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REGULARIZING EFFECT AND LOCAL EXISTENCE
FOR NON-CUTOFF BOLTZMANN EQUATION

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

ABSTRACT. The Boltzmann equation without Grad’s angular cutoff assumption is believed to
have regularizing effect on the solution because of the non-integrable angular singularity of the
cross-section. However, even though so far this has been justified satisfactorily for the spatially
homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous
Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates
for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based
on a generalized version of the uncertainty principle, and analyzing the commutators between
the collision operator and some weighted pseudo-differential operators, we prove the regularizing
effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed
on these solutions. For completeness, we also show that when the initial data has this mild
regularity and Maxwellian type decay in velocity variable, there exists a unique local solution
with the same regularity, so that this solution acquires the C'°° regularity for positive time.

1. INTRODUCTION

Consider the Boltzmann equation,

(1.1) fe+v-Vof =Q(f. f),

where f = f(t,x,v) is the density distribution function of particles with position z € R? and
velocity v € R? at time ¢. The right hand side of (DI) is given by the Boltzmann bilinear collision
operator

Qo.t) = [ | [ Bo=0e0) (o)) = g(0) )} ..

which is well-defined for suitable functions f and g specified later. Notice that the collision operator
Q(-, ) acts only on the velocity variable v € R3. In the following discussion, we will use the
o—representation, that is, for ¢ € S2,

o vV + U, n |v—v*|a’ o = VUL |v—v*|a7
2 2 2 2
which give the relations between the post and pre collisional velocities.

It is well known that the Boltzmann equation is a fundamental equation in statistical physics.
For the mathematical theories on this equation, readers can refer to [@, @, @, @, @], and the
references therein also for the physics backgrounds.

In addition to its special bilinear structure in the collision operator, the cross-section B(v—1vy, o)
varies with different physical assumptions on the particle interactions and it plays an important
role in the well-posedness theory for the Boltzmann equation. In fact, except for the hard sphere
model, for most of the other molecular interaction potentials such as the inverse power laws, the
cross section B(v — vy, o) has a non-integrable angular singularity. For example, if the interaction
potential obeys the inverse power law ~®~1) for 2 < p < co, where 7 denotes the distance between
two interacting molecules, the cross-section behaves like

B(Jv — vi],c080) ~ |v — v, [7072725, c059=<ﬂ,0>, ogegg,
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with
-5 1
—3<7:p—<1, 0<s=——<1
p—1 p—1
As usual, the hard and soft potentials correspond to 2 < p < 5 and p > 5 respectively, and the
Maxwellian potential corresponds to p = 5. The fact that the singularity 6272 is not integrable
on a sphere leads to the conjecture that the nonlinear collision operator should behave like a

Laplacian in the variable v to some fractional power. That is,
Q(f, f) ~ —(—A,)°f + lower order terms.
Indeed, consider the Kolmogorov type equation
fetv - Vaof =—(=A,)°f.

Straightforward calculation by Fourier transformation shows that the solution is in Gevrey class
when 0 < s < 1 and is ultra-analytic if § < s <1 for initial data only in L?(R3 x R3) if it admits
a unique solution (see [@ for a more general study). However, for the Boltzmann equation, the
gain of Gevrey regularity of solution is a long lasting open problem which has only been proved so
far in the linear and spatially homogeneous setting, [@]

The mathematical study on the inverse power law potentials can be traced back to the work by
Pao [F] in 1970s. And in early 1980s, Arkeryd in proved the existence of weak solutions to the
spatially homogeneous Boltzmann equation when 0 < s < %, while Ukai in [E] applied an abstract
Cauchy-Kovalevskaya theorem to obtain local solutions in the function space which is analytic in
x and Gevrey in v. However, the smoothing effect of the collision operator was not studied at
that time. Since then, this problem has attracted increasing interests in the area of kinetic theory
and a lot of progress has been made on the existence and regularity theories. More precisely, that
the long-range interactions have smoothing effects on the solutions to the Boltzmann equation was
first proved by Desvillettes for some simplified models, cf. [@, @] This is in contrast with the
hard sphere model and the potentials with Grad’s angular cutoff assumption. In fact, for the hard
sphere model, the cross-section has the form (in the o representation)

B(|v — vi],co80) = golv — s,

where qq is the surface area of a hard sphere. For singular cross-sections, Grad [ introduced the
idea to cut off the singularity at = 0 so that B(Jv—uv.|,cosf) € L'(S?). This assumption has been
widely accepted and is now called Grad’s angular cutoff assumption which influences a few decades
of mathematical studies on the Boltzmann equation. Under this angular cutoff assumption, the
solution has the same regularity, at least in the Sobolev space, as the initial data. In fact, it was
shown, [@]7 that the solution has the form

flt,z,v) =a(t,z,v)f(0,z — vt,v) + b(t, z,v),

when the initial data f(0,z,v) is in some weighted L% , space. Here, a(t,z,v) and b(t,z,v) are
in the Sobolev space Hf)x)v for some 6 > 0. And the term f(0,x — vt,v) just represents the free
transport so that it is clear that f(¢,z,v) and f(0,x,v) have the same regularity.

