v∗) =(〈v∗〉α + 2kα)ψk(v, v∗)hk(v, v∗), if α > 0,(2.1.11)

〈v〉αhk(v, v∗) =

( 〈v∗〉
2k

)min{(γ+2s)+,−α}
ψk(v, v∗)hk(v, v∗), if α < 0.(2.1.12)

with a suitable ψk(v, v∗) belonging to C∞
b (R3

v) uniformly with respect to k, v∗. For p = 0, 1, 2, we
have

∣∣∣2
k(α+2s−p)|v − v∗|pφk(v − v∗)Φ(|v − v∗|)

〈v∗〉(α+γ+2s)+

∣∣∣(2.1.13)

≤ C
〈v − v∗〉α+γ+2s

〈v∗〉(α+γ+2s)+
φk(v − v∗) ≤ C〈v〉(α+γ+2s)+φk(v − v∗),

which is similar to (2.1.9). We first consider the case α > 0. It follows from (2.1.7) that

|Kk
2 (v∗)| ≤(〈v∗〉α + 2kα)

∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)
∣∣∣˜̂Fk(η+, v∗) − ˜̂Fk(η, v∗)

∣∣∣
∣∣∣˜̂ψkhk(η, v∗)

∣∣∣dηdσ

≤(〈v∗〉α + 2kα)

(∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)〈η〉2m+2s
(∣∣∣˜̂Fk(η+, v∗)

∣∣∣
2

+
∣∣∣˜̂Fk(η, v∗)

∣∣∣
2)
dηdσ

)1/2

×
(∫

R3

∫

S2∩Ωc
k

b(η̃ · σ)〈η〉−2m−2s
∣∣∣˜̂ψkhk(η, v∗)

∣∣∣
2

dηdσ

)1/2

≤C22ks(〈v∗〉α + 2kα)
∥∥〈Dv〉m+2sFk(v, v∗)}

∥∥
L2 ||〈Dv〉−mhk(v, v∗)||L2 .

Then, recalling (2.1.5), and using (2.1.9) and (2.1.13) with p = 0, we have

|Kk
2 (v∗)| ≤C

{
〈v∗〉α+(γ+2s)+

∥∥∥∥
〈Dv〉m+2s

〈v∗〉(γ+2s)+
{22ksFk(v, v∗)}

∥∥∥∥
L2

+ 〈v∗〉(α+γ+2s)+
∥∥∥∥

〈Dv〉m+2s

〈v∗〉(α+γ+2s)+
{2k(α+2s)Fk(v, v∗)}

∥∥∥∥
L2

}
||〈Dv〉−mhk(v, v∗)||L2

≤C〈v∗〉α+(γ+2s)+
(
‖φ̃k(v − v∗)〈Dv〉m+2sg‖2

L2
(α+γ+2s)+

+ 2−k‖〈Dv〉m+2sg‖2
L2

(α+γ+2s)+

)1/2

×
(
‖φ̃k(v − v∗)〈Dv〉−mh‖2

L2 + 2−k‖〈Dv〉−mh‖2
L2

)1/2

:=C Γαk (v∗),

where Γαk (v∗) stands for the quantity defined by this right hand side up to a constant multiple.
Similar to the computation above for Kk

2 (v∗), it follows from (2.1.6) that

|Kk,1
1 (v∗)| + |Kk,3

1 (v∗)| ≤ C Γαk (v∗),

so that (2.1.10) holds in this case.
The estimation on the case α < 0 is also similar by using (2.1.12) if one considers the cases

γ + 2s ≤ 0, 0 < γ + 2s ≤ −α and γ + 2s ≥ −α separately. For brevity, we omit th details. And
this completes the proof of Theorem 2.1.

In what follows, we need also estimates on the commutator between the collision operator Q
and the weight Wl. For this, we need the estimates on |Wl −W ′

l |.
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Lemma 2.3. Let l ∈ N, there exists C > 0 depending only on l such that

(2.1.14)
∣∣Wl −W ′

l

∣∣ ≤ C sin

(
θ

2

)(
W ′
l +W ′

l,∗

)
≤ C sin

(
θ

2

)
W ′
lW

′
l,∗,

and

(2.1.15)
∣∣Wl −W ′

l

∣∣ ≤ C sin

(
θ

2

)(
W ′
l +W ′

l−1W
′
1,∗ + sinl−1

(
θ

2

)
W ′
l, ∗

)
.

Proof : It follows from |v − v∗| = |v′ − v′∗| and |v|2 + |v∗|2 = |v′|2 + |v′∗|2 that, for any λ > 0

|v|2 ≤ |v′|2 + |v′∗|2, Wλ ≤ 2λ(W ′
λ +W ′

λ, ∗).

On the other hand

|v − v′|2 = sin2

(
θ

2

)
|v − v∗|2,

where 0 ≤ θ ≤ π/2. Taylor formula yields

∣∣Wl −W ′
l

∣∣ ≤ C|v − v′|
(
Wl−1 +W ′

l−1

)

≤ C sin

(
θ

2

)
|v − v∗|

(
W ′
l−1 +W ′

l−1,∗ +W ′
l−1

)

≤ C sin

(
θ

2

)
|v′ − v′∗|

(
W ′
l−1 +W ′

l−1,∗

)

≤ C sin

(
θ

2

)(
W ′

1 +W ′
1, ∗

)(
W ′
l−1 +W ′

l−1, ∗

)

≤ C sin

(
θ

2

)(
W ′
l +W ′

l, ∗
)
≤ C sin

(
θ

2

)
W ′
lW

′
l, ∗ ,

which gives (2.1.14). For (2.1.15), we have

∣∣Wl −W ′
l

∣∣ ≤ C|v − v′|
(
Wl−1 +W ′

l−1

)

≤ C sin

(
θ

2

)
|v − v∗|

(
W ′
l−1 +

(
1 + |v − v′ + v′|2

) (l−1)
2

)

≤ C sin

(
θ

2

)
|v′ − v′∗|

(
W ′
l−1 + |v − v′|l−1

)

≤ C sin

(
θ

2

)((
W ′

1 +W ′
1, ∗

)
W ′
l−1 + sinl−1

(
θ

2

)
|v′ − v′∗|l

)

≤ C sin

(
θ

2

)(
W ′
l +W ′

l−1W
′
1,∗ + sinl−1

(
θ

2

)
W ′
l,∗

)
.

And this completes the proof of the lemma.

Lemma 2.4. Let l ∈ N, m ∈ R.
(1) If 0 < s < 1/2, there exists C > 0 such that

(2.1.16)

∣∣∣∣
((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣∣ ≤ C‖f‖L1
l+γ+(R3

v)‖g‖L2
l+γ+(R3

v)‖h‖L2(R3
v).

Moreover, if l ≥ 3 (actually, we need only l > 3
2 + 2s), then

(2.1.17)

∣∣∣∣
((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3)

∣∣∣∣ ≤ C‖f‖L2
l+γ+(R3

v))‖g‖L2
l+γ+(R3)‖h‖L2(R3).
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(2) If 1/2 < s < 1, then for any ε > 0, there is a constant Cε > 0 such that
∣∣∣∣
((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣∣(2.1.18)

≤ Cε‖f‖L1

l+2s−1+γ+(R3
v)‖g‖H2s−1+ε

l+2s−1+γ+(R3
v)‖h‖L2(R3

v) ,

and ∣∣∣∣
((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣∣(2.1.19)

≤ Cε‖f‖L1
l+2s−1+γ+(R3

v)‖g‖L2
l+2s−1+γ+(R3

v)‖h‖H2s−1+ε
l

(R3
v).

(3) When s = 1/2, we have the same estimates as (2) with 2s− 1 replaced by any small κ > 0.

With Lemma 2.2, we immediately have the following improved upper bound estimate with
respect to the weight.

Corollary 2.5.
(1) When 0 < s < 1/2, we have

‖Q(f, g)‖Hm
l (R3

v) ≤ C‖f‖L1

max{l+γ+, (γ+2s)+}
(R3

v)‖g‖Hm+2s

l+(2s+γ)+
(R3

v),

provided that m ≤ 0 and 0 ≤ m+ 2s.
(2) When 1/2 < s < 1, we have

(2.1.20) ‖Q(f, g)‖Hm
l (R3

v) ≤ C‖f‖L1
max{l+2s−1+γ+, (2s+γ)+}

(R3
v)‖g‖Hm+2s

l+max{2s−1+γ+, (2s+γ)+}
(R3

v),

provided that −1 < m ≤ 0.
(3) When s = 1/2, we have the same form of estimate as (2.1.20) with 2s− 1 replaced by any

small κ > 0.

In fact, this corollary is a direct consequence of Theorem 2.1 and Lemma 2.4.

Proof of Lemma 2.4 :

Proof of (1): the case 0 < s < 1/2. By using Φ(|v′ − v′∗|) ≤ 〈v′〉γ+〈v′∗〉γ
+

, we have
∣∣∣
((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣

=
∣∣∣
∫∫∫

bΦ f ′
∗g

′(W ′
l −W )h dvdv∗dσ

∣∣∣

≤ C

∫∫∫
b |θ| |(Wl+γ+f)′∗| |(Wl+γ+g)′| |h| dvdv∗dσ

= C

∫∫∫
b |θ||(Wl+γ+f)∗| |(Wl+γ+g)| |h′| dvdv∗dσ

≤ C
( ∫∫∫

b |θ| |(Wl+γ+ f)∗| |(Wl+γ+ g)|2dvdv∗dσ
)1/2

×
(∫∫∫

b |θ| |(Wl+γ+ f)∗| |h′|2 dvdv∗dσ
)1/2

= CJ1 × J2.

Clearly, one has

J2
1 ≤ C‖f‖L1

l+γ+
‖g‖2

L2
l+γ+

∫

S2

b(cos θ) |θ| dσ ≤ C‖f‖L1
l+γ+

‖g‖2
L2

l+γ+
.

Next, by the regular change of variables v → v′, cf. [6, 12], we have

J2
2 =

∫∫
D0(v∗, v

′)|(Wl+γ+f)∗||h′|2dv∗dv′,
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where

D0(v, v
′) = 2

∫

S2

θ(v∗, v, σ)

cos2(θ(v∗, v, σ)/2)
b(cos θ(v∗, v

′, σ))dσ ≤ C

∫ π/4

0

ψ−1−2s sinψ dψ,

and

cosψ =
v′ − v∗
|v′ − v∗|

· σ, ψ = θ/2, dσ = sinψdψdφ.

Thus,

J2
2 ≤ C‖f‖L1

l+γ+
‖h‖2

L2,

and this together with the estimate on J1 give (2.1.16).

We now try to prove (2.1.17) by using (2.1.15) instead of (2.1.14). For this, we have
∣∣∣
((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣

≤ C

{∫∫∫
b |θ|l |(Wl+γ+f)′∗| |(Wγ+g)

′| |h| dvdv∗dσ

+

∫∫∫
b |θ| |(W1+γ+f)′∗| |(Wl−1+γ+g)

′| |h| dvdv∗dσ

+

∫∫∫
b |θ| |(Wγ+f)′∗| |(Wl+γ+g)

′| |h| dvdv∗dσ
}

= M1 + M2 + M3.

The estimation on M2,M3 can be done by the same method for proving (2.1.16) to have

M2 ≤ C||f ||L1

1+γ+
‖g‖L2

l−1+γ+
‖h‖L2,

M3 ≤ C||f ||L1
γ+

‖g‖L2
l+γ+

‖h‖L2.

M1 can be estimated as follows. Firstly, we have

M2
1 =C2

(∫∫∫
b |θ|l|(Wl+γ+f)∗||(Wγ+g)| |h′| dvdv∗dσ

)2

≤C2

∫∫∫
b |θ| l− 3

2 |(Wγ+g)||(Wl+γ+f)∗|2dvdv∗dσ

×
∫∫∫

b |θ| l+ 3
2 |(Wγ+g)||h′|2dvdv∗dσ

=M1,1 ×M1,2.

Then, if l − 3
2 − 2s− 1 > −1, that is, l > 2s+ 3

2 , we have

M1,1 ≤ C‖g‖L1
γ+

‖f‖2
L2

l+γ+
.

On the other hand, for M1,2 we need to apply the singular change of variables v∗ → v′. The
Jacobian of this transform is

(2.1.21)
∣∣∣∂v∗
∂v′

∣∣∣ =
8∣∣∣I − k ⊗ σ

∣∣∣
=

8

|1 − k · σ| =
4

sin2(θ/2)
≤ 16θ−2, θ ∈ [0, π/2].

Notice that this gives rise to an additional singularity in the angle θ around 0. Actually, the
situation is even worse in the following sense. Recall that θ is no longer legitimate polar angle. In
this case, the best choice of the pole is k

′′ = (v′ − v)/|v′ − v| for which polar angle ψ defined by
cosψ = k

′′ · σ satisfies (cf. [6, Fig. 1])

ψ =
π − θ

2
, dσ = sinψdψdφ, ψ ∈ [

π

4
,
π

2
].
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This measure does not cancel any of the singularity of b(cos θ), unlike the case in the usual polar
coordinates. Nevertheless, this singular change of variables yields

M1,2 = C

∫∫∫
b |θ|l+ 3

2 |(Wγ+g)| |h′|2 dvdv∗dσ

≤ C

∫∫
D1(v, v

′)|(Wγ+g)| |h′|2dvdv′,

when l > 3
2 + 2s because

D1(v, v
′) =

∫

S2

θl+
3
2−2b(cos θ)dσ ≤ C

∫ π/2

π/4

(
π

2
− ψ)−2−2s+l+ 3

2−2dψ ≤ C.

Therefore,

M1,2 ≤ C‖g‖L1

γ+
‖h‖2

L2.

Now the proof of (2.1.17) is completed by the embedding, that is, for l > 3
2 ,

‖g‖L1
γ+

≤ C‖g‖L2
l+γ+

.

Proof of (2): the case 1/2 ≤ s < 1. Since we look for an upper bounded estimate and ε > 0,
it is sufficient to assume s > 1/2 for our purpose. Write

((
Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)
=

∫∫∫
B f ′

∗g
′(W ′

l −Wl)h dvdv∗dσ

=

∫∫∫
B f∗g(Wl −W ′

l )h
′ dvdv∗dσ =

∫∫∫
B f∗g

′(Wl −W ′
l )h

′ dvdv∗dσ

+

∫∫∫
B f∗(g − g′)(Wl −W ′

l )h
′ dvdv∗dσ = I1 + I2.

Taylor expansion gives

Wl −W ′
l = ∇Wl(v

′)(v − v′) −
∫ 1

0

(1 − τ)∇2Wl(v
′ + τ(v − v′))dτ(v − v′)2 ,

so that

I1 = −
∫ 1

0

(1 − τ)

∫∫∫
B f∗{∇2Wl(v

′ + τ(v − v′))}(v − v′)2g′ h′ dvdv∗dσdτ .

By using the symmetry property shown in Figure ?? ( see also Figure ?? below, and §3 in [39]),
the first order term in the Taylor expansion vanishes, that is,

∫∫∫
B f∗g

′∇Wl(v
′)(v − v′)h′ dvdv∗dσ

=

∫∫
f∗

{∫

S2

b

(
ψσ(v

′) − v∗
|ψσ(v′) − v∗|

· σ
)

Φ(|ψσ(v′) − v∗|)
∣∣∣∂(ψσ(v

′))

∂(v′)

∣∣∣(ψσ(v′) − v′)dσ

}

· ∇Wl(v
′) g′h′dv′dv∗ = 0.

Here, we have used the notation that for a transformation v → v′, its inverse transformation is
denoted by v′ → ψσ(v

′) = v. And σ1, σ2 are symmetric with respect to each other, in the sense
that ψσ1 (v

′) − v′ = −(ψσ2(v
′) − v′).

Furthermore, since
∣∣{∇2Wl(v

′ + τ(v − v′))}(v − v′)2
∣∣ ≤ Cθ2|v∗ − v′|2{Wl−2(v∗) +Wl−2(v

′ + τ(v − v′) − v∗)}
≤ Cθ2{Wl(v∗) +Wl(v

′)} ≤ Cθ2Wl(v∗)Wl(v
′)

and Φ(|v − v∗|) ≤ (
√

2〈v′ − v∗〉)γ
+ ≤

√
2
γ+

〈v∗〉γ
+〈v′〉γ+

, we get by the regular change of variables
v → v′ and the Schwartz inequality

(2.1.22) |I1| ≤ C||f ||L1
l+γ+ (R3

v)||g||L2
l+γ+(R3

v)||h||L2(R3
v).
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In order to estimate I2, we shall apply the Littlewood-Paley decomposition {△j}∞j=0, which is

a dyadic decomposition in the Fourier variable (see also [17, 59, 5]),

△jg(v) = F−1
(
φj(η)ĝ(η)

)
, g =

∞∑

0

△jg,

and for m ∈ R,

‖△jg‖Hm ≈ 2jm‖△jg‖L2, ‖g‖2
Hm ≈

∑
22j m‖△jg‖2

L2.

Then we have the following decomposition

I2 =

∞∑

j=0

∫ 1

0

(∫

R6

{∫

Ωj

B f∗∇v(△jg)(v
′ + τ(v − v′))(v − v′)(Wl −W ′

l )h
′ dσ
}
dvdv∗

)
dτ

+
∞∑

j=0

∫

R6

{∫

Ωc
j

B f∗
{
(△jg)(v) − (△jg)(v

′)
}
(Wl −W ′

l )h
′ dσ
}
dvdv∗

=

∞∑

j=0

(
I1
2,j + I2

2,j

)
,

where

Ωj = Ωj(v, v∗) =

{
σ ∈ S2 ;

v − v∗
|v − v∗|

· σ ≥ 1 − 21−2j〈v − v∗〉−2

}
.

Note that if 1/2 < s < 1, then
∫

Ωj

b(cos θ) θ2dσ = 2π

∫

{θ∈[0,π/2]; sin(θ/2)≤2−j〈v−v∗〉−1}
sin θ b(cos θ)θ2dθ(2.1.23)

≤ C2j(2s−2)〈v − v∗〉2s−2,

and ∫

Ωc
j

b(cos θ) θ dσ = 2π

∫

{θ∈[0,π/2]; sin(θ/2)≥2−j〈v−v∗〉−1}
sin θ b(cos θ) θ dθ(2.1.24)

≤ C2j(2s−1)〈v − v∗〉2s−1.

To estimate I1
2,j , we need the change of variables

(2.1.25) v → z = v′ + τ(v − v′) =
1 + τ

2
v +

1 − τ

2
(|v − v∗|σ + v∗).

The Jacobian of this transform is bounded from below uniformly in v∗, σ, τ , because
∣∣∣∂(z)

∂(v)

∣∣∣ =
∣∣∣det

(1 + τ

2
I +

1 − τ

2
σ ⊗ k

)∣∣∣ (k =
v − v∗
|v − v∗|

)

=
(1 + τ)3

23

∣∣∣1 +
1 − τ

1 + τ
k · σ

∣∣∣ =
(1 + τ)3

23

∣∣∣ 2τ

1 + τ
+ 2

1 − τ

1 + τ
cos2

θ

2

∣∣∣

≥ (1 + τ)3

23

∣∣∣ 2τ

1 + τ
+

1 − τ

1 + τ

∣∣∣ =
(1 + τ)3

23
≥ 1

23
.

Recall, cf. [6] that the cross-section B(v − v∗, θ) is supposed to be supported in 0 ≤ θ ≤ π/4.
Furthermore, we have

|z − v∗| =
∣∣∣1 + τ

2
(v − v∗) +

1 − τ

2
|v − v∗|σ

∣∣∣(2.1.26)

= |v − v∗|
∣∣∣
(1 + τ

2

)2

+
(1 − τ

2

)2

+
1 − τ2

2
k · σ

∣∣∣
1/2

= |v − v∗|
∣∣∣τ2 + (1 − τ2) cos2

θ

2

∣∣∣
1/2

≥ 1√
2
|v − v∗|,
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which implies 〈v − v∗〉2sΦ(|v − v∗|) ≤ C〈z〉2s+γ+〈v∗〉2s+γ+ . Since

|(v − v′)(Wl −W ′
l )| ≤ Cθ2|v − v∗|2(Wl−1(z) +W∗l−1) ≤ Cθ2|v − v∗|2Wl−1(z)W∗l−1,

we from (2.1.23) that for any ε > 0

|I1
2,j | ≤ C

∫ 1

0

∫∫∫

Ωj

bθ2|(Wl−1+2s+γ+f)∗| |
(
Wl−1+2s+γ+(∇v△jg)

)
(z)|〈v − v∗〉2−2s|h′|dσdvdv∗dτ

≤ C

[∫ 1

0

(∫∫ ( ∫

Ωj

bθ2|(Wl−1+2s+γ+f)∗| |
(
Wl−1+2s+γ+(∇v△jg)

)
(z)|2

×〈v − v∗〉2−2s|dσ
)
dvdv∗

)1/2

dτ

]

×
[∫∫ ( ∫

Ωj

bθ2|(Wl−1+2s+γ+f)∗| 〈v − v∗〉2−2s|h′|2dσ
)
dvdv∗

]1/2

≤ C2−εj‖f‖L1
l+2s−1+γ+

(R3
v)‖g‖H2s−1+ε

l+2s−1+γ+
(R3

v)‖h‖L2(R3
v),

where we used the regular change of variables v → z defined by (2.1.25) and the regular change of
variables v → v′. The estimate (2.1.24) yields the same bound for I2

2,j . Therefore, we obtain

(2.1.27) |I2| ≤ C||f ||L1
l+2s−1(R

3
v)||g||H2s−1+ε

l+2s−1 (R3
v)||h||L2(R3

v).

Estimates (2.1.22) and (2.1.27) together give the desired estimate (2.1.18).
For the convenience of the readers, we postpone the proof of (2.1.19) to the end of section 2.3.

And this completes the proof of Lemma 2.2 because (3) comes from (2) for the case s = 1/2 + κ.

2.2. Coercivity estimates. We establish coercivity estimates of the Boltzmann collision opera-
tor. We will show that the angular singularity in the cross-section yields the sub-elliptic estimates
which are the lower bounds of the collision operator (see [6]). Notice that we need precise weighted
sub-elliptic estimates as given in the following theorem. For more detailed explanation and nota-
tions, interested readers can refer to [5, 39].

Theorem 2.6. Assume that γ ∈ R, 0 < s < 1. Let g ≥ 0, 6≡ 0, g ∈ L1
max{γ+, 2−γ+}

⋂
L logL(R3

v).

Then there exists a constant Cg > 0 depending only on B(v−v∗, θ), ‖g‖L1
max{γ+, 2−γ+}

and ‖g‖L log L,

and C > 0 depending on B(v−v∗, θ) such that for any smooth function f ∈ H1
γ/2(R

3
v)∩L2

γ+/2(R
3
v),

we have

(2.2.1) −
(
Q(g, f), f

)
L2(R3

v)
≥ Cg‖Wγ/2f‖2

Hs(R3
v) − C||g||L1

max{γ+, 2−γ+}
(R3

v)‖f‖2
L2

γ+/2
(R3

v) .

Remark 2.7. ¿From the proof of the theorem, the constant Cg is seen to be an increasing function

of ‖g̃‖L1, ‖g̃‖−1
L1

1
and ‖g̃‖−1

L logL where g̃ = 〈v〉−|γ|g. If the function g depends continuously on a

parameter τ ∈ Ξ, then the constant Cg depends on infτ∈Ξ ‖〈v〉−|γ|gτ‖L1 , supτ∈Ξ ‖gτ‖L log L and
supτ∈Ξ ‖g‖L1

max{γ+, 2−γ+}
. In the later application, we take τ = (t, x).

Proof. Firstly, we have

(Q(g, f), f) =

∫

R6

∫

S2

Φ(|v − v∗|)b(cos θ)g(v∗)f(v){f(v′) − f(v)}dσdv∗dv

=
1

2

∫

R6

∫

S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′)2 − f(v)2}dσdv∗dv

− 1

2

∫

R6

∫

S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′) − f(v)}2dσdv∗dv

= R1 −R2.
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For R1, according to cancellation lemma (Corollary 2 of [6]), we have

R1 =
1

2

∫

R6

∫

S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′)2 − f(v)2}dσdv∗dv

=
1

2

∫

R6

∫

S2

{
Φ

(
|v − v∗|
cos θ2

)
1

cos3 θ
2

− Φ(|v − v∗|)
}
b(cos θ)g(v∗)f(v)2dvdσdv∗

=
1

2

∫

R6

∫

S2

Φ

(
|v − v∗|
cos θ2

){
1

cos3 θ
2

− 1

}
b(cos θ)g(v∗)f(v)2dvdσdv∗

+
1

2

∫

R6

∫

S2

{
Φ

(
|v − v∗|
cos θ2

)
− Φ(|v − v∗|)

}
b(cos θ)g(v∗)f(v)2dvdσdv∗

= R11 + R12.

For the first term R11, from 1 − cos3 θ
2 ≤ 3(1 − cos θ2 ) = 6 sin2 θ

4 , it follows that

R11 ≤ C‖g‖L1
γ+

‖f‖2
L2

γ+/2

,

because Φ ≤ 1 when γ < 0. For the second term R12, we first note that the mean value theorem
gives

Φ(
|v − v∗|
cos θ2

) − Φ(|v − v∗|)

= −(
1

cos θ2
− 1)|v − v∗|2(1 + (

|v − v∗|
a

)2)
γ
2 −1 2

a3

≤ C(
1

cos θ2
− 1)Φ(|v − v∗|),

where
√

2
2 ≤ cos θ2 < a < 1. Similar to R11, we can obtain

R12 ≤ C‖g‖L1
γ+

‖f‖2
L2

γ+/2

.

For the term R2, we first note that

Φ(|v − v∗|) = (1 + |v − v∗|2)
γ
2 ≥ 〈v〉γ

〈v∗〉|γ|
.

Then, by using the fact that (a− b)2 ≥ a2/2 − b2, we have

R2 =
1

2

∫

R6

∫

S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′) − f(v)}2dσdv∗dv

≥ C

∫

R6

∫

S2

b(cos θ)
g(v∗)

〈v∗〉|γ|
〈v〉γ{f(v′) − f(v)}2dσdv∗dv

= C

∫

R6

∫

S2

b(cos θ)
g(v∗)

〈v∗〉|γ|
{〈v〉 γ

2 f(v′) − 〈v〉 γ
2 f(v)}2dσdv∗dv

= C

∫

R6

∫

S2

b(cos θ)
g(v∗)

〈v∗〉|γ|
{〈v′〉 γ

2 f(v′) − 〈v〉 γ
2 f(v)

+ 〈v〉 γ
2 f(v′) − 〈v′〉 γ

2 f(v′)}2dσdv∗dv

≥ C1

∫

R6

∫

S2

b(cos θ)
g(v∗)

〈v∗〉|γ|
{〈v′〉 γ

2 f(v′) − 〈v〉 γ
2 f(v)}2dσdv∗dv

− C2

∫

R6

∫

S2

b(cos θ)
g(v∗)

〈v∗〉|γ|
{〈v〉 γ

2 f(v′) − 〈v′〉 γ
2 f(v′)}2dσdv∗dv

= R21 −R22.
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For the first term R21, by using the Corollary 3 and Proposition 2 of [6], we have

R21 = C1

∫

R6

∫

S2

b(cos θ)
g(v∗)

〈v∗〉|γ|
{〈v′〉 γ

2 f(v′) − 〈v〉 γ
2 f(v)}2dσdv∗dv

≥ C̃g‖Wγ/2f‖2
Hs − C‖g̃‖L1‖f‖2

L2
γ+/2

,
(2.2.2)

where g̃ = 〈v〉−|γ|g. Here C̃g is an increasing function of ‖g̃‖L1 , ‖g̃‖−1
L1

1
and ‖g̃‖−1

L logL, according to

the proof in the last part of [6], see also the Lemma 2.1 of [48].
For the second term R22, note that for some τ ∈ (0, 1), we have

〈v〉 γ
2 − 〈v′〉 γ

2

〈v∗〉
|γ|
2

≤ C
〈v′ + τ(v − v′)〉 γ−2

2

〈v∗〉
|γ|
2

|v − v′|

≤ C
〈v∗〉

|2−γ|
2 − |γ|

2

〈v′ + τ(v − v′) − v∗〉
2−γ
2

|v′ − v∗| tan(θ/2)

≤ C〈v∗〉
|2−γ|

2 〈v′ − v∗〉
γ
2 tan(θ/2)

≤ C

{
〈v∗〉

|2−γ|
2 〈v′〉 γ

2 tan(θ/2), if γ ≥ 0,
〈v∗〉 tan(θ/2), otherwise.

Hence, we get

R22 = C2

∫

R6

∫

S2

b(cos θ)g(v∗)

{
〈v〉 γ

2 − 〈v′〉 γ
2

〈v∗〉
|γ|
2

}2

f(v′)2dσdv∗dv

≤ C2

∫

R6

∫

S2

b(cos θ) tan2(θ/2)〈v∗〉|2−γ
+|g(v∗){〈v′〉

γ+

2 f(v′)}2dσdv∗dv

≤ C2||g||L1
|2−γ+|

‖f‖2
L2

γ+/2

.

This completes the proof of the Theorem 2.6.

In the following analysis, we shall also need the following interpolation inequality between
weighted Sobolev spaces in v, see for instance [32, 39].

Lemma 2.8. For any k ∈ R, p ∈ R+, δ > 0,

(2.2.3) ‖f‖2
Hk

p (R3
v) ≤ Cδ‖f‖Hk−δ

2p (R3
v)‖f‖Hk+δ

0 (R3
v).

2.3. Commutator estimates. We are now going to study the commutators of a family of pseudo-
differential operators with the Boltzmann collision operator. This is a key step in the regularity
analysis of weak solutions because it requires the mollifiers defined by pseudo-differential operators.
In what follows, we denote (· , ·)L2(R3

v) by (· , ·) for simplicity of notations without any confusion.

Proposition 2.9. Let λ ∈ R and M(ξ) be a positive symbol of pseudo-differential operator in Sλ1,0
of the form of M(ξ) = M̃(|ξ|2). Assume that for any c > 0 there exists a constant C > 0 such that
for any s, τ > 0

(2.3.1) c−1 ≤ s

τ
≤ c implies C−1 ≤ M̃(s)

M̃(τ)
≤ C.

Furthermore assume that M(ξ) satisfies

(2.3.2) |M (α)(ξ)| = |∂αξM(ξ)| ≤ CαM(ξ)〈ξ〉−|α|,

for any α ∈ N3. Then the followings hold.



THE NON CUTOFF BOLTZMANN EQUATION 21

(1) If 0 < s < 1/2, for any N > 0 there exists a CN > 0 such that
∣∣(M(Dv)Q(f, g) −Q(f, M(Dv)g), h)L2(R3

v)

∣∣(2.3.3)

≤ CN‖f‖L1
γ+(R3

v))

(
‖Mg‖L2

γ+(R3
v) + ‖g‖Hλ−N

γ+ (R3
v))

)
‖h‖L2(R3

v).

(2) If 1/2 < s < 1, for any N > 0 and any ε > 0 there exists a CN,ε > 0 such that
∣∣(M(Dv)Q(f, g) −Q(f, M(Dv)g), h)L2(R3

v)

∣∣(2.3.4)

≤ CN,ε‖f‖L1
(2s+γ−1)+

(R3
v))

(
‖Mg‖H2s−1+ε

(2s+γ−1)+
(R3

v)) + ‖g‖Hλ−N

γ+ (R3
v))

)
‖h‖L2(R3

v) .

(3) If s = 1/2, we have the same estimate as (2.3.4) with (2s+ γ − 1) replaced by (γ + κ) for
any small κ > 0.

Proof : Firstly, set Φ∗(v) = Φ(|v − v∗|) and write
(
M(Dv)Q(f, g), h

)
−
(
Q(f, M(Dv)g), h

)

=

∫

R6

∫

S2

B(|v − v∗|, σ)f(v∗)g(v)
((
M h

)
(v′) −

(
M h

)
(v)
)
dσdv∗dv

−
∫

R6

∫

S2

B(|v − v∗|, σ)f(v∗)
(
M g

)
(v)
(
h(v′) − h(v)

)
dσdv∗dv

=

∫

R6

∫

S2

b(cos θ)f(v∗)
[
(Φ∗g)(v)(Mh)(v′) −

{
M(Φ∗g)

}
(v)h(v′)

]
dσdv∗dv

+

∫

R6

∫

S2

b(cos θ)f(v∗)
{
M(Φ∗g)

}
(v)
(
h(v′) − h(v)

)
dσdv∗dv

−
∫

R6

∫

S2

b(cos θ)f(v∗)
{
Φ∗
(
M g

)}
(v)
(
h(v′) − h(v)

)
dσdv∗dv

=

∫

R6

∫

S2

b(cos θ)f(v∗)
[
(Φ∗g)(v)(Mh)(v′) −

{
M(Φ∗g)

}
(v)h(v′)

]
dσdv∗dv

+

∫

R6

∫

S2

b(cos θ)f(v∗)
([
M , Φ∗

]
g
)
(v)
(
h(v′) − h(v)

)
dσdv∗dv

= I + II.

The above computation is justified with cutoff approximation, see the remark given after (2.1.4)
and also [39]. The first term I can be rewritten by using Bobylev formula (see e.g. [6]) as

I =

∫

R6

∫

S2

b(
ξ

|ξ| · σ)f(v∗)
(
M(ξ) −M(ξ+)

)
F(Φ∗g)(ξ

+)e−iv∗ξ
−

dσdv∗ĥ(ξ)dξ,

where

ξ± =
ξ ± |ξ|σ

2
.

Notice that in the case of Maxwellian molecule type cross section with γ = 0 i.e. Φ(|v − v∗|) = 1,
II ≡ 0.

Since M̃ ′(|ξ|2) = 2ξ · ∇M(ξ)/|ξ|2 and |ξ+| ≤ |ξ| ≤ 2|ξ+|, it follows from (2.3.1) and (2.3.2) that

(2.3.5) |M(ξ) −M(ξ+)| ≤ C

∣∣∣∣sin
θ

2

∣∣∣∣
2

M(ξ+),

and ∫

S2

b
( ξ
|ξ| · σ

) ∣∣∣∣sin
θ

2

∣∣∣∣
2

dσ ≤ C < +∞.
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Thus,

|I| ≤ C

∫

R3

〈v∗〉γ+ |f(v∗)|
∫

S2

∫

R3

b(
ξ

|ξ| · σ) sin2 θ

2
M(ξ+)|F(Φ∗〈v∗〉−γ+g)(ξ+)| |ĥ(ξ)|dξdσdv∗

≤ C
( ∫

R3

|〈v∗〉γ+f(v∗)|
∫

S2

∫

R3

b(
ξ

|ξ| · σ) sin2 θ

2
|M(ξ+)F(Φ∗〈v∗〉−γ+g)(ξ+)|2dξdσdv∗

)1/2

×
( ∫

R3

|〈v∗〉γ+f(v∗)|
∫

S2

∫

R3

b(
ξ

|ξ| · σ) sin2 θ

2
|ĥ(ξ)|2dξdσdv∗

)1/2

≤ C‖f‖L1
γ+

(
sup
v∗

‖M(Dv)Φ∗〈v∗〉−γ+g(v)‖L2
γ+

)
‖h‖L2,

where we have used Plancherel’s equality, the change of variables ξ → ξ+ for which dξ ∼ dξ+

uniformly with respect to σ, the estimate Φ∗〈v∗〉−γ+ ≤ 〈v〉γ+ . Then by using the expansion
formula of the pseudo-differential calculus

(2.3.6) [M(Dv), Φ∗(v)] g =
∑

1≤|α|<N1

1

α!
Φ∗(α)M

(α)(Dv)g + rN1(v,Dv; v∗)g ,

with N1 > λ, and the condition (2.3.2), we obtain

(2.3.7) sup
v∗

‖M(Dv)Φ∗〈v∗〉−γ+g(v)‖L2
γ+

≤ C
(
‖Mg‖L2

γ+
+ ||g||

H
λ−N1

γ+

)
.

Hence,

(2.3.8) |I| ≤ C‖f‖L1
γ+

(
‖Mg‖L2

γ+
+ ||g||

H
λ−N1

γ+

)
‖h‖L2 .

We now turn to the term II. Firstly, set

F (v, v∗) = [M, Φ∗]g(v),

and decompose

II =

∫

R6

∫

S2

b(cos θ)f(v∗)
{
F (v′, v∗)h(v

′) − F (v, v∗)h(v)
}
dσdv∗dv

+

∫

R6

∫

S2

b(cos θ)f(v∗)
(
F (v, v∗) − F (v′, v∗)

)
h(v′)dv∗dvdσ

= J1 + J2.

According to the cancellation lemma [6], we obtain
∫

R3

∫

S2

b(cos θ)
{
F (v′, v∗)h(v

′) − F (v, v∗)h(v)
}
dσdv =

(
S ∗

{
F ( · , v∗)h

})
(v∗),

where the convolution product is in v ∈ R3, and in this case,

S = 2π

∫ π/2

0

sin θb(cos θ)
[ 1

cos3(θ/2)
− 1
]
dθ

is a constant function. Consequently,

J1 =

∫

R3

f(v∗)
(
S ∗ {F (·, v∗)h}

)
(v∗)dv∗ = S

∫

R6

f(v∗)F (v, v∗)h(v)dvdv∗.

By (2.3.6) and (2.3.7), we get

|J1| ≤C
∫

R3

|f(v∗)|‖F (·, v∗)‖L2‖h‖L2dv∗(2.3.9)

≤C‖f‖L1
γ+

(
‖Mg‖L2

γ+
+ ||g||

H
λ−N1
γ+

)
‖h‖L2 .

To estimate the term J2, we need to consider the following two cases.
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Case 1: 0 < s < 1/2 . Since the mean value theorem yields

F (v, v∗) − F (v′, v∗) = (v − v′) ·
∫ 1

0

∇v(F (v′ + τ(v − v′), v∗)dτ,

by noticing that

|v′ − v| = |v − v∗| sin(θ/2) = |v′ − v∗| tan(θ/2),

we have

|J2| ≤
∫ 1

0

( ∫

R6×S2

b(cos θ)|v′ − v||f(v∗)||h(v′)||(∇vF )(v′ + τ(v − v′), v∗)|dvdv∗dσ
)
dτ.

≤C
( ∫

R6×S2

b(cos θ)|θ|〈v∗〉γ+ |f(v∗)||h(v′)|2dvdv∗dσ
)1/2

×
∫ 1

0

(∫

R6×S2

b(cos θ)|θ|〈v∗〉γ+ |f(v∗)|
∣∣∣∣
|v − v∗|
〈v∗〉γ+

(∇vF )(v′ + τ(v − v′), v∗)

∣∣∣∣
2

dvdv∗dσ
)1/2

dτ

=C J21 × J22.

By the change of variables v → v′ for which dv ∼ dv′ uniformly in v∗ ∈ R3, σ ∈ S2 (see [6]), we get

(2.3.10) J2
21 ≤ C‖f‖L1

γ+
‖h‖2

L2.

To estimate J22, we apply the change of variables (2.1.25) and use (2.1.26). Setting

ψ∗(v) =
〈v − v∗〉
〈v∗〉γ+

,

we get

J2
22 ≤ C

∫ 1

0

[ ∫

R2n×S2

b(cos θ)|θ|〈v∗〉γ+ |f(v∗)|
∣∣∣ψ∗(z)(∇vF )(z, v∗)

∣∣∣
2

dzdv∗dσ
]
dτ

≤ C‖f‖L1
γ+

sup
v∗

‖ψ∗(·)(∇vF )(·, v∗)‖2
L2.

On the other hand, it follows from the expansion formula of pseudo-differential operators that,
with Φ∗(v) = (1 + |v − v∗|2)γ/2 we have for any N1 ∈ N

(∇vF )(v, v∗) = ∇v[M, Φ∗]g(v)

=
∑

1≤|α|<N1

1

α!

{
(∇Φ∗(α))M

(α)(Dv)g + Φ∗(α)M
(α)(Dv)∇vg

}
+ r̃N1(v,Dv; v∗)g

=FN1(v,Dv; v∗)g(v) + r̃N1(v,Dv; v∗)g(v),

(2.3.11)

where r̃N1 is a pseudo-differential operator with symbol belonging to Sλ−N1
1,0 uniformly with respect

to v∗ ∈ R3 (cf. [41]). Since

∣∣ψ∗Φ∗(α)

∣∣ ≤ Cα
〈v − v∗〉
〈v∗〉γ+

〈v − v∗〉γ−|α| ≤ Cα〈v〉γ+ ,

by (2.3.2), we have for α 6= 0 that,

|M (α)(ξ) ξ| ≤ CαM(ξ)〈ξ〉−|α|+1 ≤ CαM(ξ).

Hence

(2.3.12) J2
22 ≤ C‖f‖L1

γ+

(
‖Mg‖2

L2
γ+

+ ||g||2
H

λ−N1
γ+

)
.

Now, it follows from (2.3.9), (2.3.10), and (2.3.12) that

(2.3.13) |II| ≤ C‖f‖L1
γ+

(
‖Mg‖L2

γ+
+ ||g||

H
λ−N1

γ+

)
||h||L2 .,

holds when 0 < s < 1/2.
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Case 2: 1/2 < s < 1. We now decompose J2 as follows:

J2 =

∫ 1

0

(∫

R6×S2

b(cos θ)f(v∗)h(v
′)(v − v′) · (∇vF )(v′ + τ(v − v′), v∗)dvdv∗dσ

)
dτ

=

∫

R6×S2

b(cos θ)f(v∗)h(v
′)(v − v′) · (∇vF )(v′, v∗)dvdv∗dσ

+

∫ 1

0

( ∫

R6×S2

b(cos θ)f(v∗)h(v
′)

(v − v′) · {(∇vF )(v′ + τ(v − v′), v∗) − (∇vF )(v′, v∗)} dvdv∗dσ
)
dτ

= J0
2 + J1

2 .

The essential feature of this decomposition is that J0
2 vanishes by symmetry as in the proof of

Lemma 2.4. Indeed, we have

J0
2 =

∫

R6

f(v∗)h(v
′)

{∫

S2

b

(
ψσ(v

′) − v∗
|ψσ(v′) − v∗|

· σ
) ∣∣∣∂(ψσ(v

′))

∂(v′)

∣∣∣(ψσ(v′) − v′)dσ

}
· (∇vF )(v′, v∗)dv

′dv∗

= 0,

because of the symmetry in σ1 and σ2 in the sense that ψσ1(v
′) − v′ = −(ψσ2(v

′) − v′), cf. Figure
??.

Now, by the change of variable v → z = v′ + τ(v − v′) defined by (2.1.25), we consider

J1
2 (τ) =

∫

R6×S2

bf(v∗)h(v
′)(v − v′) · {(∇vF )(z, v∗) − (∇vF )(v′, v∗)}dvdv∗dσ.

By recalling the expansion formula (2.3.11) of (∇vF )(v, v∗), we first consider

J1
2 (τ, α)

=

∫

R6×S2

bf(v∗)h(v
′)(v − v′) · {Φ∗(α)M

(α)∇vg(z) − Φ∗(α)M
(α)∇vg(v

′)}dvdv∗dσ

=

∫

R6×S2

bf(v∗)h(v
′)
{
Φ∗(α)(z) − Φ∗(α)(v

′)
}

(v − v′) ·M (α)∇vg(z)dvdv∗dσ

+

∫

R6×S2

bf(v∗)h(v
′)Φ∗(α)(v

′)(v − v′) · {M (α)∇vg(z)−M (α)∇vg(v
′)}dvdv∗dσ

=J1,0
2 (τ, α) + J̃1

2 (τ, α).

(2.3.14)

Notice that the case when |α| = 1 is the most difficult case in the sense that M (α)(Dv)∇v is a
pseudo-differential operator of order λ with symbol bounded by CM(ξ) due to the assumption
(2.3.2). By writing (1) instead of (α) when |α| = 1, we have

∣∣{Φ∗(1)(z) − Φ∗(1)(v
′)
}
|v − v′|

∣∣ ≤ C〈z − v∗〉γθ2,
which gives

∣∣∣J1,0
2 (τ, (1))

∣∣∣ ≤
(∫

R6×S2

bθ2|〈v∗〉γ+f(v∗)||h(v′)|2dσdvdv∗
)1/2

(2.3.15)

×
(∫

R6×S2

bθ2|〈v∗〉γ+f(v∗)|
∣∣∣∣
〈z − v∗〉γ
〈v∗〉γ+

M (α) ∇vg(z)

∣∣∣∣
2

dσdvdv∗

)1/2

≤C||f ||L1
γ+

||M g||L2
γ+

||h||L2 .
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In order to evaluate the term J̃1
2 (τ, (1)), we take the same Littlewood-Paley partition of unity

{ψj(ξ)} as in the proof of Lemma 2.4 and write

J̃1
2 (τ, (1))

=

∫

R6×S2

bf(v∗)h(v
′)Φ∗(1)(v

′)(v − v′) · {M (1)∇vg(z) −M (1)∇vg(v
′)}dvdv∗dσ

=

∞∑

j=0

∫

R6×S2

bf(v∗)h(v
′)Φ∗(1)(v

′)(v − v′) · (gj(z) − gj(v
′)) dvdv∗dσ

=

∞∑

j=0

J̃1
2,j(τ),

where gj(v) = ψj(Dv)M
(1)(Dv)∇vg(v). For each j we apply the following decomposition by using

Ωj introduced in the proof of Lemma 2.4 to have

J̃1
2,j(τ)

=

∫ 1

0

( ∫

R6

(∫

Ωj

bf(v∗)h(v
′)Φ∗(1)(v

′)(v − v′)

· (z − v′)∇gj(v′ + s(z − v′))dσ
)
dvdv∗

)
ds

+

∫

R6

(∫

Ωc
j

bf(v∗)h(v
′)Φ∗(1)(v

′)(v − v′) · (gj(z) − gj(v
′)) dσ

)
dvdv∗

=J̃1,1
2,j (τ) + J̃1,2

2,j (τ).

By setting

v′τ,s = v′ + s(z − v′),

we have

|J̃1,1
2,j (τ)| ≤

∫ 1

0

(∫

R6

(∫

Ωj

b|v′ − v|2|f(v∗)||h(v′)||Φ∗(1)(v
′)||∇gj(v′τ,s)|dσ

)
dvdv∗

)
ds

≤ C

∫ 1

0

(∫

R6

(∫

Ωj

b(cos θ)θ2〈v − v∗〉2−2s〈v∗〉(2s+γ−1)+ |f(v∗)|

× |h(v′)|
∣∣∣∣∣
〈v′τ,s − v∗〉2s+γ−1

〈v∗〉(2s+γ−1)+
∇gj(v′τ,s)

∣∣∣∣∣ dσ
)
dvdv∗

)
ds

≤ C2−εj
(∫

R6

(∫

Ωj

b(cos θ)θ22j(2−2s)〈v − v∗〉2−2s〈v∗〉(2s+γ−1)+ |f(v∗)||h(v′)|2dσ
)
dvdv∗

)1/2

×
∫ 1

0

(( ∫

R6

( ∫

Ωj

b(cos θ)θ22j(2−2s)〈v − v∗〉2−2s〈v∗〉(2s+γ−1)+ |f(v∗)|
∣∣∣〈v′τ,s〉(2s+γ−1)+2j(2s−2+ε)∇gj(v′τ,s)

∣∣∣
2

dσ
)
dvdv∗

)1/2)
ds

= C2−εj J̃1,1
2,j,1(τ) × J̃1,1

2,j,2(τ).

By using the same change of variables as for J2,1 in the previous case, it follows from (2.1.23) that

(2.3.16) J̃1,1
2,j,1(τ)

2 ≤ C||f ||L1
(2s+γ−1)+

||h||2L2 .

Similarly, by taking the change of variables v → v′τ,s as in the previous case again, (2.1.23) leads
to

(2.3.17) J̃1,1
2,j,2(τ)

2 ≤ C||f ||L1
(2s+γ−1)+

(
||M g||2

H2s−1+ε
(2s+γ−1)+

+ ||g||2
H

λ−N1+2s−1+ε

(2s+γ−1)+

)
,
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where we have used

||2j(2s−2−ε)∇gj(v)||2L2
(2s+γ−1)+

≤ C
(
||M g||2

H2s−1+ε
(2s+γ−1)+

+ ||g||2
H

λ−N1+2s−1+ε

(2s+γ−1)+

)
.

Hence, it follows from (2.3.16) and (2.3.17) that, for N1 > λ+ 2s− 1 + ε, we have

(2.3.18) |J̃1,1
2,j (τ)| ≤ C2−εj ||f ||L1

(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+

+ ||g||Hλ−N
(2s+γ−1)+

)
|h||L2 .

On the other hand, for J̃1,2
2,j (τ), note that

J̃1,2
2,j (τ) =

∫

R6

(∫

Ωc
j

bf(v∗)h(v
′)Φ∗(1)(v

′)(v − v′) · gj(z)dσ
)
dvdv∗,

by the symmetry in Ωcj . We have

|J̃1,2
2,j (τ)| ≤ C

∫

R6

( ∫

Ωc
j

b(cos θ)θ〈v − v∗〉1−2s〈v∗〉(2s+γ−1)+ |f(v∗)|

× |h(v′)|
∣∣∣∣
〈z − v∗〉2s+γ−1

〈v∗〉(2s+γ−1)+
gj(z)

∣∣∣∣ dσ
)
dvdv∗

≤ C2−εj
(∫

R6

(∫

Ωc
j

b(cos θ)θ2j(1−2s)〈v − v∗〉1−2s〈v∗〉(2s+γ−1)+ |f(v∗)||h(v′)|2dσ
)
dvdv∗

)1/2

×
(∫

R6

(∫

Ωc
j

b(cos θ)θ2j(1−2s)〈v − v∗〉1−2s〈v∗〉(2s+γ−1)+ |f(v∗)|

∣∣∣〈z〉(2s+γ−1)+2j(2s−1+ε)gj(z)
∣∣∣
2

dσ
)
dvdv∗

)1/2

≤ C2−εj ||f ||L1
(2s+γ−1)+

|h||L2

(
||M g||H2s−1+ε

(2s+γ−1)+

+ ||g||Hλ−N
(2s+γ−1)+

)
,

because of (2.1.24). This together with (2.3.15) and (2.3.18) yield

(2.3.19) |J1
2 (τ, (1))| ≤ C||f ||L1

(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+

+ ||g||Hλ−N
(2s+γ−1)+

)
|h||L2 .

It is easy to see that all other terms coming from FN1(v,Dv; v∗)g(v) in (2.3.11) have the same
bound estimated above. Moreover, all the terms coming from r̃N1(v,Dv; v∗)g(v) can be estimated
by

C||f ||L1
(2s+γ−1)+

||g||Hλ−N
(2s+γ−1)+

|h||L2 .

Therefore, we finally obtain

|J2| = |J1
2 | ≤ C||f ||L1

(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+

+ ||g||Hλ−N
(2s+γ−1)+

)
|h||L2 .

In summary, when 1/2 < s < 1 we obtain instead of (2.3.13) that

(2.3.20) |II| ≤ C||f ||L1
(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+

+ ||g||Hλ−N
(2s+γ−1)+

)
|h||L2 .

By combining (2.3.8), (2.3.13) and (2.3.20), the proof of Proposition 2.9 is completed.

The rest of this section is devoted to proving (2.1.19) of Lemma 2.4.
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Proof of (2.1.19) of Lemma 2.4.For m = 2s− 1 + ε > 0, we have with Λ = (1 − ∆v)
1/2

(
WlQ(f, g) −Q(f, Wlg), h

)
=
(
(Λ−mQ(f, g) −Q(f, Λ−mg)), WlΛ

mh
)

+
(
(WlQ(f, Λ−mg) −Q(f, WlΛ

−mg)), Λmh
)

+
(
(Q(f, Λ−mWl g) − Λ−mQ(f, Wlg)), Λmh

)

+
(
(
[
Λ−m, Wl

]
Q(f, g) −Q(f,

[
Λ−m, Wl

]
g)), Λmh

)

= (1) + (2) + (3) + (4).

It follows from (2.3.4) with M(ξ) = Λ−m that

|(1)| ≤ C‖f‖L1
(2s+γ−1)+

‖g‖L2
(2s+γ−1)+

‖h‖Hm
l
,

|(3)| ≤ C‖f‖L1
(2s+γ−1)+

‖Wlg‖L2
(2s+γ−1)+

‖h‖Hm .

By means of (2.1.18), we have

|(2)| ≤ C‖f‖L1
l+2s−1+γ+

‖g‖L2
l+2s−1+γ+

‖h‖Hm .

To estimate (4), we first note that

[Λ−m, Wl] =
∑

|α|=1

(
Wl

)
(α)

(
Λ−m)(α)

+Wl−1R(v,Dv),

where R is a pseudo-differential operator which belongs to S−m−2
1, 0 . Write

(4) =
∑

|α|=1

({(
Λ−m)(α)

Q(f, g) −Q(f,
(
Λ−m)(α)

g)
}
,
(
Wl

)
(α)

Λmh
)

+
∑

|α|=1

({(
Wl

)
(α)
Q(f,

(
Λ−m)(α)

g) −Q(f,
(
Wl

)
(α)

(
Λ−m)(α)

g)
}
,Λmh

)

+
(
R(v,Dv)Q(f, g),Wl−1Λ

mh
)

+
(
Q(f,Wl−1R(v,Dv)g),Λ

mh
)

=(a) + (b) + (c) + (d).

It follows from (2.1.1) that

|(c)| ≤ C‖Q(f, g)‖H−2‖h‖Hm
l−1

≤ C‖f‖L1
(γ+2s)+

‖g‖L2
(γ+2s)+

‖h‖Hm
l−1
,

|(d)| ≤ C‖Q(f,Wl−1Rg)‖L2‖h‖Hm ≤ C‖f‖L1
(γ+2s)+

‖g‖L2
l−1+(γ+2s)+

‖h‖Hm .

By exactly the same method as the one for (2.1.18), namely, by replacing Wl by (Wl)
(α) which is

bounded by Wl−|α|, we have

|(b)| ≤ C‖f‖L1
l−2+2s+γ+

‖
(
Λ−m

)(α)

g‖Hm
l+2s−2+γ+

‖h‖Hm ≤ C‖f‖L1
l−2+2s+γ+

‖g‖L2
l+2s−2+γ+

‖h‖Hm .

The estimation on (a) is the same as the argument in Proposition 2.9 by replacing M(D) by

(Λ−m)(α), except for the corresponding term to I. Notice that Dα
ξ (〈ξ〉−m) := M (α)(ξ) is no longer

a function of |ξ|2. Instead of (2.3.5), we only have

(2.3.21) |M (α)(ξ) −M (α)(ξ+)| ≤ C

∣∣∣∣sin
θ

2

∣∣∣∣ 〈ξ
+〉−m−1.
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Thus, we need to use the symmetry property as in the proof of Theorem 2.1. The corresponding
term to I is

Iα =

∫

R6

∫

S2

b(
ξ

|ξ| · σ)f(v∗)

×
(
M (α)(ξ) −M (α)(ξ+)

)
F(Φ∗g)(ξ

+)e−iv∗ξ
−

dσdv∗ĥ0(ξ)dξ,

where h0 = (Wl)(α)Λ
mh. By letting

F (v, v∗) =
Φ(|v − v∗|)
〈v∗〉γ+ g(v), h(v, v∗) =

h0(v)

〈v∗〉
,

we write

Iα =

∫

R3

〈v∗〉1+γ
+

f(v∗)

×
{∫

R3

∫

S2

b(
ξ

|ξ| · σ)
(
M (α)(ξ) −M (α)(ξ+)

)
eiv∗ξ

+

F̂ (ξ+, v∗)eiv∗ξĥ(ξ, v∗)dσdξ
}
dv∗

=

∫

R3

〈v∗〉1+γ
+

f(v∗)L(v∗)dv∗.

Set

˜̂
F (ξ, v∗) = eiv∗ξF̂ (ξ, v∗),

˜̂
h(ξ, v∗) = eiv∗ξĥ(ξ, v∗),

and write

L(v∗) =

∫

R3

∫

S2

b(
ξ

|ξ| · σ)
(
M (α)(ξ) −M (α)(ξ+)

)˜̂
F (ξ+, v∗)

(˜̂
h(ξ, v∗) − ˜̂h(ξ+, v∗)

)
dσdξ

+
1

2

∫ 1

0

(1 − τ)
{∫

Rn

∫

S2

b
( ξ
|ξ| · σ

)

× (∇2
ξM

(α))(ξ+ + τ(ξ − ξ+))(ξ−)2
˜̂
F (ξ+, v∗)

˜̂
h(ξ+, v∗)dσdξ

}
dτ

=L1(v∗) + L2(v∗).

By the same symmetry property as shown in Figure ?? in the proof of Theorem 2.1, we have

∫

R3

∫

S2

b
( ξ
|ξ| · σ

)
(∇ξM

(α))(ξ+) · ξ−(σ)
˜̂
F (ξ+, v∗)

˜̂
h(ξ+, v∗)dσdξ = 0.

Then it follows from (2.3.21) that

sup
v∗

|L1(v∗)| ≤ C‖g‖L2
γ+

‖h0‖L2
1
≤ C‖g‖L2

γ+
‖h‖Hm

l
,

and

sup
v∗

|L2(v∗)| ≤ C‖g‖L2
γ+

‖h0‖L2 ≤ C‖g‖L2
γ+

‖h‖Hm
l−1
,

whence we obtain

|Iα| ≤ C‖f‖L1
1+γ+

‖g‖L2
γ+

‖h‖Hm
l
.

In summary, we obtained the desired estimate (2.1.19).
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3. Regularizing effect

In this section, we will prove the regularizing effect on solutions to the non-cutoff Boltzmann
equation starting from f ∈ H5

l (]T1, T2[×Ω×R3
v)). Actually this will be proved by using an induction

argument in the following subsections. In the first step, we will show the gain of regularity in the
variable v mainly by using the singularity in the cross-section, that is, the coercivity property in
(3.1.3). In the second step, we will apply the hypo-elliptic estimate obtained by a generalized
version of the uncertainty principle to show the gain of regularity in (x, t) variables. Then an
induction argument will lead to at least one order higher regularity in (x, t) variables. By using
the equation and an induction argument again, at least one order higher regularity can be obtained
in v variable. Therefore, the solution is shown to be in H6

l (]T1, T2[×Ω × R3
v) which by induction

leads to H∞
l (]T1, T2[×Ω × R3

v).
Let f ∈ H5

l (]T1, T2[×Ω×R3
v)), for all l ∈ N, be a (classical) solution of the Boltzmann equation

(1.1). We now want to prove the full regularity of ϕ(t)ψ(x)f for any smooth cutoff functions
ϕ ∈ C∞

0 (]T1, T2[), ψ ∈ C∞
0 (Ω).

3.1. Initialization. Here and below, φ denotes a cutoff function satisfying φ ∈ C∞
0 and 0 ≤ φ ≤ 1.

Notation φ1 ⊂⊂ φ2 stands for two cutoff functions such that φ2 = 1 on the support of φ1.
Take the smooth cutoff functions ϕ, ϕ2, ϕ3 ∈ C∞

0 (]T1, T2[) and ψ, ψ2, ψ3 ∈ C∞
0 (Ω) such that

ϕ ⊂⊂ ϕ2 ⊂⊂ ϕ3 and ψ ⊂⊂ ψ2 ⊂⊂ ψ3. Set f1 = ϕ(t)ψ(x)f , f2 = ϕ2(t)ψ2(x)f and f3 =
ϕ3(t)ψ3(x)f . For α ∈ N7, |α| ≤ 5, define

g = ∂α(ϕ(t)ψ(x)f) = ∂αt,x,v(ϕ(t)ψ(x)f) ∈ L2
l (R

7).

Firstly, the translation invariance of the collision operator with respect to the variable v implies
that (see [32, 37, 53] ), for the translation operation τh in v by h, we have

τhG(f, g) = Q(τhf, τhg).

Then the Leibniz formula with respect to the t, x variables yields the following equation in a weak
sense

(3.1.1) gt + v · ∂xg = Q(f2, g) +G, (t, x, v) ∈ R7,

where

G =
∑

α1+α2=α, 1≤|α1|
Cα1
α2
Q
(
∂α1f2, ∂

α2f1

)
(3.1.2)

+ ∂α
(
ϕtψ(x)f + v · ψx(x)ϕ(t)f

)
+ [∂α, v · ∂x](ϕ(t)ψ(x)f)

≡ (A) + (B) + (C).

To prove the regularity of g = ∂α(ϕ(t)ψ(x)f), the natural idea would be to use g as a test
function for equation (3.1.1). But at this point, g only belongs to L2

l (R
7) so that it is only a

weak solution to equation (3.1.1). By using the upper bound estimate on Q, we have Q(f2, g) ∈
L2(R4

t,x; H
−2s(R3

v)). Thus, we need to choose the test functions at least in the space L2(R4
t,x; H

2s(R3
v)).

For this, we will use a mollification of g with respect to the variables (x, v) as a test function.

For this purpose, let S ∈ C∞
0 (R) satisfy 0 ≤ S ≤ 1 and

S(τ) = 1, |τ | ≤ 1; S(τ) = 0, |τ | ≥ 2.

Then

SN (Dx)SN (Dv) = S(2−2N |Dx|2)S(2−2N |Dv|2) : H−∞
l (R6) → H+∞

l (R6),

is a regularization operator such that

‖
(
SN (Dx)SN (Dv)f

)
− f‖L2

l (R
6) → 0, as N → ∞.

Choose another cutoff function ψ ⊂⊂ ψ1 ⊂⊂ ψ2 and set

PN, l = ψ1(x)SN (Dx)Wl SN (Dv).
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Then we can take

g̃ = P ⋆N, l (PN, l g) ∈ C1(R;H+∞(R6))

as a test function for the equation (3.1.1).
It follows by integration by parts on R7 = R1

t × R3
x × R3

v that
(
[SN (Dv), v] · ∇xSN(Dx)g, ψ1(x)WlPN,l g

)
L2(R7)

=

(
PN,lQ(f2, g), PN,l g

)
L2(R7)

+
(
G, g̃

)
L2(R7)

,

which implies that

−
(
Q(f2, PN, l g), PN, l g

)
L2(R7)

= −
(
[SN (Dv), v] · ∇xSN (Dx)g, ψ1(x)WlPN,l g

)
L2(R7)

(3.1.3)

+
(
PN, lQ(f2, g) −Q(f2, PN, l g), PN, l g

)
L2(R7)

+
(
G, g̃

)
L2(R7)

.

By using (3.1.3), we can deduce the regularity of g from the coercivity property of the collision
operator on the left hand side and the upper bound estimate on the right hand side. And the
detailed calculation will be given in the next subsection.

3.2. Gain of regularity in v. In this subsection, we will prove a partial smoothing effect of the
cross-section on the weak solution g in the velocity variable v .

Proposition 3.1. Assume that 0 < s < 1, γ ∈ R. Let f ∈ H5
l (]T1, T2[×Ω × R3

v) be a solution of
the equation (1.1) for all l ∈ N. Assume furthermore that

(3.2.1) f(t, x, v) ≥ 0 and ‖f(t, x, ·)‖L1(R3
v) > 0,

for all (t, x, v) ∈]T1, T2[×Ω × R3
v. Then one has,

(3.2.2) Λsvf1 ∈ H5
l (R

7),

for any l ∈ N, where f1 = ϕ(t)ψ(x)f with ϕ ∈ C∞
0 (]T1, T2[), ψ ∈ C∞(Ω).

Proof : Firstly, the local positive lower bound assumption (3.2.1) implies that

inf
(t,x)∈supp ϕ×supp ψ1

‖f2(t, x, ·)‖L1(R3
v) = c0 > 0.

Thus, the coercivity estimate (2.2.1) in Theorem 2.6 gives that for any γ ∈ R, 0 < s < 1,

−
(
Q(f2, PN,l g), PN,l g

)
L2(R7)

= −
∫

t∈suppϕ

∫

x∈suppψ1

(
Q(f2, PN,l g), PN,l g

)
L2(R3

v)
dxdt

≥
∫

Rt

∫

R3
x

(
C0‖Wγ/2PN,l g(t, x, ·)‖2

Hs(R3
v)

−C‖f2(t, x, ·)‖L1

max{γ+, 2−γ+}
(R3

v)‖PN,l g(t, x, ·)‖2
L2

γ+/2
(R3

v)

)
dxdt

≥ C0‖ΛsvWγ/2PN,l g‖2
L2(R7) − C‖f2‖L∞(R4

t,x; L1
max{γ+, 2−γ+}

(R3
v))‖Wl g‖2

L2
γ+/2

(R7),

where C0 depends on c0, supt,x ‖f2(t, x, ·)‖L1
1(R

3
v) and supt,x ‖f2(t, x, ·)‖L logL(R3

v), see Remark 2.7.

For the terms in (3.1.3), firstly note that

(3.2.3) [SN (Dv), v] · ∇x SN (Dx) = 2−2N
(
S′)

N
(Dv)Dv · ∇x SN(Dx) : L2(R6

x,v) → L2(R6
x,v),

is a uniformly bounded operator so that
∣∣∣
(
[SN (Dv), v] · ∇x SN (Dx)g, ψ1(x)WlPN,l g

)
L2(R7)

∣∣∣ ≤ C‖f1‖2
H5

l (R7).
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Hence, by using (3.1.3), we get, for l > 3/2 + 2,

‖ΛsvWγ/2PN,l g‖2
L2(R7) ≤ C

{(
1 + ‖f2‖H2+δ

l+γ+(R6)

)
‖f1‖2

H5
l (R7) +

∣∣∣∣
(
G, g̃

)
L2(R7)

∣∣∣∣(3.2.4)

+
∣∣∣
(
PN,lQ(f2, g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

∣∣∣
}
.

In the above, constants C > 0 are independent of N .
We complete the proof of Proposition 3.1 by estimating the last two terms in (3.2.4) through

the following three Lemmas.

Lemma 3.2. Assume 0 < s < 1, γ ∈ R. Let f ∈ H5
l (]T1, T2[×Ω × R3

v), l ≥ 3/2 + 2. Then, for
any α ∈ N7, |α| ≤ 5, we have, for any ε > 0,

(3.2.5)

∣∣∣∣
(
G, g̃

)
L2(R7)

∣∣∣∣ ≤ Cε‖f3‖4
H5

l+4+|γ|
(R7) + ε‖ΛsvWγ/2PN, l g‖2

L2(R7
t,x,v).

Proof : Firstly, we prove that

(3.2.6) G ∈ L2(R4
t,x;H

−(2s−1+δ)+

l (R3
v)),

for any l ∈ N, where (2s − 1 + δ)+ = max{2s− 1 + δ, 0} and δ > 0 satisfying 2s− 1 + δ < s. By
using the decomposition in (3.1.2), it is obvious that

(B) = ∂α
(
ϕtψ(x)f + v · ψx(x)ϕ(t)f

)
∈ L2

l (R
7),

and
‖(B)‖L2

l
(R7) ≤ C‖f2‖H5

l+1
(R7).

Since [∂α, v · ∂x] is a differential operator of order |α|, we have

‖(C)‖L2
l (R7) ≤ C‖f2‖H5

l (R7)).

For the term (A), recall that α1 + α2 = α, |α| ≤ 5 and |α2| < 5. In the following, we will apply
Theorem 2.1 with m = 1 − δ − 2s. We separate the discussion into two cases.

Case 1. If |α1| = 1, 2, we have
∫

Rt

∫

R3
x

‖Q(∂α1f2, ∂
α2f1)(t, x, ·)‖2

H1−δ−2s
l (R3

v)
dxdt

≤ C

∫

Rt

∫

R3
x

‖∂α1f2(t, x, ·)‖2
L1

l+(2s+γ)+
(R3

v)‖∂α2f1(t, x, ·)‖2
H1−δ

l+(2s+γ)+
(R3

v)
dxdt

≤ C‖∂α1f2‖2
L∞(R4

t,x;L1
l+(2s+γ)+

(R3
v))

∫

Rt

∫

R3
x

‖∂α2f1(t, x, ·)‖2
H1

l+(2s+γ)+
(R3

v)dxdt

≤ C‖f2‖2

H
2+4/2+δ

l+3/2+δ+(2s+γ)+
(R7)

‖f1‖2
H5

l+(2s+γ)+
(R7).

Case 2. If |α1| ≥ 3, then |α2| ≤ 2, it follows that
∫

Rt

∫

R3
x

‖∂α1f2(t, x, ·)‖2
L1

l+(2s+γ)+
(R3

v)‖∂α2f1(t, x, ·)‖2
H1−δ

l+(2s+γ)+
(R3

v)
dxdt

≤ C‖∂α2f1‖2
L∞(R4

t,x;H1−δ

l+(2s+γ)+
(R3

v))

∫

Rt

∫

R3
x

‖∂α1f2(t, x, ·)‖2
L2

l+3/2+δ+(2s+γ)+
(R3

v)dxdt

≤ C‖f1‖2

H
2+1−δ+4/2+δ/2

l+(2s+γ)+
(R6)

‖f2‖2
H5

l+3/2+δ+(2s+γ)+
(R7).

By combining these two cases, we have proved (3.2.6).
Now if 2s− 1 < 0, then (3.2.6) implies that

∣∣∣∣
(
G, g̃

)
L2(R7)

∣∣∣∣ ≤ C‖f3‖3
H5

l+4+γ+(R7).
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On the other hand, if 0 ≤ 2s− 1 and γ < 0 (the case γ > 0 is easier), then (3.2.6) implies that
∣∣∣∣
(
G, g̃

)
L2(R7)

∣∣∣∣ ≤ ‖G‖L2(R4
t,x;H1−2s−δ

l+|γ|/2
(R3

v)‖W−|γ|/2PN, l g‖L2(R4
t,x;H2s−1+δ(R3

v))

≤ C‖f3‖2
H5

l+4+|γ|
(R7) ‖W−|γ|/2PN, l g‖L2(R4

t,x;H2s−1+δ(R3
v)),

because 2s− 1 + δ < s. Therefore, the proof of Lemma 3.2 is completed.

We now turn to the estimates of commutators between the mollification operators and the
collision operator, which are given in the following two lemmas.

Lemma 3.3. For any γ ∈ R, we have
(1) If 0 < s < 1/2, then for any suitable functions f and g with the following norms well defined,
one has

(3.2.7) ‖SN (Dv)Q(f, g) −Q(f, SN (Dv)g)‖L2(R3
v) ≤ C‖f‖L1

γ+(R3
v)‖g‖L2

γ+(R3
v),

for some constant C independent of N .
(2) If 1/2 < s < 1, then for any δ > 0 there exists a constant Cδ > 0 such that

(3.2.8) ‖SN (Dv)Q(f, g) −Q(f, SN (Dv)g)‖L2(R3
v) ≤ Cδ‖f‖L1

(2s+γ−1)+
(R3

v)‖g‖H2s−1+δ

(2s+γ−1)+
(R3

v) ,

and

(3.2.9) ‖SN (Dv)Q(f, g) −Q(f, SN (Dv)g)‖H1−2s−δ(R3) ≤ Cδ‖f‖L1
(2s+γ−1)+

(R3
v)‖g‖L2

(2s+γ−1)+
(R3

v).

(3) When s = 1/2, we have the same form of estimate as (3.2.8) with (2s + γ − 1) replaced by
(γ + κ) for any small κ > 0.

Before giving the proof of this lemma, notice that when γ = 0 in the Maxwellian molecule case,
the following proof of Lemma 3.3 is similar to Lemma 3.1 in [48] (see also Lemma 5.1 in [8]) by
using the Fourier transformation of collision operator. However, here we consider the case for γ ∈ R.

Proof of Lemma 3.3 : The proof is a slight modification of the proof for Proposition 2.9. Set

M(|ξ|) = SN (|ξ|) = S(2−2N |ξ|2).
Then SN ∈ S0

1,0 uniformly. Even though it does not satisfy (2.3.2), we have

|∂αSN (|ξ|)| ≤ CαSN+1(|ξ|) < ξ >−|α|

with Cα independent ofN ∈ N. Thus, (2.3.3) implies (3.2.7) and (2.3.4) implies (3.2.8) respectively.
For (3.2.9), note that with m = 2s− 1 + δ we have

(SNQ(f, g) −Q(f, SNg), h) =
(
(Λ−mQ(f, g) −Q(f,Λ−mg)),ΛmSNh

)

+
(
(SNQ(f,Λ−mg) −Q(f,Λ−mSNg)),Λ

mh
)

+
(
(Q(f, SNΛ−mg) − Λ−mQ(f, SNg)),Λ

mh
)

=(I1) + (I2) + (I3).

By applying (2.3.4) with M(ξ) = 〈ξ〉−m to (I1) and (I3), we obtain

|(I1)| + |(I3)| ≤ C‖f‖L1
(2s+γ−1)+

‖g‖L2
(2s+γ−1)+

‖h‖Hm ,

because SN ∈ S0
1,0 uniformly. The same bound on (I2) follows from (3.2.8).

Notice that the case of s = 1/2 follows from the case of s = 1/2 + κ for any positive κ because
the main concern here is the upper bound. And this completes the proof of the lemma.

The following lemma is on the commutator of the collision opertor with mollifier in the x variable.
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Lemma 3.4. Let 0 < s < 1 and γ,m ∈ R. For any suitable functions f and h with the following
norms well defined, one has

‖SN(Dx)Q(f, h) −Q(f, SN (Dx)h)‖L2(R4
t,x, H

m−2s(R3
v))(3.2.10)

≤ C2−N‖∇xf‖L∞(R4
t,x, L

1
(2s+γ)+

(R3
v))‖h‖L2(R4

t,x, H
m
(2s+γ)+

(R3
v)).

for a constant C independent of N .

Proof : Let us introduce K̃N (z) = 23N Ŝ(2Nz)2Nz. Note that K̃N ∈ L1(R3) uniformly with

respect to N . Then for any smooth function h̃, one has
((
SN (Dx) Q(f, h) −Q(f, SN (Dx)h)

)
, h̃
)
L2(R7)

=

∫ 1

0

{∫

Rt

∫

R3
x×R3

y

K̃N (x− y)

×
(
Q
(
∇xf(t,+τ(x − y), · ), 2−Nh(t, y, · )

)
, h̃(t, x, · )

)
L2(R3

v)
dtdxdy

}
dτ.

By applying Theorem 2.1 with m− 2s, the right hand side of this equality can be estimated from
above by

C
{

sup
t,x

||∇xf(t, x, · )||L1
(2s+γ)+

(R3
v)

}
×

∫

Rt

∫

R3
x

(
|K̃N | ∗ ||2−Nh(t, · )||Hm

(2s+γ)+
(R3

v)

)
(x)||h̃(t, x, ·)||H2s−m(R3

v)dxdt

≤ C2−N‖∇xf‖L∞(R4
t,x;L1

(2s+γ)+
(R3

v))‖h‖L2(R4
t,x;Hm

(2s+γ)+
(R3

v))||h̃||L2(R4
t,x;H2s−m(R3

v)),

which completes the proof of the lemma.

We now apply (3.2.10) with h = SN(Dv)g and m = 1, we get

‖SN(Dx)Q(f, SN (Dv)g) −Q(f, SN (Dx)SN (Dv)g)‖L2(R4
t,x, H

1−2s(R3
v))(3.2.11)

≤ C‖∇xf‖L∞(R4
t,x, L

1
(2s+γ)+

(R3
v))‖g‖L2(R4

t,x, L
2
(2s+γ)+

(R3
v)).

Here, we have used the fact that a mollification operator SN(Dv) in the v variable has the property
that

‖2−NSN (Dv)g(t, x, · )‖H1
(2s+γ)+

(R3
v) ≤ C‖g(t, x, · )‖L2

(2s+γ)+
(R3

v),

where C is a constant independent on N .

Now we are ready to complete the proof of Proposition 3.1.

Completion of proof of Proposition 3.1.

We study now the commutator terms in (3.2.4). For this, we have
(
PN,lQ(f2, g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

(3.2.12)

=
(
SN (Dv)Q(f2, g) −Q(f2, SN (Dv) g), S

⋆
N (Dx)ψ1(x)WlPN,l g

)
L2(R7)

+
(
SN (Dx)Q(f2, SN (Dv) g) −Q(f2, SN(Dx)SN (Dv) g), ψ1(x)WlPN,l g

)
L2(R7)

+
(
ψ1(x)Wl Q(f2, SN(Dx)SN (Dv) g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

.

= (1) + (2) + (3).

Note that Λsv[ψ1(x), SN (Dx)]SN (Dv) is an L2 uniformly bounded operator with respect to the
parameter N for 0 ≤ s ≤ 1, and that [Wl, SN (Dv)] is also a uniformly bounded operator from
L2 to L2

l−1 with respect to the parameter N . The discussion on (3.2.12) can be divided into the
following two cases.
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Case 1. 0 < s < 1/2. In this case, Lemma 3.3 implies that , for l > max{4, (γ + 2s)+},

|(1)| ≤ C‖f2‖L∞(R4
t,x , L

1
γ++2s

(R3
v))‖g‖L2(R7)‖g‖L2

2l(R
7) ≤ C‖f3‖3

H5
2l(R

7).

And Lemma 3.4 implies that

|(2)| ≤ C‖∇xf2‖L∞(R4
t,x , L

1
γ++2s

(R3
v))‖g‖L2(R4

t,x , L
2
γ+(R3

v))‖g‖L2
2l(R

7) ≤ C‖f3‖3
H5

2l(R
7).

As for the term (3), we use Lemma 2.4 to have

|(3)| ≤ C‖f2‖L∞(R4
t,x , L

1
l+γ++2s

(R3
v))‖g‖L2

l+γ++2s
(R7)‖PN, l g‖L2(R7) ≤ C‖f3‖3

H5
2l(R

7).

Case 2. 1/2 ≤ s < 1. By using (3.2.9), we have

|(1)| ≤ C‖f2‖L∞(R4
t,x , L

1
l+γ++2s−1

(R3
v))‖g‖L2

l+γ++2s−1
(R7)‖Wγ/2PN, l g‖L2(R4

t,x , H
2s−1+δ(R3

v))

≤ ε‖ΛsvWγ/2PN,l g‖2
L2(R7) + Cε‖f3‖4

H5
l+4+γ+(R7).

We can use (3.2.11) to show that

|(2)| ≤ C‖∇xf2‖L∞(R4
t,x , L

1
γ++2s

(R3
v))‖g‖L2(R4

t,x , L
2
γ++2s

(R3
v))‖Wl PN, l g‖L2(R4

t,x , H
2s−1(R3

v))

≤ Cε‖f3‖
4
θ +2

H5
kl(R

7)
+ ε‖ΛsvWγ/2PN, l g‖2

L2(R7
t,x,v).

Then, (2.1.18) implies that

|(3)| ≤ C‖f2‖L∞(R4
t,x , L

1
2s+l−1+γ+

(R3
v))‖ψ1(x)SN (Dx)SN (Dv) g‖L2(R4

t,x , H
2s−1+δ
2s+l−1+γ+

(R3
v))‖PN, l g‖L2(R7)

≤ Cε‖f3‖
4
θ +2

H5
kl(R

7)
+ ε‖ΛsvWγ/2PN, l g‖2

L2(R7
t,x,v).

In summary, we have obtained the following estimate for the second term on the right hand side
of (3.2.4)

∣∣∣
(
PN,lQ(f2, g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

∣∣∣

≤ Cε‖f3‖2 k′

H5
kl(R

7) + ε‖ΛsvWγ/2PN, l g‖2
L2(R7

t,x,v).

Finally, it holds that

(3.2.13) ‖ΛsvWγ/2PN,l g‖2
L2(R7) ≤ C‖f3‖2 k′

H5
kl(R

7),

where the constants C, k, and k′ are independent of N . Therefore, Proposition 3.1 is proved by
taking the limit N → ∞.

3.3. Gain of regularity in (t, x). First of all, let us consider a transport equation in the form of

(3.3.1) ft + v · ∇xf = g ∈ D′(R2n+1),

where (t, x, v) ∈ R1+n+n = R2n+1. In [8], by using a generalized uncertainty principle, we proved
the following hypo-elliptic estimate.

Lemma 3.5. Assume that g ∈ H−s′(R2n+1), for some 0 ≤ s′ < 1. Let f ∈ L2(R2n+1) be a weak
solution of the transport equation (3.3.1) such that Λsv f ∈ L2(R2n+1) for some 0 < s ≤ 1. Then it
follows that

Λs(1−s
′)/(s+1)

x f ∈ L2
− ss′

s+1

(R2n+1), Λ
s(1−s′)/(s+1)
t f ∈ L2

− s
s+1

(R2n+1),

where Λ• = (1 + |D•|2)1/2.
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As mentioned earlier, this hypo-elliptic estimate together with Proposition 3.1 are used to obtain
the partial regularity in the variable (t, x). With this partial regularity in (t, x), by applying
a Leibniz type formula for fractional derivatives, we will show some improved regularity in all
variables, v and (t, x). Then the hypo-elliptic estimate can be used again to get higher regularity
in the variable (t, x). This procedure can be continued to obtain at least one order higher regularity
in (t, x) variable.

For this, we first recall a Leibniz type formula for fractional derivatives with respect to variable
(t, x).

Lemma 3.6. Let 0 < λ < 1. Then there exists a positive constant Cλ 6= 0 such that for any
f ∈ S(Rn), one has

(3.3.2) |Dy|λf(y) = F−1
(
|ξ|λf̂(ξ)

)
= Cλ

∫

Rn

f(y) − f(y + h)

|h|n+λ
dh.

Indeed, note that
∫

Rn

f(y) − f(y + h)

|h|n+λ
dh =

∫

Rn

f̂(ξ)eiy·ξ
∫

Rn

1 − eih·ξ

|h|n+λ
dhdξ,

while ∫

Rn

1 − e−i h·ξ

|h|n+λ
dh = |ξ|λ

∫

Rn

1 − e−i u·
ξ
|ξ|

|u|n+λ
du,

so that (3.3.2) follows from
∫

Rn

1 − e−i u·
ξ
|ξ|

|u|n+λ
du 6= 0,

which is a positive constant depending only on λ and the dimension n, but independent from ξ.
Using this Lemma, we have the following Leibniz type formula,

|Dy|λ
(
f(y)g(y)

)
= Cλ

∫

Rn

f(y)g(y) − f(y + h)g(y + h)

|h|n+λ
dh(3.3.3)

= g(y)|Dy|λf(y) + f(y)|Dy|λg(y) + Cλ

∫

Rn

(
f(y) − f(y + h)

)(
g(y + h) − g(y)

)

|h|n+λ
dh.

We now turn to the analysis of the fractional derivative with respect to (t, x) of the nonlinear
collision operator. Denote the difference with respect to (t, x) by

fh(t, x, v) = f(t, x, v) − f((t, x) + h , v), h ∈ R4
t,x .

It follows that for the collision operator (where n = 1 + 3),

|Dt,x|λQ
(
f, g

)
= Q

(
|Dt,x|λf, g

)
+Q

(
f, |Dt,x|λg

)
+ Cλ

∫

R4

|h|−4−λQ
(
fh, gh

)
dh.(3.3.4)

This kind of decomposition will be used extensively below in order to get the partial regularity
with respect to the (t, x) variable.

First of all, we have the following proposition on the gain of regularity in the variable (t, x)
through the uncertainty principle.

Proposition 3.7. Under the hypothesis of Theorem 1.1, one has

(3.3.5) Λs0t,x f1 ∈ H5
l (R

7),

for any l ∈ N and 0 < s0 = s(1−s)
(s+1) .

Proof: In fact, for any l ∈ N, it follows from Proposition 3.1 that

ΛsvWlg ∈ L2(R7).

Then the upper bound estimation given by Corollary 2.5 with m = −s implies that

WlQ(f2, g) ∈ L2(R4
t,x; H

−s(R3
v)).
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On the other hand, Proposition 3.2 and (3.2.6) give

WlG ∈ L2(R4
t,x; H

−(2s−1+δ)(R3
v)).

By using (3.1.1), it follows that

(3.3.6) ∂t(Wlg) + v · ∂x(Wlg) = WlQ(f2, g) +WlG ∈ H−s(R7).

Finally, by using Lemma 3.5 with s′ = s, we can conclude (3.3.5) and this completes the proof of
the proposition.

Therefore, under the hypothesis f ∈ H5
l (]T1, T2[×Ω × R3

v) for all l ∈ N, it follows that for any
l ∈ N we have

(3.3.7) Λsv(ϕ(t)ψ(x)f) ∈ H5
l (R

7), Λs0t,x(ϕ(t)ψ(x)f) ∈ H5
l (R

7) .

We now try to improve this partial regularity in (t, x) variable.

Proposition 3.8. Let 0 < λ < 1. Suppose that f ∈ H5
l (]T1, T2[×Ω × R3

v) is a solution of the
equation (1.1) for all l ∈ N. Furthermore, assume that for any cutoff functions ϕ, ψ,

(3.3.8) Λsv(ϕ(t)ψ(x)f) ∈ H5
l (R

7), Λλt,x(ϕ(t)ψ(x)f) ∈ H5
l (R

7).

Then, one has

(3.3.9) ΛsvΛ
λ
t,x(ϕ(t)ψ(x)f) ∈ H5

l (R
7),

for any l ∈ N and any cutoff functions ϕ, ψ.

Proof: Set

gN,l = PN,l g = ψ1(x)SN (Dx)Wl SN (Dv)∂
α(ϕ(t)ψ(x)f),

where α ∈ N7, |α| ≤ 5 and l ∈ N. Then (3.3.8) yields

‖ΛsvgN,l‖L2(R7) ≤ C‖Λsv∂α(ϕ(t)ψ(x)f)‖L2
l (R7),

and

‖Λλt,xgN,l‖L2(R7) ≤ C‖Λλt,x∂α(ϕ(t)ψ(x)f)‖L2
l
(R7),

where the constant C is independent of N .

It follows that gN,l satisfies the equation

(3.3.10) ∂t(gN,l) + v · ∂x (gN,l) = Q(f2, gN,l) +GN,l,

where GN,l is given by

GN,l = ψ1(x)Wl

[
SN (Dv), v

]
· ∇xSN (Dx)g +

(
PN,lQ

(
f2, g

)
−Q

(
f2, PN,l g

))

+
(
(v · ∇x)ψ1(x)

)
Wl SN (Dx)SN (Dv)g + PN,lG,

with G defined in (3.1.2).
We now choose |Dt,x|λψ2

2(x)|Dt,x|λgN,l as a test function for equation (3.3.10). It follows that
(
v ·
(
∂xψ2

)
|Dt,x|λgN,l, ψ2(x)|Dt,x|λgN,l

)
L2(R7)

(3.3.11)

=
(
ψ2(x)|Dt,x|λ

{
Q(f2, gN,l) +GN,l

}
, ψ2(x)|Dt,x|λgN,l

)
L2(R7)

.

It is sufficient to prove that, for any l ∈ N,

(3.3.12) ΛsvΛ
λ
t,xPN,l g ∈ L2(R7),

and is uniformly bounded with respect to N . In the rest of the proof, we use C to denote a constant
independent of N .
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We first consider the linear terms in (3.3.11). On the left hand side of (3.3.11), the hypothesis
(3.3.8) implies that

∥∥∥v ·
(
∂xψ2

)
|Dt,x|λgN,l

∥∥∥
L2(R7)

≤ C‖ |Λt,x|λ∂α(ϕ(t)ψ(x)f)‖L2
l+1(R7).

For the linear terms in GN,l, by using (3.2.3), one has
∥∥ψ2(x)|Dt,x|λ

{
ψ1(x)Wl

[
SN (Dv), v

]
· ∇xSN (Dx)g

}∥∥
L2(R7)

≤ C‖|Λt,x|λ∂α(ϕ(t)ψ(x)f)‖L2
l (R7),

and
∥∥ψ2(x)|Dt,x|λ

(
v · (∇x ψ1)(x)

)
Wl SN (Dx)SN (Dv)g

∥∥
L2(R7)

≤ C‖|Λt,x|λ∂α(ϕ(t)ψ(x)f)‖L2
l+1(R7).

Similarly, concerning the linear terms (B) and (C) in G, we have
∥∥ψ2(x)|Dt,x|λPN,l

(
(B) + (C)

)∥∥
L2(R7)

≤ C‖|Λt,x|λ∂α(ϕ(t)ψ(x)f)‖L2
l+1(R7).

For the nonlinear terms in (3.3.11), we shall use the formula (3.3.4).First of all, the coercivity
estimate (2.2.1) gives, as in (3.2.3), that

−
(
Q(f2, ψ1(x)|Dt,x|λgN,l), ψ1(x)|Dt,x|λgN,l

)
L2(R7)

(3.3.13)

≥ C0‖ΛsvWγ/2ψ1(x)|Dt,x|λgN,l‖2
L2(R7)

−C‖f2‖L∞(R4
t,x; L1

max{γ+, 2−γ+}
(R3

v))‖ψ1(x)|Dt,x|λgN,l‖2
L2

γ+/2
(R7).

On the other hand, the upper estimate of Theorem 2.1 with m = −s and α = −γ/2 > 0 (the
case γ > 0 is easier) gives,
∣∣∣
(
Q(|Dt,x|λf2, ψ1(x)gN,l), ψ1(x)|Dt,x|λgN,l

)
L2(R7)

∣∣∣

≤ C‖|Dt,x|λf2‖L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))‖ψ1(x)Λ

s
vgN,l‖L2

|γ|/2+γ++2s
(R7)‖ψ1(x)|Dt,x|λΛsvWγ/2gN,l‖L2(R7)

≤ ε‖ψ1(x)|Dt,x|λΛsvWγ/2gN,l‖2
L2(R7) + Cε‖|Dt,x|λf2‖2

L∞(R4
t,x, L

2
|γ|/2+γ++2s+4

(R3
v))‖Λsvg‖2

L2
|γ|/2+γ++2s+l

(R7).

For the cross term coming from the decomposition (3.3.4), by using again estimate (2.1.1) with
m = −s and α = |γ|/2, we get

∫

R4

|h|−4−λ
∣∣∣
(
Q((f2)h, (gN,l)h), ψ

2
1(x)|Dx|λgN,l

)
L2(R7)

dh
∣∣∣

≤ |Cλ|‖ψ1(x)|Dx|λΛsvWγ/2gN,,l‖L2(R7)

×
∫

R4

|h|−4−λ‖(f2)h‖L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))‖Λsv(gN,l)h‖L2

|γ|/2+γ++2s
(R7)dh.

Furthermore,
∫

R4

|h|−4−λ‖(f2)h‖L∞(R4
t,x, L

1

|γ|/2+γ++2s
(R3

v))‖Λsv(gN,l)h‖L2

|γ|/2+γ++2s
(R7)dh

≤
∫

|h|<1

|h|−4−λ‖(f2)h‖L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))‖Λsv(gN,l)h‖L2

|γ|/2+γ++2s
(R7)dh

+4C̃λ‖f2‖L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))‖ΛsvgN,l‖L2

|γ|/2+γ++2s
(R7)

≤ 2

∫

|h|<1

|h|−4−λ+1‖∇t,xf2‖L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))‖ΛsvgN,l‖L2

|γ|/2+γ++2s
(R7)dh

+4C̃λ‖f2‖L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))‖ΛsvgN,l‖L2

|γ|/2+γ++2s
(R7).
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Thus
∫

R4

|h|−4−λ
∣∣∣
(
Q((f2)h, (gN,l)h), ψ

2
1(x)|Dx|λWγ/2gN,l

)
L2(R7)

dh
∣∣∣

≤ ε‖ψ1(x)|Dx|λΛsvgN,l‖2
L2(R7) + Cε‖Λ1

t,xf2‖2
L∞(R4

t,x;L2
|γ|/2+γ++2s+4

(R3
v))‖ΛsvgN,l‖2

L2
|γ|/2+γ++2s

(R7).

Hence, the formula (3.3.4) yields
∣∣∣
(
|Dt,x|λQ(f2, ψ1(x)gN,l) −Q(|Dt,x|λf2, ψ1(x)gN,l), ψ1(x)|Dt,x|λgN,l

)
L2(R7)

∣∣∣

≤ ε‖ψ1(x)|Dt,x|λΛsvWγ/2gN,l‖2
L2(R7) + Cε‖Λ1

t,xf2‖2
L∞(R4

t,x, L
2
|γ|/2+γ++2s+4

(R3
v))‖Λsvg‖2

L2
|γ|/2+γ++2s+l

(R7).

In conclusion, we get from coercivity property (3.3.13) that

‖ΛsvWγ/2ψ1(x)|Dt,x|λgN,l‖2
L2(R7)(3.3.14)

≤C‖Λ1
t,xf2‖2

L∞(R4
t,x, L

2
|γ|/2+γ++2s+4

(R3
v))

×
(
‖ |Dt,x|λg‖2

L2
l+|γ|/2+γ++2s

(R7) + ‖Λsvg‖2
L2

l+|γ|/2+γ++2s
(R7)

)

+

∣∣∣∣
(
|Dt,x|λ

(
PN,lQ

(
f2, g

)
−Q

(
f2, PN,l g

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣∣

+
∣∣∣
(
|Dt,x|λPN,l (A), ψ2

2(x)|Dt,x|λ gN,l
)
L2(R7)

∣∣∣
= (I) + (II) + (III) .

For the term (II), since [|Dt,x|λ, ψ1(x)] is a bounded operator, we can replace PN,l by P̃N,l =
Wl SN (Dx)SN (Dv). Again, the formula (3.3.4) yiedls,

(
|Dt,x|λ

(
P̃N,lQ

(
f2, g

)
−Q

(
f2, P̃N,lg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

=
((
P̃N,lQ

(
|Dt,x|λf2, g

)
−Q

(
|Dt,x|λf2, P̃N,lg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

+
((
P̃N,lQ

(
f2, |Dt,x|λg

)
−Q

(
f2, P̃N,l|Dx|λg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

+Cλ

∫

R4

|h|−4−λ
((
P̃N,lQ

(
(f2)h, gh

)
−Q

(
(f2)h, P̃N,lgh

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

dh.

Similar to (3.2.13), for the case when 1/2 ≤ s < 1 ( The other case when 0 < s < 1/2 is similar
and easier to handle.), by applying Lemmas 2.4, 3.3 and 3.4, we have

∣∣∣
((
P̃N,lQ

(
|Dt,x|λf2, g

)
−Q

(
|Dt,x|λf2, P̃N,lg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣(3.3.15)

≤ C‖Λ1+λ
t,x f2‖L∞(R4

t,x , L
1
(γ+2s−1)+

(R3
v))‖g‖L2(R4

t,x , H
2s−1+δ

(γ+2s−1)+
(R3

v))‖ |Dt,x|λg‖L2
2l(R

7).

By using (3.2.9) of Lemma 3.3, we can get, for 2s− 1 + δ < s,
∣∣∣
((
P̃N,lQ

(
f2, |Dt,x|λg

)
−Q

(
f2, P̃N,l|Dt,x|λg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣

≤ C‖Λt,xf2‖L∞(R4
t,x , L

1

(γ+2s−1)+
(R3

v))‖ |Dt,x|λg‖L2(R4
t,x , L

2

l+(γ+2s−1)+
(R3

v))

×‖ |Dt,x|λψ1gN,l‖L2(R4
t,x , H

2s−1+δ

l+(γ+2s−1)+
(R3

v))

≤ ε‖ΛsvWγ/2ψ1(x)|Dt,x|λgN,l‖2
L2(R7)

+Cε‖Λ1
t,xf2‖2k′

L∞(R4
t,x , L

2
l+3/2+δ+(γ+2s−1)+

(R3
v))‖ |Dt,x|λg‖2k′

L2(R4
t,x , L

2
kl(R

3
v)) ,
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and
∣∣∣
∫

|h|−4−λ
((
P̃N,lQ

(
f2,h, gh

)
−Q

(
f2,h, P̃N,lgh

))
, ψ2

2(x)|Dx|λgN,l
)
L2(R7)

dh
∣∣∣

≤ C‖Λt,xΛxf2‖L∞(R4
t,x;L1

l+(γ+2s−1)+
(R3

v))‖g‖L2(R4
t,x , H

2s−1+δ

l+(γ+2s−1)+
(R3

v))‖ |Dt,x|λg‖L2
l (R

7)

≤ C‖f2‖H2+4/2+δ

l+3/2+δ+(γ+2s−1)+
(R7)

‖Λsvg‖L2
l+(γ+2s−1)+

(R7)‖ |Dt,x|λg‖L2
l (R

7).

Thus, we have

(II) ≤ ε‖ΛsvWγ/2ψ1(x)|Dt,x|λgN,l‖2
L2(R7)

+ Cε‖f2‖2k′

H2
l+γ++2s+4

(R3
v))

(
‖ |Dt,x|λg‖2k′

L2
kl+γ++2s

(R7) + ‖Λsvg‖2
L2

l+γ++2s
(R7)

)
.

We now consider the last term (III) of (3.3.14). Recall that (A) stands for the nonlinear terms
from G given in (3.1.2). Precisely

(A) =
∑

α1+α2=α α1 6=0

Cα1
α2
Q
(
∂α1f2, ∂

α2f1

)
.

By using (2.1.1) (We consider also only the case 1/2 ≤ s < 1.) and formula (3.3.4), we have
∣∣∣∣
(
|Dt,x|λ

(
Q
(
∂α1f2, ∂

α2f1

))
, PN,lψ

2
2(x)|Dt,x|λ gN,l

)
L2(R7)

∣∣∣∣

≤ C‖Λ−m
v Wγ/2ψ1(x)|Dt,x|λgN,l‖L2(R7)

{∥∥∥Q
(
|Dt,x|λ∂α1f2, ∂

α2f1

)∥∥∥
L2(R4

t,x;Hm
l+|γ|/2

(R3
v))

+
∥∥∥Q
(
∂α1f2, |Dt,x|λ∂α2f1

)∥∥∥
L2(R4

t,x;Hm
l+|γ|/2

(R3
v))

+
∥∥∥
∫
h−4−λQ

(
∂α1(f2)h, ∂

α2(f1)h

)
dh
∥∥∥
L2(R4

t,x;Hm
l+|γ|/2

(R3
v))

}
.

We divide the discussion into two cases.
Case 1. |α1| = 1, 2. Take m = −s. We have

∥∥∥Q
(
|Dt,x|λ∂α1f2, ∂

α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

+
∥∥∥Q
(
∂α1f2, |Dt,x|λ∂α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

≤ C‖Λλt,x∂
α1f2‖L∞(R4

t,x;L1
l+γ++2s

(R3
v))‖ΛsvΛ

λ
x∂

α2f1‖L2
l+γ++2s

(R7)

≤ C‖f2‖Hλ+2+4/2+δ

l+3/2+δ+γ++2s
(R7)

‖Λsvf1‖H4+λ

l+γ++2s
(R7),

and
∥∥∥
∫

R4

h−4−λQ
(
∂α1(f2)h, ∂

α2(f1)h

)
dh
∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

≤ C

∫
|h|−4−λ‖ ∂α1(f2)h‖L∞(R4

t,x;L1
l+γ++2s

(R3
v))‖Λsv∂

α2(f1)h‖L2
l+γ++2s

(R7)dh

≤ C‖ ∂α1f2‖L∞(R4
t,x;L1

l+γ++2s
(R3

v))‖Λsv∂
α2∇t,xf1)‖L2

l+γ++2s
(R7)

≤ C‖f2‖H2+4/2+δ

l+3/2+δ+γ++2s
(R7)

‖Λsvf1‖H5
l+γ++2s

(R7).

Case 2. |α1| ≥ 3. By the same argument as above, one has
∥∥∥Q
(
|Dt,x|λ∂α1f2, ∂

α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

+
∥∥∥Q
(
∂α1f2, |Dt,x|λ∂α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

≤ C‖Λλt,x∂
α1f2‖L2(R4

t,x;L1
l+γ++2s

(R3
v))‖ΛsvΛ

λ
t,x∂

α2f1‖L∞(R4
t,x;L2

l+γ++2s
(R3

v))

≤ C‖Λλt,xf2‖H5

l+3/2+δ+γ++2s
(R7)‖Λsvf1‖H2+4/2+λ+δ

l+γ++2s
(R7)

.
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When |α1| = 3, 4, we have
∥∥∥
∫

R4

h−4−λQ
(
∂α1(f2)h, ∂

α2(f1)h

)
dh
∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

≤ C

∫
|h|−4−λ‖ ∂α1(f2)h‖L2(R4

t,x;L1
l+γ++2s

(R3
v))‖Λsv∂

α2(f1)h‖L∞(R4
t,x;L2

l+γ++2s
(R3

v))dh

≤ C‖∇t,x∂
α1f2‖L2(R4

t,x;L1
l+γ++2s

(R3
v))‖Λsv∂

α2f1)‖L∞(R4
t,x;L2

l+γ++2s
(R3

v))

≤ C‖f2‖H5
l+3/2+δ+γ++2s

(R7)‖f1‖H2+4/2+s+δ

l+γ++2s
(R7)

,

while when |α1| = |α| = 5, we have
∥∥∥
∫

R4

h−4−λQ
(
∂α(f2)h, (f1)h

)
dh
∥∥∥
L2(R4

t,x;H−s
l+|γ|/2

(R3
v))

≤ C

∫
|h|−4−λ‖ ∂α(f2)h‖L2(R4

t,x;L1
l+γ++2s

(R3
v))‖Λsv(f1)h‖L∞(R4

t,x;L2
l+γ++2s

(R3
v))dh

≤ C‖ ∂αf2‖L2(R4
t,x;L1

l+γ++2s
(R3

v))‖Λsv∇t,xf1)‖L∞(R4
t,x;L2

l+γ++2s
(R3

v))

≤ C‖f2‖H5
l+3/2+δ+γ++2s

(R7)‖f1‖H1+4/2+s+δ

l+γ++2s
(R7)

,

Thus, by the Cauchy-Schwarz inequality, we obtain

(III) ≤ ε‖ΛsvWγ/2ψ1(x)|Dt,x|λgN,l‖2
L2(R7) + Cε

(
‖Λλt,xf3‖4

H5
2l+γ++7

(R7) + ‖Λsf3‖4
H5

2l+γ++7
(R7)

)
.

Finally, we get from (3.3.14) that

‖ΛsvWγ/2ψ1(x)|Dt,x|λgN,l‖2
L2(R7) ≤ C

(
‖Λλt,xf3‖k

′4
H5

kl+γ++7
(R7) + ‖Λsvf3‖4

H5
2l+γ++7

(R7)

)
.

Therefore, we complete the proof for Proposition 3.8.

We are now ready to prove the following regularity result on the solution with respect to the
(t, x) variable.

Proposition 3.9. Under the hypothesis of Theorem 1.1, one has

(3.3.16) Λ1+ε
t,x (ϕ(t)ψ(x)f) ∈ H5

l (R
7),

for any l ∈ N and some ε > 0.

Proof: Fix s0 = s(1−s)
(s+1) . Then (3.3.7) and Proposition 3.8 with λ = s0 imply

ΛsvΛ
s0
t,xg ∈ H5

l (R
7).

It follows that,

(Λs0t,xg)t + v · ∂x(Λs0t,xg) = Λs0t,xQ(f2, g) + Λs0t,xG ∈ H−s
l (R7).

By applying Lemma 3.5 with s′ = s, we can deduce that

Λs0+s0
t,x (ϕ(t)ψ(x)f) ∈ H5

l (R
7),

for any l ∈ N. If 2s0 < 1, by using Proposition 3.8 with λ = 2s0 and Lemma 3.5 with s′ = s, we
have

Λsv(ϕ(t)ψ(x)f), Λ2s0
t,x (ϕ(t)ψ(x)f) ∈ H5

l (R
7) ⇒ Λ3s0

t,x (ϕ(t)ψ(x)f) ∈ H5
l (R

7).

Choose k0 ∈ N such that

k0s0 < 1, (k0 + 1)s0 = 1 + ε > 1.

Finally, (3.3.16) follows from (3.3.5) and Proposition 3.8 with λ = k0s0 by induction. And this
completes the proof of the proposition.
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3.4. Proof of Theorem 1.1. In this subsection, we give the proof of Theorem 1.1 with the above
preparations. The proof is also based on the induction argument.

From Propositions 3.1 and 3.9, it follows that for any l ∈ N,

(3.4.1) Λsv (ϕ(t)ψ(x)f), ∇t,x (ϕ(t)ψ(x)f) ∈ H5
l (R

7).

These will be used to get the high order regularity with respect to the variable v.

Proposition 3.10. Let 0 < λ < 1. Suppose that, for any cutoff functions ϕ ∈ C∞
0 (]T1, T2[), ψ ∈

C∞
0 (Ω) and all l ∈ N,

(3.4.2) Λλv (ϕ(t)ψ(x)f), ∇x (ϕ(t)ψ(x)f) ∈ H5
l (R

7).

Then, for any cutoff function and any l ∈ N,

(3.4.3) Λλ+s
v (ϕ(t)ψ(x)f) ∈ H5

l (R
7).

Proof : Recall that g = ∂α(ϕ(t)ψ(x)f) with |α| ≤ 5 and

gN,l = PN,l g = ψ1(x)SN (Dx)Wl SN (Dv)g.

Choose Λ2λ
v gN,l as a test function for equation (3.3.10). Then, one has

(3.4.4)
([

Λλv , v
]
· ∂x gN,l, ΛλvgN,l

)
L2(R7)

=
(
Λλv
{
Q(f2, gN,l) +GN,l

}
, ΛλvgN,l

)
L2(R7)

.

Since [
Λλv , v

]
· ∂x = λΛλ−2

v ∂v · ∂x,
and Λλ−2

v ∂v are bounded operators in L2, for any 0 < λ < 1, we have, by using the hypothesis
(3.4.2) that

(3.4.5)
∣∣∣
([

Λλ
v , v

]
· ∂xgN,l, Λλ

v gN,l

)
L2(R7)

∣∣∣ ≤ C‖Λλv g‖L2
l
(R7)‖∇x g‖L2

l
(R7),

and when 1/2 ≤ s < 1.

(3.4.6)
∣∣∣
(
ΛλvGN,l, ΛλvgN,l

)
L2(R7)

∣∣∣ ≤ C‖f2‖H5
7 (R7)‖Λλvg‖L2

l+γ++2s
(R7)‖Λλ+2s−1+δ

v gN,l‖L2(R7)

≤ ε‖ΛsvWγ/2Λ
λ
vgN,l‖2

L2(R7) + Cε‖f2‖2
H5

7 (R7)‖Λλv g‖2k
L2

k′l
(R7).

By setting M = Λλv in Proposition 2.9, we have
∣∣∣
(
ΛλvQ(f̃ , gN,l) −Q(f̃ , ΛλvgN,l), ΛλvgN,l

)
L2(R7)

∣∣∣(3.4.7)

≤ C‖f2‖L∞(R4
t,x;L1

γ+
(R3

v))

(
‖ΛλvgN,l‖2

L2(R4
t,x;L2

γ+(R3
v)) + ‖gN,l‖2

L2(R7)

)
‖ΛλvgN,l‖2

L2(R7)

≤ C‖f3‖H5
7 (R7)‖Λλv g‖2

L2
l+1(R

7),

when 0 < s < 1/2. Moreover when 1/2 ≤ s < 1, we have
∣∣∣
(
ΛλvQ(f2, gN,l) −Q(f2, ΛλvgN,l), ΛλvgN,l

)
L2(R7)

∣∣∣(3.4.8)

≤ C‖f2‖L∞(R4
t,x;L1

(2s+γ−1)+
(R3

v))

×
(
‖ΛλvgN,l‖2

L2(R4
t,x;L2

(2s+γ−1)+
(R3

v)) + ‖gN,l‖2
L2(R7)

)
‖Λλ+2s−1+δ

v gN,l‖2
L2(R7)

≤ ε‖ΛsvWγ/2Λ
λ
vgN,l‖2

L2(R7) + Cε‖f3‖2
H5

7 (R7)‖Λλv g‖2k
L2

k′l
(R7).

Now the coercivity estimate (2.2.1) gives,

−
(
Q(f2, ΛλvgN,l), ΛλvgN,l

)
L2(R7)

≥ C0‖ΛsvWγ/2Λ
λ
vgN,l‖2

L2(R7)(3.4.9)

−C‖f2‖L∞(R4
t,x;L1

max{γ+, 2−γ+}
(R3

v))‖ΛλvgN,l‖2
L2

γ+/2
(R7).
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Thus, Proposition 3.10 is proved by the following estimate

(3.4.10) ‖ΛsvWγ/2Λ
λ
vgN,l‖2

L2(R7) ≤ C
(
‖f3‖2

H5
7 (R7) + ‖Λλv g‖2k

L2
k′l

(R7)

)
,

where C is independent on N .

We can now conclude the following regularity result with respect to the variable v.

Proposition 3.11. Under the hypothesis of Theorem 1.1, one has

(3.4.11) Λ1+ε
v (ϕ(t)ψ(x)f) ∈ H5

l (R
7),

for any l ∈ N and some ε > 0.

Again, this result follows by induction. Indeed, notice that there exists k0 ∈ N such that

k0s < 1, (k0 + 1)s = 1 + ε > 1.

Then we get (3.4.11) from (3.2.2), Proposition 3.10 with λ = k0s and (3.4.10), by induction.

High order regularity by iterations

From Proposition 3.9 (more precisely (3.3.16)) and Proposition 3.11, we can now deduce that,
for any l ∈ N, and any cutoff functions ϕ(t) and ψ(x),

ϕ(t)ψ(x)f ∈ H6
l (R

7).

The proof of Theorem 1.1 is then completed by induction.
Indeed, if f is a solution of Boltzmann equation satisfying the assumptions of Theorem 1.1,

then, when m ≥ 5, we have

f ∈ Hm
l (]T1, T2[×Ω × R3

v), ∀l ∈ N =⇒ f ∈ Hm+1
l (]T1, T2[×Ω × R3

v), ∀l ∈ N.

Thus, the full regularity of Theorem 1.1 is obtained by induction from m = 5.

4. Existence and uniqueness of local solutions

The local existence of solutions to the spatially inhomogeneous Boltzmann equation without
angular cutoff is so far not well studied. The strategy of proving the existence in this section
is to approximate the non-cutoff cross-section by a family of approximate cutoff cross-sections
and approximate the Boltzmann equation by a sequence of iterative linear equations. Then by
proving the existence of these approximate linear equations and by obtaining a uniform estimate
on the solutions with respect to the cutoff parameter in some suitable weighted Sobolev space, the
compactness will lead to the convergence of the approximate solutions to the desired solution for
the original problem. One of the techniques used here is to introduce a transformation defined by
the time dependent Maxwellian developed in [54]. The purpose of this transformation is to get
an extra gain of one order higher weight in the velocity variable in the expense of the loss of the
decay in the time dependent Maxwellian. Moreover, the uniqueness of the solution is also proved
in some function space.

4.1. Modified Cauchy Problem. By taking κ, ρ > 0, we set, for 0 ≤ t ≤ T0 = ρ/(2κ),

µκ(t) = µ(t, v) = e−(ρ−κt)(1+|v|2),

and
f = µκ(t)g, Γt(g, g) = µκ(t)

−1Q(µκ(t)g, µκ(t)g).

Then the Cauchy problem (1.6) is reduced to

(4.1.1)

{
gt + v · ∇xg + κ(1 + |v|2)g = Γt(g, g),
g|t=0 = g0.

The existence theorem can be stated as follows.
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Theorem 4.1. Assume that 0 < s < 1/2, γ + 2s < 1 and κ, ρ > 0. Let g0 ∈ Hk
l (R6), g0 ≥ 0 for

some l ≥ 3 and k ≥ 4. Then there exists T∗ ∈]0, T0] such that the Cauchy problem (4.1.1) admits
a unique non-negative solution

g ∈ C0([0, T∗]; H
k
l (R6))

⋂
L2(]0, T∗[;H

k
l+1(R

6)) .

We prove Theorem 4.1 by cutoff approximations. For simplicity of notations, we will denote
µκ(t) by µ(t) without any confusion.

Recall that the cross-section is in the form of B(|v − v∗|, cos θ) = Φ(|v − v∗|)b(cos θ) which
satisfies (1.2) and (1.3). For 0 < ε << 1, we approximate (cutoff) the cross-section by

bε(cos θ) =

{
b(cos θ), if |θ| ≥ 2ε,
b(cos ε), if |θ| ≤ 2ε.

And denote by Γtε(g, g) the collision operator corresponding to the cutoff cross-section Bε =
Φ(v − v∗)bε(cos θ).

By using the collisional energy conservation,

|v′∗|2 + |v′|2 = |v∗|2 + |v|2,
we have µ∗(t) = µ−1(t)µ′

∗(t)µ
′(t). Then for some suitable functions U, V , it holds that

Γtε(U, V )(v) = µ−1(t, v)

∫∫

R3
v∗

×S2
σ

Bε(v − v∗, σ)
(
µ′
∗(t)U

′
∗µ

′(t)V ′ − µ∗(t)U∗µ(t)V
)
dv∗dσ

=

∫∫

R3
v∗

×S2
σ

Bε(v − v∗, σ)µ∗(t)
(
U ′
∗V

′ − U∗V
)
dv∗dσ = Tε(U, V, µ(t))(4.1.2)

= Qε(µ(t)U, V ) +

∫∫

R3
v∗

×S2
σ

Bε(v − v∗, σ)(µ∗(t) − µ′
∗(t))U

′
∗V

′dv∗dσ.

Then we have the following formula coming from the Leibniz formula in the x variable and the
translation invariance property in the v variable. For any α, β ∈ N3,

∂αx ∂
β
v Γtε(U, V )

=
∑

α1+α2=α; β1+β2+β3=β

Cα1,α2,β1,β2,β3Tε(∂α1
x ∂β1

v U, ∂α2
x ∂β2

v V, ∂
β3
v µ(t))

= Qε(µ(t)U, ∂αx ∂
β
v V ) +

∫∫

R3
v∗

×S2
σ

Bε(v − v∗, σ)(µ∗(t) − µ′
∗(t))U

′
∗(∂

α
x ∂

β
v V )′dv∗dσ

+
∑

|α2|+|β2|≤|α+β|−1

Cα1,α2,β1,β2,β3Tε(∂α1
x ∂β1

v U, ∂α2
x ∂β2

v V, ∂β3
v µ(t))

= A1 +A2 +A3 .(4.1.3)

Firstly, we give the following upper weighted estimate on the nonlinear collision operator with
cutoff.

Lemma 4.2. Let γ ∈ R.Then for any ε > 0, k ≥ 4, l ≥ 0, there exists C > 0 depending on ε, k, l
such that for any U, V belonging to Hk

l (R6)

(4.1.4) ‖Γtε(U, V )‖Hk
l (R6) ≤ C‖U‖Hk

l+γ+(R6)‖V ‖Hk
l+γ+(R6), 0 ≤ t ≤ T0 =

ρ

2κ
.

Proof. To prove (4.1.4), put

g1 = ∂α1
x ∂β1

v U, h2 = ∂α2
x ∂β2

v V, µ3(t) = ∂β3
v µ(t),

Tε(g1, h2, µ3(t)) = T +
ε − T −

ε .

Throughout this section, the estimates

µ(t, v), |µ3(t)| = |∂β3
v µ(t, v)| ≤ Cρ, k e

−ρ〈v〉2/4, t ∈ [0, T0], v ∈ R3,

will be used often.
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Firstly, we compute T +
ε as follows.

|WlT +
ε | ≤ C

∫∫
〈|v − v∗|〉γ |µ3(t, v∗)|

Wl

(Wl)′∗(Wl)′
|(Wlg1)

′
∗||(Wlh2)

′|dv∗dσ

≤ C
[ ∫∫ ∣∣∣µ3(t, v∗)

Wl

(Wl)′∗(Wl)′

∣∣∣
2

dv∗dσ
]1/2[ ∫∫

〈v′ − v′∗〉2γ |(Wlg1)
′
∗(Wlh2)

′|2dv∗dσ
]1/2

≤ Cε

[ ∫∫
|(Wl+γ+g1)

′
∗(Wl+γ+h2)

′|2dv∗dσ
]1/2

,

where we have used |v − v∗| = |v′ − v′∗| and Wl

(Wl)′∗(Wl)′
≤ 1. Since the change of variables

(4.1.5) (v, v∗, σ) → (v′, v′∗, σ
′), σ′ = (v − v∗)/|v − v∗|,

has a unit Jacobian, we get

‖WlT +
ε ‖2

L2(R6) ≤ C

∫∫∫∫
|(Wl+γ+g1)

′
∗(Wl+γ+h2)

′|2dv∗dσdvdx

= C

∫∫∫∫
|(Wl+γ+g1)

′
∗(Wl+γ+h2)

′|2dv′∗dσ′dv′dx

≤ C

∫
‖(Wl+γ+g1)‖2

L2(R3
v)‖(Wl+γ+h2)‖2

L2(R3
v)dx.

If |α1 + β1| ≤ k/2, then we have

‖WlT +
ε ‖L2(R6) ≤ C‖(Wl+γ+g1)‖L∞(R3

x;L2(R3
v))‖(Wl+γ+h2)‖L2(R6

x,v)

≤ C‖U‖Hk
l+γ+(R6)‖V ‖Hk

l+γ+(R6),

because of the Sobolev embedding theorem and the fact k/2 + 3/2 < k when k ≥ 4. When
|α2 + β2| ≤ k/2, the proof is similar. This completes the proof of the lemma.

4.2. Cutoff approximations. We now study the following Cauchy problem for the cutoff Boltz-
mann equation

(4.2.1)

{
gt + v · ∇xg + κ〈v〉2g = Γtε(g, g),
g|t=0 = g0 ,

and try to obtain a uniform estimate in the weighted Sobolev space.

We first prove the existence of weak solutions to this cutoff Boltzmann equation.

Theorem 4.3. Assume that γ ≤ 1. Let k ≥ 4, l ≥ 0, ε > 0 and D0 > 0. Then, there exists
Tε ∈]0, T0] such that for any non-negative initial data g0 satisfying

g0 ∈ Hk
l (R6), ‖g0‖Hk

l (R6) ≤ D0,

the Cauchy problem (4.2.1) admits a unique non-negative solution gε having the property

gε ∈ C0(]0, Tε[; H
k
l (R6)), ‖gε‖L∞(]0,Tε[; Hk

l (R6)) ≤ 2D0.

Moreover, this solution enjoys a moment gain in the sense that

(4.2.2) gε ∈ L2(]0, Tε[;H
k
l+1(R

6)).

Remark 4.4. (1) Notice that we do not assume g0 ∈ Hk
l+1(R

6) and the gain of the moment will
be essentially used below in the proof of uniform estimates to compensate the singularity in the
cross-section.
(2) The regularity of gε with respect to t variable follows directly from the equation (4.2.1).
(3) Fix γ, k, l as in the theorem. Then Tε is a function of ε and D0. In the following, when we
need to emphasize this dependency, we write

T = Tε(D0).
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(4) If γ ≤ 0, we may take κ = 0. And in this case, we do not have the moment gain (4.2.2) which
is not needed.

Proof of Theorem 4.3. We prove the existence of non-negative solutions by successive ap-
proximation that preserves the non-negativity, which is defined by using the usual splitting of the
collision operator (4.1.2) into the the gain (+) and loss (-) terms,

Γt,+ε (g, h) =

∫∫

R3
v∗

×S2
σ

Bε(v − v∗, σ)µ∗(t) g
′
∗h

′dv∗dσ,

Γt,−ε (g, h) = hLε(g),

Lε(g) =

∫∫

R3
v∗

×S2
σ

Bε(v − v∗, σ)µ(t, v∗) g∗dv∗dσ.

Evidently, Lemma 4.2 applies to Γt,±ε , and in view of (1.2), the linear operator Lε satisfies

(4.2.3) |∂αx ∂βvLε(g)(t, x, v)| ≤ C〈v〉γ−|β|‖∂αx g‖L2(R3
v), t ∈ [0, T0],

for a constant C > 0 depending on ε, because |µ(t, v∗)∂βv 〈v − v∗〉γ | ≤ C〈v〉γ−|β|.
We now define a sequence of approximate solutions {gn}n∈N by

(4.2.4)





g0 = g0 ;
∂tg

n+1 + v · ∇xg
n+1 + κ〈|v|〉2gn+1 = Γt,+ε (gn, gn) − Γt,−ε (gn, gn+1),

gn+1|t=0 = g0.

Actually, in view of (4.2.3) we consider the mild form

gn+1(t, x, v) =e−κ〈|v|〉
2t−V n(t, 0)g0(x− tv, v)(4.2.5)

+

∫ t

0

e−κ〈|v|〉
2(t−s)−V n(t, s)Γs,+ε (gn, gn)(s, x − (t− s)v, v)ds,

where

V n(t, s) =

∫ t

s

Lε(g
n)(s, x − (t− s)v, v)ds.

First, we note from Lemma 4.2 that for any T ∈ ]0, T0], T0 = ρ/(2κ), g0 ≥ 0, and

gn ∈ L∞(]0, T [; Hk
l (R6)), gn ≥ 0,

the mild form (4.2.5) determines gn+1 in the function class

(4.2.6) gn+1 ∈ L∞(]0, T [; Hk
l−γ+(R6)), gn+1 ≥ 0,

and solves (4.2.4). Thus gn+1 exists and is non-negative, but appears to lose weight in the velocity
variable. We shall now show that the term κ〈v〉2gn+1 in (4.2.4) not only recovers this weight loss
but also creates a higher moment. More precisely, we have the following lemma. Introduce the
space and norm by

X = L∞(]0, T [; Hk
l (R6)) ∩ L2(]0, T [; Hk

l+1(R
6)),

|||g|||2 = ‖g‖2
L∞(]0,T [; Hk

l (R6))
+ κ‖g‖2

L2(]0,T [; Hk
l+1(R

6))
.

This norm depends on k, l, T, κ, but we omit this dependence in the notation for simplicity.

Lemma 4.5. Assume that γ ≤ 1 and let k ≥ 4, l ≥ 0, ε > 0. Then, there exist positive numbers
C1, C2 such that if ρ > 0, κ > 0 and if

(4.2.7) g0 ∈ Hk
l (R6), gn ∈ L∞(]0, T [; Hk

l (R6)),

with some T ≤ T0, the function gn+1 given by (4.2.5) enjoys the properties

(4.2.8)
gn+1 ∈ X,

|||gn+1|||2 ≤ eC1KnT
(
‖g0‖2

Hk
l
(R6)

+ C2

κ ||gn||4
L4(]0,T [; Hk

l
(R6))

)
,
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where Kn is a positive constant depending on ‖gn‖L∞(]0,T [; Hk
l (R6)) and κ.

Proof. Put

hn = hnα = ∂αgn.

Differentiation of equation (4.2.4) yields

∂th
n+1 + v · ∇xh

n+1 + κ〈v〉2hn+1 = G+
1 −G−

1 +G2 +G3,

G+
1 = ∂αΓt,+ε (gn, gn), G−

1 = ∂αΓt,−ε (gn, gn+1),

G2 = −[∂α, v · ∇x]g
n+1,

G3 = −κ
∑

|β̃|=1,2

Cβ̃∂
β̃
v 〈v〉2∂α−(0,β̃)gn+1.

Let χj ∈ C∞
0 (R3), j ∈ N , be the cutoff function

χj(v) =

{
1 , |v| ≤ j ,
0 , |v| ≥ j + 1 .

We remark that (4.2.6) does not necessarily imply Wl+1h
n+1(t) ∈ L2(R6), but χjWl+1h

n+1(t)
∈ L2(R6) for all j ∈ N. Hence, we can use χ2

jW
2
l S

2
N (Dx)h

n+1 as a test function to get

1

2

d

dt
‖SN (Dx)χjWlh

n+1‖2 + κ‖SN(Dx)χjWl+1h
n+1‖2(4.2.9)

= (G+
1 −G−

1 +G2 +G3, SN (Dx)
2χ2

jW
2
l h

n+1).

Here and in what follows, the norm ‖ ‖ and inner product ( , ) are those of L2(R6
x,v) unless

otherwise stated. We shall evaluate the inner products on the right hand side. Observe that
Lemma 4.2 gives, for t ∈ [0, T ],
∣∣∣(G+

1 , S
2
Nχ

2
jW

2
l h

n+1)
∣∣∣ =

∣∣∣(SNχjWl−1G
+
1 , SNχjWl+1h

n+1)
∣∣∣ ≤ C‖Wl−1G

+
1 ‖ ‖SNχjWl+1h

n+1‖

≤ C‖Γt,+ε (gn, gn)‖Hk
l−1(R6) ‖SNχjWl+1h

n+1‖
≤ C‖gn‖2

Hk
l (R6)‖ ‖SNχjWl+1h

n+1‖

≤ C

κ
‖gn‖4

Hk
l (R6) +

κ

4
‖SNχjWl+1h

n+1‖2.

On the other hand, Lemma 4.2 is not enough to evaluate G−
1 because G−

1 contains gn+1 which is
not known, at this moment, to have moments required by Lemma 4.2. However, this obstacle is
only superficial. Observe that

G−
1 =

∑

(α1,β1)+α2=α

Cα1,β1,α2

(
∂α2gn+1

)(
∂β1
v L(∂α1

x gn)
)
.

Define,

Hj,l(g) =
∑

|α|≤k
‖χjWl∂

αg‖2,

and write Hn
j,l = Hn

j,l(t) = Hj,l(gn(t)). By recalling (4.2.3), we get
∣∣∣(G−

1 , S
2
Nχ

2
jW

2
l h

n+1)
∣∣∣ ≤

∑

(α1,β1)+α2=α

Cα1,β1,α2‖χj〈v〉γ−|β1|Wl−1∂
α2gn+1‖ ‖∂α1

x gn‖ ‖SNχjWl+1h
n+1‖

≤ C‖gn‖Hk
l (R6)‖ (Hn+1

j,l )1/2 ‖SNχjWl+1h
n+1‖

≤ C′

κ
‖gn‖2

Hk
l (R6)H

n+1
j,l +

κ

4
‖SNχjWl+1h

n+1‖2.

Here C,C′ are positive constants independent of κ.
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The estimate on the remaining two inner products are more straightforward and can be given
as follows.∣∣∣(G2 +G3, S

2
Nχ

2
jW

2
l h

n+1)
∣∣∣ ≤ C‖χjWl−1(G2 +G3)‖ ‖SNχjWl+1h

n+1‖

≤ C(κ+ 1)
(
Hn+1
j,l

)1/2

‖SNχjWl+1h
n+1‖ ≤ C′′ (κ+ 1)2

κ
Hn+1
j,l +

κ

4
‖SNχjWl+1h

n+1‖2.

The constants C,C′′ are independent of ε and κ.
Putting together all the estimates obtained above in (4.2.9) yields

1

2

d

dt
‖SNχjWlh

n+1‖2+
κ

4
‖SNχjWl+1h

n+1‖2 ≤ C′′′
{
κ+

1

κ
(1 + ‖gn‖2

Hk
l
(R6))

}
Hn+1
j,l +

C

κ
‖gn‖4

Hk
l
(R6).

Summing up estimates for hn+1 = hn+1
α over |α| ≤ k then yields,

d

dt
Hj,l(SNg

n+1) + κHj,l+1(SNg
n+1) ≤ C1KnHj,l(g

n+1) +
C2

κ
‖gn‖4

Hk
l (R6),

where

Kn = κ+
1

κ

(
‖gn‖2

L∞(]0,T [;Hk
l (R6)) + 1

)
,

and C1 > 0 is a constant independent of ε, κ while C2 is independent of κ but depends on ε. By
integrating the above estimate over [0, t] and taking the limit N → ∞, we get

Hn+1
j,l (t) + κ

∫ t

0

Hn+1
j,l+1(τ)dτ

≤ Hn+1
j,l (0) + C1Kn

∫ t

0

Hn+1
j,l (τ)dτ +

C2

κ

∫ t

0

‖gn(τ)‖4
Hk

l (R6)dτ, t ∈ [0, T ],

which gives a Gronwall type inequality

Hn+1
j,l (t) + κ

∫ t

0

eC1Kn(t−τ)Hn+1
j,l+1(τ)dτ(4.2.10)

≤ eC1KntHn+1
j,l (0) +

C2

κ

∫ t

0

eC1Kn(t−τ)‖gn(τ)‖4
Hk

l (R6)dτ, t ∈ [0, T ],

for all j ∈ N. Since

Hn+1
j,l (0) ≤ ‖g0‖2

Hk
l
,

and 1 ≤ eC1Kn(t−τ) ≤ eC1Knt, (4.2.10) gives

Hn+1
j,l (t)+κ

∫ t

0

Hn+1
j,l+1(τ)dτ ≤ eC1Knt

{
‖g0‖2

Hk
l

+
C2

κ

∫ t

0

‖gn(τ)‖4
Hk

l (R6)dτ
}
, t ∈ [0, T ].

Since the right hand side is independent of j, we see that {χj∂αgn+1}j∈N, |α| ≤ k is weakly*
compact in L∞(]0, T [;L2

l (R
6)) and weakly compact in L2(]0, T [;L2

l+1(R
6)). Take a convergent

subsequence. Apparently, its limit is hn+1(t). This is true for all |α| ≤ k so that we can now
conclude that

gn+1 ∈ X = L∞(]0, T [;Hk
l (R6)) ∩ L2(]0, T [;Hk

l+1(R
6)),

and by Fatou’s theorem,

|||gn+1|||2 ≤ lim inf
j→∞

‖Hn+1
j,l ‖L∞(]0,T [) + κ lim inf

j→∞
‖Hn+1

j,l+1‖L1(]0,T [)

≤ eC1KnT
(
‖g0‖2

Hk
l

+
C2

κ
‖gn‖4

L4(]0,T [;Hk
l (R6)

)
.

Now the proof of Lemma 4.5 is completed.



48 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

We are now in the position to prove the convergence of {gn}n∈N. Fix κ > 0, let D0, g0 be as in
Theorem 4.3 and introduce an induction hypothesis

(4.2.11) ‖gn‖L∞(]0,T [; Hk
l (R6)) ≤ 2D0.

for some T ∈ ]0, T0]. (Notice that the factor 2 can be any number > 1.)
(4.2.11) is true for n = 0 due to (4.2.7). Suppose that this is true for some n > 0. We shall

determine T independent of n. A choice is

eC1K0T = 2,
24C2

κ
TD2

0 = 1 where K0 = κ+
2D0 + 1

κ
,(4.2.12)

or

T = min

{
log 2

C1K0
,

κ

24C2D2
0

}
.

In fact, (4.2.8) and (4.2.11) yield that gn+1 ∈ X and

|||gn+1|||2 ≤ eC1K0T
(
‖g0‖2

Hk
l
(R6) +

C2

κ
T ||gn||4L∞(]0,T [; Hk

l
(R6))

)

≤ eC1K0T
(
D2

0 +
C2

κ
T 24D4

0

)
≤ 4D2

0.

That is, the induction hypothesis (4.2.11) is fulfilled for n+ 1, and hence holds for all n.
For the convergence, set wn = gn(t) − gn−1(t), for which (4.2.4) leads to





∂tw
n+1 + v · ∇xw

n+1 + κ〈|v|〉2wn+1 = Γt,+ε (wn, gn) + Γt,+ε (gn−1, wn),
−Γt,−ε (wn, gn+1) − Γt,−ε (gn−1, wn+1),

wn+1|t=0 = 0.

By the same computation as used for (4.2.9), but more straightforward since we can now use a
test functions as SN (Dx)

2W 2
l ∂

αwn+1, we get

|||wn+1|||2 ≤ 1

2
C2e

C1K0T 1

κ
T
{
‖gn+1‖2

L∞(]0,T [; Hk
l (R6)) + ‖gn‖2

L∞(]0,T [; Hk
l (R6))

+ ‖gn−1‖2
L∞(]0,T [; Hk

l (R6))

}
‖wn‖2

L∞(]0,T [; Hk
l (R6)),

with the same constants C1, C2 and K0 as above. Then, (4.2.11) and (4.2.12) give

|||gn+1 − gn|||2 ≤ 24C2D
2
0κ

−1T ‖gn − gn−1‖2
L∞(]0,T [; Hk

l (R6)).

Finally, choose T smaller if necessary so that

24C2D
2
0κ

−1T ≤ 1

4
.

Then, we have proved that for any n ≥ 1,

(4.2.13) |||gn+1 − gn||| ≤ 1

2
|||gn − gn−1|||.

Consequently, {gn} is a convergence sequence in X , and the limit

gε ∈ X,

is therefore a non-negative solution of the Cauchy problem (4.2.1). The estimate (4.2.13) deduces
also the uniqueness of solutions.

By means of the mild form (4.2.5), it can be proved also that for each n,

gn ∈ C0([0, T ];Hk
l (R6))

and hence so is the limit gε. The non-negativity of gε follows because gn ≥ 0. Now the proof of
Theorem 4.3 is completed.
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4.3. Uniform estimate. We prove now the existence of solutions for the Cauchy problem (4.1.1)
by the convergence of approximation sequence {gε} as ε→ 0. The first step is to prove the uniform
boundedness of this approximation sequence. In what follows, the constant C are various constants
independent of ε > 0.

Theorem 4.6. Assume that 0 < s < 1/2, γ + 2s < 1. Let g0 ∈ Hk
l (R6), g0 ≥ 0 for some

k ≥ 4, l ≥ 3. Then there exists T∗ ∈]0, T0] depending only on ‖g0‖Hk
l

and independent of ε such

that if for some 0 < T ≤ T0 ,

(4.3.1) gε ∈ C0(]0, T ]; Hk
l (R6)) ∩ L2(]0, T [; Hk

l+1(R
6)),

is a non-negative solution of the Cauchy problem (4.2.1), then it holds that

(4.3.2) ‖gε‖L∞(]0,T∗∗[; Hk
l (R6)) ≤ 2‖g0‖Hk

l (R6),

for T∗∗ = min{T, T∗}.
In the following, ρ > 0, κ > 0 are fixed. Furthermore, recall T0 = ρ/(2κ). We start with a

solution gε subject to (4.3.1) for some T ∈ ]0, T0]. For α ∈ N6, |α| ≤ k, the differentiation of the
equation (4.2.1) deduces

(4.3.3) ∂t(∂
αgε) + v · ∇x(∂

αgε) + κ〈v〉2(∂αgε) = ∂αΓtε(g
ε, gε) − [∂α, v · ∇x]g

ε − κ[∂α, 〈v〉2]gε.
Since ∂αgε only belongs to L2

l , now as in Section 3, we take,

P ⋆N, lPN, l(∂
αgε)

as a test function in (4.3.3), where l ≥ 3 and PN, l = SN (Dx)SN (Dv)Wl (we do not need the cutoff
functions ϕ, ψ here). Then we have

1

2

d

dt
‖PN, l(∂αgε)(t)‖2

L2(R6) + κ‖W1 PN, l(∂
αgε)(t)‖2

L2(R6)(4.3.4)

+ κ
(
[SN (Dv), 〈v〉2]Wl (∂

αgε), SN (Dx)PN, l(∂
αgε)

)
L2(R6)

=
(
A1 +A2 +A3 +A4 +A5, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

,

where A1, A2, A3 are defined in (4.1.3) with U = V = g and

A4 = −[∂α, v · ∇x]g
ε, A5 = −κ

∑

|β̃|=1,2

Cβ̃∂
β̃
v 〈v〉2∂α−(0,β̃)gε.

We have firstly,

(4.3.5)
∣∣∣
(
A4, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

∣∣∣ ≤ C‖gε(t)‖2
Hk

l
(R6),

and

(4.3.6)
∣∣∣
(
A5, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

∣∣∣ ≤ Cκ‖gε(t)‖2
Hk

l
(R6) +

κ

4
‖gε(t)‖2

Hk
l+1

(R6).

We also have ∣∣∣∣κ
(
[SN (Dv), 〈v〉2]Wl (∂

αgε), SN (Dx)PN, l(∂
αgε)

)
L2(R6)

∣∣∣∣(4.3.7)

≤ Cκ‖gε(t)‖2
Hk

l (R6) +
κ

4
‖gε(t)‖2

Hk
l+1(R

6).

We study now the term A1 by using the non-negativity of gε and the coercivity of collision operators.

Proposition 4.7. Assume that 0 < s < 1/2, γ ∈ R. There exists C > 0 independent of ε such
that for any α ∈ N6, |α| ≤ k, k ≥ 4, l ≥ 3,

(4.3.8)
(
A1, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

≤ C‖gε(t)‖2
Hk

l
(R6)‖gε(t)‖Hk

l+γ+ (R6),

for any 0 ≤ t ≤ T ≤ T0.
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Proof : By setting h = ∂αgε, we have,
(
A1, P

⋆
N, lPN, lh

)
L2(R6)

=
(
PN, lQε(µg

ε, h), (PN, lh)
)
L2(R6)

=
(
Qε
(
µ(t)gε, (PN, lh)

)
, (PN, lh)

)
L2(R6)

+
(
PN, lQε

(
µ(t)gε, h

)
−Qε

(
µ(t)gε, (PN, lh)

)
, (PN, lh)

)
L2(R6)

= B1 +B2.

Since µ(t) gε(t, x, v) ≥ 0, we have, in the same way as Theorem 2.6 with the cancellation lemma,

B1 = −1

2

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

Bε(v − v∗, σ) (µ(t) gε)∗
(
(PN, lh)

′ − (PN, lh)
)2

dv∗dσdvdx

+
1

2

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

Bε(v − v∗, σ) (µ(t) gε)∗
{(

(PN, lh)
′
)2

−
(
PN, lh

)2}
dv∗dσdvdx

≤ 1

2

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

Bε(v − v∗, σ) (µ(t) gε)∗
{(

(PN, lh)
′
)2

−
(
PN, lh

)2}
dv∗dσdvdx

≤ C

∫∫∫

R3
x×R3

v∗
×R3

v

(µ(t) gε)∗ 〈v − v∗〉γ
+

(PN, lh)
2dvdv∗dx

≤ C‖µWγ+gε(t)‖L∞(R3
x;L1(R3

v))‖Wlh(t)‖L2(R6
x, v)‖Wl+γ+h(t)‖L2(R6

x, v)

≤ C‖gε(t)‖H3/2+δ(R6
x, v)‖gε(t)‖Hk

l (R6
x, v)‖gε(t)‖Hk

l+γ+ (R6
x, v), t ∈ [0, T ],

where we used the fact that bε(cos θ) ≤ b(cos θ).

By putting SN = SN (Dx) S̃N = SN (Dv), we decompose

B2 =
(
SN S̃N

{
WlQε

(
µ(t)gε, h

)
−Qε

(
µ(t)gε, (Wlh)

)}
, (PN, lh)

)
L2(R6)

+
(
SN

{
S̃NQε

(
µ(t)gε, (Wlh)

)
−Qε

(
µ(t)gε, S̃N(Wlh)

)}
, (PN, lh)

)
L2(R6)

+
(
SNQε

(
µ(t)gε, (S̃NWlh)

)
−Qε

(
µ(t)gε, SN (S̃NWlh)

)
, (PN, lh)

)
L2(R6)

= B21 +B22 +B23.

By Lemma 2.4, we get

|B21| =

∣∣∣∣
({
WlQε

(
µ(t)gε, h

)
−Qε

(
µ(t)gε, (Wlh)

)}
, (S̃NSNPN, lh)

)
L2(R6)

∣∣∣∣

≤ C‖µ(t)gε(t)‖L∞(R3
x;L1

l+γ+(R3
v))

∫

R3
x

‖Wl+γ+h‖L2(R3
v)‖PN, lh‖L2(R3

v)dx

≤ C‖gε(t)‖L∞(R3
x;L2(R3

v))‖gε(t)‖Hk
l (R6)‖gε(t)‖Hk

l+γ+ (R6),

≤ C‖gε(t)‖2
Hk

l (R6)‖g
ε(t)‖Hk

l+γ+ (R6), t ∈ [0, T ].

It follows from Lemma 3.3 that

|B22| ≤
(∫

R3
x

‖S̃NQε(µ(t)gε, (Wlh)) −Qε(µ(t)gε, S̃N (Wlh))‖2
L2(R3

v)dx

)1/2

‖PN, lh‖L2(R6)

≤ C‖µ(t)gε(t)‖L∞(R3
x;L1

γ+(R3
v))‖Wl+γ+h‖L2(R6

v)‖gε(t)‖Hk
l (R6)

≤ C‖gε(t)‖2
Hk

l (R6)‖g
ε(t)‖Hk

l+γ+ (R6), t ∈ [0, T ].
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Lemma 3.4 with m = 2s yields

|B23| ≤ C‖SNQ(µ(t)gε, (S̃NWlh) ) −Q(µ(t)gε, SN (S̃NWlh) )‖L2(R3
x, L

2(R3
v))‖PN, lh‖L2(R6)

≤ C‖µ(t)∇xg
ε‖L∞(R3

x, L
1
(2s+γ)+

(R3
v))‖(2−N S̃N(Wlh)‖L2(R3

x, H
2s
(2s+γ)+

(R3
v))‖PN, lh‖L2(R6)

≤ C‖gε(t)‖2
Hk

l (R6)‖g
ε(t)‖Hk

l+γ+ (R6), t ∈ [0, T ].

Combining the above estimates proves Proposition 4.7.

For the term A2 and A3, we prove the following proposition.

Proposition 4.8. Assume that 0 < s < 1/2, γ + 2s < 1. Then, for any δ > 0, there exists C > 0
independent of ε > 0 such that for any α ∈ N6, |α| ≤ k, k ≥ 4, l ≥ 3,

(4.3.9)
(
A2 +A3, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

≤ C‖gε(t)‖2
Hk

l (R6)‖gε(t)‖Hk

l+(γ+2s+δ)+
(R6),

for t ∈ [0, T ].

Proof. By putting h = ∂αgε and h̃ = W−2
l P ⋆N, lPN, l(∂

αgε) , we get

∣∣∣∣
(
A2, W

2
l h̃
)
L2(R6)

∣∣∣∣ =

∣∣∣∣∣

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

Bε(v − v∗, σ)(µ∗(t) − µ′
∗(t))(g

ε)′∗h
′(W 2

l h̃)dv∗dσdvdx

∣∣∣∣∣

≤
∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

B(v − v∗, σ)|µ∗(t) − µ′
∗(t)| |(gε)′∗| |(Wlh)

′(Wlh̃)|dv∗dσdvdx

+

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

B(v − v∗, σ)|(µ∗(t) − µ′
∗(t))| |(gε)′∗|

∣∣Wl −W ′
l

∣∣ |h′(Wlh̃)|dv∗dσdvdx

= I1 + I2.

To estimate I1, we notice that

(4.3.10) |µ(t, v∗)−µ(t, v′∗)| ≤ C|v∗ − v′∗|λ ≤ Cθλ|v− v∗|λ ≤ Cθλ|v′ − v′∗|λ, λ ∈ [0, 1], t ∈ [0, T0],

which is elementary for λ = 0, 1 and is obtained for general λ ∈ (0, 1) by interpolation. Since
γ + 2s < 1 is assumed in the proposition, there is λ ∈ (0, 1) such that λ > 2s, γ + λ ≤ 1. By the
manipulation on the primed and non-primed variables ( see (4.1.5) ) we have

I1 ≤ C

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

〈v′ − v′∗〉(γ+λ)+θ−2−2s+λ|(gε)′∗| |(Wlh)
′| |(Wlh̃)|dv∗dσdvdx

≤ C

∫∫∫

R3
x×R3

v∗
×S2

σ

θ−2−2s+λ|(W(γ+λ)+g
ε)∗|
{∫

R3
v

|(Wl+(γ+λ)+h)(Wlh̃)
′|dv

}
dv∗dσdx

≤ C‖gε(t)‖L∞(R3
x;L1

(γ+λ)+
(R3

v))‖gε(t)‖Hk
l (R6)‖gε(t)‖Hk

l+(γ+λ)+
(R6)

≤ C‖gε(t)‖2
Hk

l (R6)‖gε(t)‖Hk
l+(γ+λ)+

(R6),

for l > (γ + λ)+ + 3/2. In the third inequality we have used again the fact that the Jacobian of
changing of variable v → v′ is bounded.

Using (2.1.14) gives

I2 ≤ C

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

〈v′ − v′∗〉γθ−1−2s(µ∗(t) + µ′
∗(t))|(gε)′∗

(
W ′
lW

′
l,∗
)
h′(Wlh̃)|dv∗dσdvdx

= C(J1 + J2).
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By the Schwarz inequality and the Sobolev inclusion, we have

J1 ≤ C

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

θ−1−2sµ∗(t)|(Wl+γ+gε)′∗(Wl+γ+h)′(Wlh̃)|dv∗dσdvdx

≤ C

∫

R3
x

(∫∫∫

R3
v×R3

v∗
×S2

σ

θ−1−2sµ∗(t)
2|(Wlh̃)|2dvdv∗dσ

)1/2

×
(∫∫∫

R3
v×R3

v∗
×S2

σ

θ−1−2s|(Wl+γ+gε)′∗(Wl+γ+h)′|2dvdv∗dσ
)1/2

dx

≤ C‖µ‖L2(R3
v)

∫

R3
x

‖Wlh̃(x)‖L2(R3
v)‖Wl+γ+gε(x)‖L2(R3

v)‖Wl+γ+h(x)‖L2(R3
v)dx

≤ C‖gε‖L∞(R3
x;L2(R3

v)‖Wl+γ+h‖L2(R6)‖Wlh̃‖L2(R6)

≤ C‖gε‖2
Hk

l+γ+ (R6)‖gε‖Hk
l (R6).

On the other hand, again by the manipulation on the primed and non-primed variables,

J2 ≤ C

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

θ−1−2s|(µ(t)Wl+γ+gε)′∗(Wl+γ+h)′(Wlh̃)|dv∗dσdvdx

≤ C

∫∫∫∫

R3
x×R3

v∗
×S2

σ

θ−1−2s|(µ(t)Wl+γ+gε)∗|
{∫

R3
v

|Wl+γ+h||(Wlh̃)
′|dv

}
dv∗dσdx

≤ C‖µ(t)Wl+γ+gε‖L∞(R3
x;L1(R3

v))‖Wl+γ+h‖L2(R6)‖Wlh̃‖L2(R6)

≤ C‖gε‖2
Hk

l (R6)‖gε‖Hk
l+γ+(R6).

Here, we have used Wl+γ+µ1/2(t) ≤ C.
We consider now the term A3. For any α ∈ N6, |α| ≤ k, k ≥ 4, l ≥ 3, denote

h1 = ∂α1gε, h2 = ∂α2gε,

where

α1 + α2 ≤ α, α2 < α .

We shall compute
(
Tε(h1, h2, µ̃), W 2

l h̃
)
L2(R6)

=

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

Bε(µ̃∗(t) − µ̃′
∗(t))(h1)

′
∗h

′
2(W

2
l h̃)dv∗dσdvdx

+

∫∫∫∫

R3
x×R3

v×R3
v∗

×S2
σ

Bε (µ̃h1)
′
∗
(
Wl −W ′

l

)
h′2(Wlh̃)dv∗dσdvdx

+
(
Qε(µ̃h1, (Wlh2) ),Wlh̃

)
L2(R6)

.

For the last term, by Theorem 2.1 with m = 2s < 1, there exists C > 0 independent of ε such that
for |α2| ≤ |α| − 1 and δ > 0,

‖Qε(µ̃h1, (Wlh2) )‖2
L2(R6) ≤ C

∫

R3

‖µ̃h1(t, x, · )‖2
L1

(γ+2s)+
(R3

v)‖(Wlh2)(t, x, · )‖2
H2s

(γ+2s)+
(R3

v)dx

≤





C‖µ̃h1(t)‖2
L∞(R3

x, L
2
3/2+(γ+2s)++δ

(R3
v))

‖(Wlh2)(t)‖2
L2(R3

x; H2s
(γ+2s)+

(R3
v))
, |α1| ≤ 2,

C‖µ̃h1(t)‖2
L2(R3

x; L2
3/2+(γ+2s)++δ

(R3
v))

‖(Wlh2)(t)‖2
L∞(R3

x, H
2s
(γ+2s)+

(R3
v))
, |α1| > 2,

≤





C‖h1(t)‖2
H3/2+δ(R3

x; L2(R3
v))

‖(Wlh2)(t)‖2
L2(R3

x; H2s
(γ+2s)+

(R3
v))
, |α1| ≤ 2,

C‖h1(t)‖2
L2(R3

x; L2(R3
v))‖(Wlh2)(t)‖2

H3/2+δ(R3
x; H2s

(γ+2s)+
(R3

v))
, |α1| > 2,

≤ C‖gε(t)‖2
Hk

l (R6)‖gε(t)‖2
Hk

l+(γ+2s)+
(R6), k ≥ 4 > 3 + 2s, l > (γ + 2s)+ + 3/2.
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The estimation on the first term is similar to (A2,W
2
l h̃)L2(R6) by taking account of the same

manipulation concerning α2. The estimation for the second term is also similar to the part J2 of
I2 as above. Hence, we have obtained

(4.3.11)

∣∣∣∣
(
A3, W

2
l h̃
)
L2(R6)

∣∣∣∣ ≤ C‖gε(t)‖2
Hk

l (R6)‖gε(t)‖Hk
l+γ+2s(R6).

This completes the proof of Proposition 4.8.

If (4.3.5), (4.3.6), (4.3.7), (4.3.8) and (4.3.9) are combined, then it follows from (4.3.4) that

1

2

d

dt
‖PN, l(∂αgε)(t)‖2

L2(R6) + κ‖W1 PN, l(∂
αgε)(t)‖2

L2(R6) −
κ

2
‖gε(t)‖2

Hk
l+1(R6)

≤C
(
‖gε(t)‖2

Hk
l (R6) + C2‖gε(t)‖2

Hk
l (R6)‖gε(t)‖Hk

l+(γ+2s+δ)+
(R6)

)
.

Take the sum over |α| ≤ k, integrate from 0 to t ∈ [0, T ] and make N → ∞. Then there exists
C1, C2 > 0 independent of ε > 0 such that , for any δ > 0 and t ∈ [0, T ],

‖gε(t)‖2
Hk

l (R6) + κ

∫ t

0

‖gε(τ)‖2
Hk

l+1(R6)dτ

(4.3.12)

≤ ‖gε(0)‖2
Hk

l (R6) + C1

∫ t

0

‖gε(τ)‖2
Hk

l (R6)dτ + C2

∫ t

0

‖gε(τ)‖2
Hk

l (R6)‖gε(τ)‖Hk

l+(γ+2s+δ)+
(R6)dτ.

Remark 4.9. We give here some technical reason about the choice of the time dependent dis-
tribution µ(t) as moment control in the equation (4.1.1). If we take κ = 0 in the definition of
Maxwellian distribution µ(t), the above computation gives also (4.3.12) without the second term on
the left hand side because κ = 0. But the upper bounded estimate, by using Theorem 2.1, always
gives the last term in (4.3.12) with the factor ‖gε(t)‖Hk

l+(γ+2s)++δ
(R6). If γ+2s < 0, there is no loss

of moment, we can get (4.3.13) with κ = 0. If 0 ≤ γ+2s < 1, we choose δ such that γ+2s+ δ ≤ 1
so the second term on left hand side absorbs the last term in (4.3.12) because

‖gε(t)‖Hk
l+(γ+2s+δ)+

(R6) ≤ ‖gε(t)‖Hk
l+1(R6).

In conclusion, the choice of µ(t) is mainly for the hard potential.

Completion of proof of Theorem 4.6. Set X(t) = ‖gε(t)‖2
Hk

l
(R6)

and F (t) =
∫ t
0
X(τ)(1 +

X(τ))dτ . Since γ + 2s < 1, by (4.3.12) there exists a C > 0 independent of ε > 0 such that

(4.3.13) X(t) +
κ

2

∫ t

0

‖gε(τ)‖2
Hk

l+1(R6)dτ ≤ X(0) + CF (t).

Noting that F ′(t) ≤
(
X(0) + CF (t)

)(
1 +X(0) + CF (t)

)
, we have

‖gε(t)‖2
Hk

l (R6)) ≤
‖g0‖2

Hk
l (R6)

eCt

1 −
(
eCt − 1

)
‖g0‖2

Hk
l (R6)

, for t ∈]0, T ].

We choose T∗ > 0 small enough such that

eCT∗

1 −
(
eCT∗ − 1

)
‖g0‖2

Hk
l (R6)

= 4.

Then

T∗ =
1

C
log
(
1 +

3

1 + 4‖g0‖2
Hk

l (R6)

)
,

is independent of ε > 0, but depends on ‖g0‖Hk
l (R6) and the constant C which depends on ρ, κ, k

and l. Let T∗∗ = min (T, T∗). Then we have (4.3.2).
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From (4.3.2) and (4.3.13), we get also, for κ > 0,

(4.3.14) κ‖gε‖2
L2(]0,T∗∗[;Hk

l+1(R6)) ≤ 2‖g0‖2
Hk

l (R6)

(
1 + 2CT∗(1 + 2‖g0‖2

Hk
l (R6))

)
.

We have proved Theorem 4.6.

4.4. Convergence and uniqueness. The second step is to prove that, for any 0 < ε < 1, we
can extend the approximation solution gε, obtained by Theorem 4.2.1, to a fixed interval ]0, T∗[
with T∗ > 0 determined in Theorem 4.6 which is independent on ε > 0. Then this sequence is
convergent.

Theorem 4.10. Assume that 0 < s < 1/2, γ+2s < 1, g0 ≥ 0, g0 ∈ Hk
l (R6) for some k ≥ 4, l ≥ 3.

Let T∗ > 0 be given in Theorem 4.6. Then the Cauchy problem (4.2.1) admits a unique non-negative
solution up to T∗ satisfying

gε ∈ L∞(]0, T∗[; H
k
l (R6)) ∩ L2(]0, T∗[; H

k
l+1(R

6)).

Proof: We recall the notation T = Tε(D0) from Remark 4.4. Then Theorem 4.3 assures that the
Cauchy problem (4.2.1) with initial data g0 admits a unique non-negative solution

gε1 ∈ C0([0, 2T1,ε]; H
k
l (R6)) ∩ L2(]0, 2T1,ε[; H

k
l+1(R

6)), T1,ε =
1

2
Tε(‖g0‖Hk

l (R6)).

If T1,ε ≥ T∗, then the proof is completed. If T1,ε < T∗, then Theorem 4.6 implies

‖gε1(T1,ε)‖Hk
l (R6) ≤ 2 ‖g0‖Hk

l (R6).

We now consider the Cauchy problem (4.2.1) with initial data gε(T1,ε). Again Theorem 4.3 assures
that there exists

T2,ε =
1

2
Tε(2‖g0‖Hk

l (R6)),

such that the Cauchy problem (4.2.1) admits a unique non-negative solution

gε2 ∈ C0([T1,ε, T1,ε + 2T2,ε]; H
k
l (R6))

⋂
L2(]T1,ε, T1,ε + 2T2,ε[; H

k
l+1(R

6)).

By uniqueness of solution, we obtain a non-negative solution of the Cauchy problem (4.2.1),

gε ∈ C0([0, T1,ε + 2T2,ε]; H
k
l (R6))

⋂
L2(]0, T1,ε + 2T2,ε[; H

k
l+1(R

6)).

If T1,ε+2T2,ε ≥ T∗, we finish the proof. If T1,ε+2T2,ε < T∗, we consider again the Cauchy problem
(4.2.1) with initial date gε(T1,ε + T2,ε). Since Theorem 4.6 gives again

‖gε(T1,ε + T2,ε)‖Hk
l (R6) ≤ 2 ‖g0‖Hk

l (R6),

the interval of the existence of solution is the same, that is, 2T2,ε, so that we can extend the
solution to

gε ∈ L∞(]0, T1,ε + 3T2,ε[; H
k
l (R6))

⋂
L2(]0, T1,ε + 3T2,ε[; H

k
l+1(R

6)).

By iteration, there exists m ∈ N such that

T1,ε +mT2,ε < T∗, T1,ε + (m+ 1)T2,ε ≥ T∗,

and we extend the solution up to

gε ∈ C0([0, T1,ε + (m+ 1)T2,ε]; H
k
l (R6))

⋂
L2(]0, T1,ε + (m+ 1)T2,ε[; H

k
l+1(R

6)).

We have proved Theorem 4.10.
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Theorem 4.10 assures the existence of an approximation solution sequence
{
gε
}
ε>0

⊂ C0([0, T∗]; H
k
l (R6))

⋂
L2(]0, T∗; H

k
l+1(R

6)),

and

‖gε‖L∞(]0,T∗[ ; Hk
l (R6)) ≤ 2 ‖g0‖Hk

l (R6).

This implies that it is a weakly* compact set of L∞(]0, T∗[; Hk
l (R6)). Let

g ∈ L∞(]0, T∗[ ; H
k
l (R6)),

be a limit of a subsequence of
{
gε
}
ε>0

.

On the other hand, by using the equation (4.2.1) and Theorem 2.1, we obtain

‖∂tgε‖L∞(]0,T∗[ ; Hk−1
l−1 (R6)) ≤ C

(
‖gε‖L∞(]0,T∗[ ; Hk

l (R6)) + ‖gε‖2
L∞(]0,T∗[ ; Hk

l (R6))

)

≤ 2C (1 + 2‖g0‖Hk
l (R6))‖g0‖Hk

l (R6).

Thus,
{
gε
}
ε>0

is a compact subset in

C1−δ(]0, T∗[ ; H
k−1−δ
l−1 (Ω × R3

v)),

for any compact bounded open set Ω ⊂ R3
x and for any δ > 0. For the variable v, we have the

weight Wl−1 with l − 1 > 3/2. Then, we can take the limit in the equation (4.2.1) and also in
the mild form (4.2.5). Then g is a solution of the Cauchy problem (4.1.1). The limit g belongs to
L2(]0, T∗[; Hk

l+1(R
6)) deduced from (4.3.14). Now if g0 ≥ 0, Theorem 4.3 implies that gε ≥ 0, so

that the limit g is also non-negative on ]0, T∗[. We have completed the proof for the local existence
of solutions stated in Theorem 4.1.

It remains to prove the uniqueness of solutions in Theorem 4.1. We state it more precisely as
follows.

Proposition 4.11. Assume that 0 < s < 1/2, γ + 2s < 1, 0 < T ≤ T0, m > 3 and g0 ≥ 0, g0 ∈
Hm

3 (R6). Suppose that the Cauchy problem (4.1.1) admits two (non-negative) solutions

g1, g2 ∈ C0([0, T ]; Hm
4 (R6)).

Then g1 ≡ g2.

Set f = g1 − g2, by using (4.1.1), we have

(4.4.1)

{
ft + v · ∇xf + κ(1 + |v|2)f = Γt(g1, f) + Γt(f, g2) ,
f |t=0 = 0.

We can now take W3f as a test function to get

(4.4.2)
1

2

d

dt
‖W3f(t)‖2

L2(R6) + κ‖W4f(t)‖2
L2(R6) =

(
W3Γ

t(g1, f) +W3Γ
t(f, g2) ,W3f

)
L2(R6)

.

Recall that

Γt(g, h) = Q(µ(t)g, h) +

∫

R3
v∗

×S2

B
(
µ(t)∗ − µ(t)′∗

)
g′∗h

′dv∗dσ.

We estimate the last two terms of (4.4.2) in the following lemma.

Lemma 4.12. Assume that g1 ≥ 0. Then for any ε > 0, there exist constants Cε > 0 and
K(ε, ‖g2‖L∞(]0, T [;Hm

4 (R6))) > 0 such that

(4.4.3)
(
W3Γ

t(g1, f) ,W3f
)
L2(R6)

≤ ε‖W4f(t)‖2
L2(R6) + Cε‖g1‖2

L∞(]0, T [;Hm
4 (R6))‖W3f(t)‖2

L2(R6),

(4.4.4)∣∣∣∣
(
W3Γ

t(f, g2) ,W3f
)
L2(R6)

∣∣∣∣ ≤ ε‖W4f(t)‖2
L2(R6) +K(ε, ‖g2‖L∞(]0, T [;Hm

3 (R6)))‖W3f(t)‖2
L2(R6).
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Notice that by using the above lemma with ε = κ/4 and (4.4.2), we get

d

dt
‖W3f(t)‖2

L2(R6) ≤
(
C‖g1‖2

L∞(]0, T [;Hm
4 (R6)) +K(ε, ‖g2‖L∞(]0, T [;Hm

4 (R6)))
)
‖W3f(t)‖2

L2(R6).

Then ‖W3f(0)‖L2(R6) = 0 implies ‖W3f(t)‖L2(R6) = 0 for all 0 ≤ t ≤ T which gives Proposition
4.11.

Proof of Lemma4.12. As for (4.4.3), we have
(
W3Γ

t(g1, f) ,W3f
)
L2(R6)

=
(
W3Q(µ(t)g1, f) ,W3f

)
L2(R6)

+

∫∫∫∫
B (µ(t)∗ − µ(t)′∗)g

′
1∗f

′W 2
3 fdv∗dσdvdx

=
(
Q(µ(t)g1, W3f) ,W3f

)
L2(R6)

+
(
W3Q(µ(t)g1, f) −Q(µ(t)g1, W3f) ,W3f

)
L2(R6)

+

∫∫∫∫
B (µ(t)∗ − µ(t)′∗)g

′
1∗
(
W3f

)′
W3fdv∗dσdvdx

+

∫∫∫∫
B (µ(t)∗ − µ(t)′∗)g

′
1∗
(
W3 −W ′

3

)
f ′W3fdv∗dσdvdx

= D1 +D2 +D3 +D4.

For the term D1, it is the same as B1 in the proof of Proposition 4.7. By using µ(t)g1 ≥ 0, we have

D1 ≤ C‖g1(t)‖H3/2+δ(R6
x, v)‖f(t)‖L2

3(R
6
x, v)‖f(t)‖L2

3+γ+(R6
x, v),

for some small δ > 0. The term D2 is similar to B2 and we can obtain

|D2| ≤ C‖g1(t)‖H3/2+δ(R6
x, v)‖f(t)‖L2

3(R
6
x, v)‖f(t)‖L2

3+γ+(R6
x, v).

The terms D3, D4 are similar to I1, I2 in the proof of Proposition 4.8. Namely

|D3| + |D4| ≤ C‖g1(t)‖H6/2+δ

3+(γ+2s+δ)+
(R6

x, v)
‖f(t)‖L2

3(R
6
x, v)‖f(t)‖L2

3+(γ+2s+δ)+
(R6

x, v).

Thus, for any 0 < t ≤ T and m > 3, we have
(
W3Γ

t(g1, f) ,W3f
)
L2(R6)

≤ C‖g1‖L∞(]0,T [;Hm
4 (R6

x, v))‖W3f(t)‖L2(R6
x, v)‖W4f(t)‖L2(R6

x, v),

which implies (4.4.3). The left hand side of (4.4.4) can be written as
(
W3 Γt(f, g2) ,W3 f

)
L2(R6)

=
(
W3Q(µ(t)f, g2) ,W3f

)
L2(R6)

+

∫∫∫∫
B (µ(t)∗ − µ(t)′∗)f

′
∗g

′
2W

2
3 fdv∗dσdvdx

=
(
W3Q(µ(t)f, g2) ,W3f

)
L2(R6)

+

∫∫∫∫
B (µ(t)∗ − µ(t)′∗)f

′
∗
(
W3g2

)′
W3fdv∗dσdvdx

+

∫∫∫∫
B (µ(t)∗ − µ(t)′∗)f

′
∗
(
W3 −W ′

3

)
g′2W3fdv∗dσdvdx

= E1 + E2 + E3.

Using Corollary 2.5 with m = 0, l = 3 gives

|E1| ≤
∫

R3
x

‖W3Q(µ(t)f, g2)‖L2(R3
v)‖W3f‖L2(R3

v)dx

≤ C

∫

R3
x

‖µ(t)f‖L1
3+(γ+2s)+

(R3
v)‖g2‖H2s

3+(γ+2s)+
(R3

v)‖W3f‖L2(R3
v)dx

≤ C‖g2‖L∞(]0,T [×R3
x;H2s

3+(γ+2s+δ)+
(R3

v))‖f(t)‖L2(R6)‖W3f(t)‖L2(R6)

≤ C‖g2‖L∞(]0,T [;H
3/2+2s+δ

3+(γ+2s+δ)+
(R3

v))
‖W3f(t)‖2

L2(R6).
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The term E2 is similar to D3, and we have

|E2| ≤ C‖f(t)‖L2(R3
x;L1

(γ+2s+δ)+
(R3

v))‖g2‖L∞(]0,T [×R3
x;L2

3+γ+(R3
v))‖W3f(t)‖L2(R6)

≤ C‖f(t)‖L2
3/2+δ+(γ+2s+δ)+

(R6))‖g2‖L∞(]0,T [;H
3/2+δ

3+γ+ (R6))
‖W3f(t)‖L2(R6)

≤ C‖g2‖L∞(]0,T [;H
3/2+δ
4 (R6))

‖W3f(t)‖2
L2(R6)).

For the term E3, we can use (2.1.15) with l = 3. Then

|E3| ≤
∫∫∫∫

b(cos θ) 〈v − v∗〉γ |µ(t)∗ − µ(t)′∗| |f ′
∗|
∣∣W3 −W ′

3

∣∣ |g′2| |W3f | dv∗dσdvdx

≤ C

∫∫∫∫
sin
(θ

2

)
b(cos θ) |(W1+γ+f)′∗| |(W3+γ+g2)

′| |W3f | dv∗dσdvdx

+ C

∫∫∫∫
sin3

(θ
2

)
b(cos θ) µ′

∗(t)|(W3+γ+f)′∗| |(Wγ+g2)
′| |W3f | dv∗dσdvdx

+ C

∫∫∫∫
sin3

(θ
2

)
b(cos θ) µ∗(t)|(W3+γ+f)′∗| |(Wγ+g2)

′| |W3f | dv∗dσdvdx

= E3,1 + E3,2 + E3,3.

Since 0 < 2s < 1 is assumed, for any ε > 0 there exists Cε > 0 such that

|E3,1| ≤ C

∫

R3
x

‖f(t, x, ·)‖L1
1+γ+(R3

v) ‖g2(t, x, ·)‖L2
4(R

3
v) ‖f(t, x, ·)‖L2

3(R
3
v) dx

≤ C‖f(t)‖L2(R3
x;L1

1+γ+(R3
v)) ‖g2‖L∞(]0,T [×R3

x;L2
4(R

3
v)) ‖f(t)‖L2

3(R
6
x,v)

≤ C‖f(t)‖L2

3/2+δ+1+γ+(R6
x,v) ‖g2‖L∞(]0,T [;H

3/2+δ
4 (R6

x,v))
‖f(t)‖L2

3(R
6
x,v)

≤
(
ε‖W4f(t)‖2

L2(R6
x,v) + Cε‖W3f(t)‖2

L2(R6
x,v)

)
‖g2‖L∞(]0,T [;H

3/2+δ
4 (R6

x,v))
.

Similarly

|E3,2| ≤ C

∫

R3
x

‖µ(t)f(t, x, ·)‖L1
1+γ+(R3

v) ‖g2(t, x, ·)‖L2
γ+ (R3

v) ‖f(t, x, ·)‖L2
3(R

3
v) dx

≤ C‖g2‖L∞(]0,T [;H
3/2+δ
4 (R6

x,v))
‖f(t)‖L2(R6

x,v)‖W3f(t)‖L2(R6
x,v) .

Since 3/2 + (3 + γ+) > 4, we can not estimate E3,3 in the same way as for E3,2. Instead, we have

|E3,3| ≤ C‖Wγ+g2‖L∞(]0,T [×R6
x,v)

∫∫∫∫
θ3b(cos θ) µ∗(t)|(W3+γ+f)′∗| | |W3f | dv∗dσdvdx

≤ C‖g2‖L∞(]0,T [;H3+δ
3 (R6

x,v))

∫

R3
x

(∫∫∫
θ1b(cos θ) µ∗(t)|W3f |2 | dv∗dσdv

) 1
2

×
(∫∫∫

θ5b(cos θ) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dσdv
) 1

2

dx .

We now take the singular change of variables v′∗ → v. The Jacobian is computed in (2.1.21) which
is of the order of θ−2. Then this singular change of variables yields∫∫∫

θ5b(cos θ) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dσdv

≤ C

∫∫
D1(v∗, v

′
∗) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dv′∗,

with D1(v∗, v′∗) =
∫
S2 θ

5−2b(cos θ)dσ ≤ C
∫ π/2
π/4

(π2 − ψ)−2−2s+5−2dψ ≤ C. Hence
∫∫∫

θ5b(cos θ) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dσdv

≤ C‖µ(t)‖L1(R3
v)‖W3+γ+f(t, x, ·)‖2

L2(R3
v).
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Therefore,

|E3,3| ≤ C‖g2‖L∞(]0,T [;H3+δ
4 (R6

x,v))‖W3f‖L2(R6
x,v)‖W3+γ+f‖L2(R6

x,v).

By combining the estimates on E1, E2, E3, we have proved (4.4.4). Now the proof of Lemma 4.12
is complete.

4.5. Proof of Theorem 1.2. Assume that f0 ∈ Ek00 (R5). Then there exists ρ0 > 0 such that

eρ0〈v〉
2

f0 ∈ Hk0(R6). Choose 0 < ρ < ρ0 and κ > 0 small enough. By setting g0 = e ρ〈v〉
2

f0, then

g0 ∈ Hk0
l (R6) for all l ∈ N. Theorem 4.1 assures that the Cauchy problem (4.1.1) with the initial

datum g0 admits a non-negative local solution

g ∈ C0([0, T∗];H
k0
l (R6))

⋂
L2(]0, T∗[;H

k0
l+1(R

6)), ∀ l ∈ N,

with T∗ ∈]0, T0] (T0 = ρ
2κ ). Then

f(t, x, v) = e−(ρ−κt)〈v〉2g(t, x, v) ∈ C0([0, T∗];H
k0
l (R6))

⋂
L2(]0, T∗[;H

k0
l (R6)), ∀ l ∈ N,

is a non-negative solution of the Cauchy problem (1.6). Since for 0 ≤ t ≤ T∗ ≤ T0,

(4.5.1) e
ρ
2 〈v〉

2

f ∈ C0([0, T∗];H
k0(R6)),

we can conclude f ∈ Ek0([0, T∗] × R6
x,v), which leads to the local existence stated in Theorem 1.2.

Suppose now for some f0 ∈ E4
0 (R5), the Cauchy problem (1.6) admits two solutions f1 ∈

E4([0, T1]×R6
x,v) and f2 ∈ E4([0, T2]×R6

x,v). This implies that there exist ρ0, ρ1, ρ2 > 0 such that

eρ0〈v〉
2

f0 ∈ H4(R6),

and

eρ1〈v〉
2

f1 ∈ C0([0, T1]; H
4(R6)), eρ2〈v〉

2

f2 ∈ C0([0, T2]; H
4(R6)).

Take 0 < ρ < min{ρ0, ρ1, ρ2} and κ > 0 sufficiently small such that ρ
2κ > T∗∗ = min{T1, T2}.

Then we have

g0 = eρ〈v〉
2

f0 ∈ H4
l (R

6),

for any l ∈ N, and

g1 = e(ρ−κt)〈v〉
2

f1 ∈ C0([0, T∗∗]; H
4
l (R

6)), g2 = e(ρ−κt)〈v〉
2

f2 ∈ C0([0, T∗∗]; H
4
l (R

6)),

are two solutions of the Cauchy problem (4.1.1) with the common initial datum g0. Then Propo-
sition 4.11 gives g1 = g2, so that f1 = f2 for t ∈ [0, T∗∗]. Now the uniqueness of solutions stated in
Theorem 1.2 is obvious since T1 = T2 = T∗∗.

On the other hand, in view of (4.5.1), ‖f(t, x, · )‖L1 is continuous for (t, x) ∈ [0, T∗] × R3
x.

Therefore, if for a compact K ⊂ R3, we have

inf
x∈K

‖f0(x, · )‖L1 = c0 > 0,

then there exist 0 < T̃0 ≤ T∗ and a closed neighborhood of K denoted by V0 in R3
x such that

inf
(t,x)∈[0,T̃0]×V0

‖f(t, x, · )‖L1 ≥ c0
2
.

Now Theorem 1.1 implies that

f ∈
⋂

l∈N

H+∞
l (]0, T̃0[×V0 × R3

v) ⊂ C∞(]0, T̃0[×V0;S(R3
v)).

It remains to prove the uniqueness of solutions of Theorem 1.2 in the soft potential case γ ≤ 0.
In this case, the uniqueness of solution can be proved in a larger function space. We state it as
follow.
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Proposition 4.13. Assume that 0 < s < 1/2, γ ≤ 0, 0 < T ≤ +∞ and m > 2s+3/2, l > 2s+3/2.
Let f0 ≥ 0, f0 ∈ Hm

l+2s(R
6). Suppose that the Cauchy problem (1.6) admits two non-negative

solutions

f1, f2 ∈ L∞(]0, T [; Hm
l+2s(R

6)).

Then f1 ≡ f2.

Proof: The proof is similar to the one for Proposition 4.11. Set F = f1 − f2, by using (1.6), we
have

(4.5.2)

{
Ft + v · ∇xF = Q(f1, F ) +Q(F, f2) ,
F |t=0 = 0.

We can now take WlF as a test function to have

(4.5.3)
1

2

d

dt
‖F (t)‖2

L2
l (R

6) =
(
WlQ(f1, F ) +WlQ(F, f2) ,WlF

)
L2(R6)

.

Since f1 ≥ 0 and γ ≤ 0, similar to the analysis on B1 in the proof of Proposition 4.7, we have
(
Q(f1, WlF ) ,WlF

)
L2(R6)

≤ C‖f1(t)‖L∞(R3
x;L1(R3

v))‖F (t)‖2
L2

l (R
6
x, v).

Using (2.1.17) with γ+ = 0 gives
∣∣∣∣
(
WlQ(f1, F ) −Q(f1, WlF ) ,WlF

)
L2(R6)

∣∣∣∣ ≤ C‖f1(t)‖L∞(R3
x;L2

l (R3
v))‖F (t)‖2

L2
l (R6

x, v),

and∣∣∣∣
(
WlQ(F, f2) −Q(F, Wlf2) ,WlF

)
L2(R6)

∣∣∣∣ ≤ C‖F (t)‖L2
l (R6

x, v)‖f2(t)‖L∞(R3
x;L2

l (R
3
v))‖F (t)‖L2

l (R
6
x, v).

Finally, for l > 3/2 + 2s, we have
∣∣∣∣
(
Q(F, Wlf2) ,WlF

)
L2(R6)

∣∣∣∣ ≤ C‖Q(F, Wlf2)‖L2(R6)‖F (t)‖L2
l (R6)

≤ ‖F (t)‖L2
l (R6)

(∫

R3
x

‖F (t, x, · )‖2
L1

2s(R
3
v)‖f2(t, x, · )‖2

H2s
l+2s(R3

v)

)1/2

≤ C‖F (t)‖2
L2

l (R6)‖f2(t)‖L∞(R3
x; H2s

l+2s
(R3

v)).

Thus, we have, for any 0 < t < T and δ > 0 small enough,

d

dt
‖F (t)‖2

L2
l (R

6) ≤ C
(
‖f1‖L∞(]0,T [; H

3/2+δ
l (R6

x,v))
+ ‖f2‖L∞(]0,T [; H

3/2+δ+2s
l+2s (R6

x,v))

)
‖F (t)‖2

L2
l (R

6).

Therefore, ‖F (0)‖L2
l (R

6) = 0 implies ‖F (t)‖L2
l (R

6) = 0 for all t ∈ [0, T [.
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linéaires, Annales de l’École Normale Supérieure, 14 (1981), 209–246.
[18] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pure Appl., 81 (2002) 1135–1159.
[19] F. Bouchut and L. Desvillettes, A proof of smoothing properties of the positive part of Boltzmann’s kernel.

Rev. Mat. Iberoamericana, 14 (1998) 47–61.
[20] F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory, Series in Appl. Math.,

Gauthiers-Villars, 2000.
[21] L. Boudin and L. Desvillettes, On the singularities of the global small solutions of the full Boltzmann equation,

Monatschefte für Mathematik, 131 (2000), 91–108.
[22] C. Cercignani, The Boltzmann equation and its applications, Applied mathematical sciences, 67, Springer-

Verlag, 1988.
[23] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical theory of Dilute gases, Applied mathematical

sciences, 106. Springer-Verlag, New York, 1994. viii+347 pp.
[24] H. Chen, W.-X. Li and C.-J. Xu, Propagation of Gevrey regularity for solutions of Landau equations. Kinetic

and Related Models, 1 (2008) 355–368.
[25] Y. Chen, Smoothness of classical solutions to the Vlasov-Poisson-Landau System, Kinetic and Related Models,

1(2008), no. 3, 369-386.
[26] Y. Chen, L. Desvillettes and L. He, Smoothing effects for classical solutions of the full Landau equation. To

appear in Arch. Rat. Mech. and Analysis.
[27] L. Desvillettes, About the regularization properties of the non cut-off Kac equation, Comm. Math. Phys., 168

(1995) 417–440.
[28] L. Desvillettes, Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially

homogeneous Boltzmann equation for Maxwellian molecules, Trans. Theory Stat. Phys., 26–3 (1997) 341–357.
[29] L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation. Summer School on ”Methods

and Models of Kinetic Theory” (M& MKT 2002). Riv. Mat. Univ. Parma (7) 2 (2003), 1–99.
[30] L. Desvillettes, G. Furioli and E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation

for Maxwellian molecules, To appear in Trans. Amer. Math. Soc.
[31] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I:

existence, uniqueness and smoothness. Comm. Partial Differential Equations, 25-1-2 (2000) 179–259
[32] L. Desvillettes and B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation

without cutoff. Comm. Partial Differential Equations, 29-1-2 (2004) 133–155.
[33] R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak

stability. Ann. Math., 130 (1989), 321-366.
[34] R.J. Duan, M.-R. Li and T. Yang, Propagation of singularities in the solutions to the Boltzmann equation near

equilibrium, Math. Models Methods Appl. Sci., 18 (2008) 1093–1114.
[35] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206.
[36] Y. Guo, The Landau equation in a periodic box. Comm. Math. Phys., 231 (2002) 391–434.
[37] H. Grad, Asymptotic Theory of the Boltzmann Equation II, Rarefied Gas Dynamics, J. A. Laurmann, Ed. Vol.

1, Academic Press, New York, 1963, 26–59.



THE NON CUTOFF BOLTZMANN EQUATION 61

[38] H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Symp. Appl.
Math. vol. 17, 154-183, AMS, Providence, 1965, editor R. Finn.

[39] Z. H. Huo, Y.Morimoto, S.Ukai and T.Yang, Regularity of solutions for spatially homogeneous Boltzmann
equation without Angular cutoff. Kinetic and Related Models, 1 (2008) 453-489.

[40] S. Kaniel and M. Shinbrot, The Boltzmann equation. I. Uniqueness and local existence. Comm. Math. Phys.,
59 (1978) 65-84.

[41] H. Kumano-go, Pseudo-Differential Operators, MIT Press, 1982.
[42] P. L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and applications, I, II, and

III. J. Math. Kyoto Univ., 34 (1994), 391–427, 429–461, 539–584.
[43] P. L. Lions, Regularity and compactness for Boltzmann collision operator without angular cut-off. C. R. Acad.

Sci. Paris Series I, 326 (1998), 37–41.
[44] X. A. Lu, Direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl.,

228 (1998), 409–435.
[45] Y. Morimoto, The uncertainty principle and hypoelliptic operators, Publ. RIMS Kyoto Univ., 23 (1987), 955-

964.
[46] Y. Morimoto, Estimates for degenerate Schrödinger operators and hypoellipticity for infinitely degenerate

elliptic operators, J. Math. Kyoto Univ., 32 (1992), 333-372.
[47] Y. Morimoto and T. Morioka, The positivity of Schrödinger operators and the hypoellipticity of second order

degenerate elliptic operators, Bull. Sc. Math. 121 (1997) , 507-547.
[48] Y.Morimoto, S.Ukai, C.-J.Xu and T.Yang, Regularity of solutions to the spatially homogeneous Boltzmann

equation without Angular cutoff. to appear in “Discrete and Continuous Dynamical Systems - Series A”
[49] Y. Morimoto and C.-J. Xu, Hypoelliticity for a class of kinetic equations, J. Math. Kyoto Univ., 47 (2007)

129–152.
[50] Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, preprint,

2008.
[51] C. Mouhot and R.M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators

without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515–535.
[52] Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential, I, II. Commun. Pure Appl.

Math., 27 (1974), 407–428, 559–581.
[53] S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl.

Math., 1-1 (1984) 141–156.
[54] S. Ukai, Solutions of the Boltzmann equation, Pattern and Waves – Qualitave Analysis of Nonlinear Differ-

ential Equations (eds. M.Mimura and T.Nishida), Studies of Mathematics and Its Applications 18, pp37-96,
Kinokuniya-North-Holland, Tokyo, 1986.

[55] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,
Arch. Rational Mech. Anal., 143 (1998) 273–307.

[56] C. Villani, Regularity estimates via entropy dissipation for the spatially homogeneous Boltzmann equation,
Rev. Mat. Iberoamericana, 15-2 (1999) 335–352.

[57] C. Villani, A review of mathematical topics in collisional kinetic theory. Handbook of Fluid Mechanics. Ed. S.
Friedlander, D.Serre, 2002.

[58] B. Wennberg, The geometry of binary collisions and generalized Radon transform, Arch. Rational Mech. Anal.,
139 (1997), 291-302.

[59] C.-J. Xu, Nonlinear microlocal analysis. General theory of partial differential equations and microlocal analysis
(Trieste, 1995), 155–182, Pitman Res. Notes Math. Ser., 349, Longman, Harlow, 1996.

Radjesvarane Alexandre

IRENAV Research Institute, French Naval Academy
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