One of the main features of the Boltzmann equation is the celebrated Boltzmann’s H theorem

saying that the H-functional
H(t) = / flog fdzdv,
R3 xRR3

satisfies

dHE) |
T + D(t) =0,

where

D(t) = —/}R3 - Q(f, f)log fdxzdv > 0,
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which is called the entropy dissipation. Notice that D(¢) is non-negative and vanishes only when
f is a Maxwellian. The non-negativity of D indicates that the Boltzmann equation is a dissipative
equation. This fact is essentially used in the L' theory of the Boltzmann equation, [@]
By using the entropy dissipation D and the “QT smoothing property”, the formal smoothing
estimate was derived (see the complete references in [f])
S 1

IVE/F @) ™20 < OISl + DINDs 6= 0=

for any constant m > 3. Notice that the above regularity estimate is on v/f not f itself. Later, some
almost optimal estimates together with some elegant formulas, such as the cancellation lemma, were
obtained in the work by Alexandre-Desvillettes-Villani-Wennberg [E] By using these analytic tools,
the mathematical theory regarding the regularizing effect for the spatially homogeneous problems
now becomes quite satisfactory, cf. @, @, @, , @, @, @, @], and the references therein.

However, for the spatially inhomogeneous equations, there are much less results. The main
difficulty comes from the coupling of the transport operator with the collision operator, and the
commutators of the differential (pseudo-differential) operators with the collision operator. There
are two progresses achived so far. One is the local existence of solutions between two moving
Maxwellians in [E] by constructing upper and lower solutions. The other is the global existence
of renormalized solutions with defect measures in [@] which becomes weak solutions if the defect
measures vanish. Some theories on the linear kinetic equations were also given in [E] and [L§]. In
particular, a generalized uncertainty principle in the view point of Fefferman [@] (see also [|5), @,
@]) was introduced in [H] to study smoothing effects of the linearized and spatially inhomogeneous
Boltzmann equation with non-cutoff cross sections, and partial smoothing effects for nonlinear
Boltzmann equation. In the following analysis, this partial regularity result will also be used.

This paper can be viewed as a continuation of our recent work [E] Under some mild regularity
assumption on the initial data, we will prove the existence of solutions and their C'*° regularity
with respect to all ( time, space and velocity) variables. Even though it is still not known whether
only some natural bounds, such as total mass, energy and entropy on the initial data, can lead
to the C* regularizing effect, the results in this paper firstly justify the C* regularizing effect
for the nonlinear and spatially inhomogeneous Boltzmann equation without Grad’s angular cutoff
assumption.

To state the theorems, let us first introduce the notations and assumptions used in this paper
as follows. The non-negative cross-section B(z,0) for a monatomic gas depends only on |z| and
the scalar product < Iz_l’ o >. In most cases, the collision kernel cannot be expressed explicitly,
but to capture the essential properties, it can be assumed to be in the form of

V — Uk

B(Jv — vs,cos60) = ®(|v — v,])b(cosh), cosf = o), 0<6< g

o]’

Furthermore, to keep the presentation as simple as possible, and in particular to avoid the
difficulty coming from the vanishing of the cross-section at zero relative velocity, we suppose that
the kinetic factor @ in the cross-section is modified as

2 ol
(1.2) P(lv—vi]) = (1+ v —v.f?)?, v eR.
And without angular cutoff, the angular factor is assumed to have the following singularity.
(1.3) sin® b(cos) ~ KO '~ when 6 — 0+,

where 0 < s < 1 and K is a positive constant. In fact v = 0 corresponds to the Maxwellian
molecule, v < 0 corresponds to the modified soft potential, and v > 0 corresponds to the modified
hard potential. In the following analysis, it is clear that s = % is a critical value. The case when
0<s< % will be called the mild singularity.

It is now well known that the singularity of the collision kernel (E) implies a sub-elliptic
estimate in the velocity variable v (see [ﬂ]) In the following analysis, we need a precise weighted
sub-elliptic estimate in the velocity variable. Indeed, we will show that for y € Rand 0 < s < 1,
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if f> 0,20, f € LI LlogL(R3), there exists a constant C' > 0 such that for any function
g € HY(R3) we have

(1.4) CTHIAW, 29122y < (-Q(F19) Oraes) + Cllf s llglze, o)

where 7 = max(7+,2 — y"),y" = max{y, 0}. Here W, = W;(v) = (1 + [v[)V/2 = (v)',1 € R, is
the weight function in the variable v € R3.

Similar sub-elliptic estimates, proved first in @ and then in many other works such as @], have
been used crucially at least in the following two aspects:

i) the proof of the regularizing effect of the cross-section on the solutions to the spatially homo-

geneous Boltzmann equations, see [E, E, @, @, @],

ii) the proof of existence of solutions to the nonlinear and spatially inhomogeneous Bolztmann
equation [E, @, @]

In this paper, we will apply it to the study of smoothing effect for the spatially inhomogeneous
and nonlinear Boltzmann equation.

It is now well understood, see [@], that Landau equation corresponds to the grazing limit of
Boltzmann equation. However, while Landau operator involves usual partial differential operators,
it should be kept in mind that fractional differential operators appear in the Boltzmann case,
see [E] Therefore, the analysis on the Boltzmann equation is more involved because it requires
the essential use of the harmonic analysis. More precisely, we shall use a generalized uncertainty
principle which was introduced in [E}, and the estimation of commutators used in the work [@] for
the study of hypo-elliptic properties.

Throughout this paper, we shall use the following standard weighted (with respect to the velocity
variable v € R?) Sobolev spaces. For m, [ € R, set R” = R; x R3 x R? and

H"(RT) = {f € ' (RT): Wi(v) f € H"(RT) }.

which is a Hilbert space. Here H™ is the usual Sobolev space. We will also use the function spaces
HF(RS ) and HF(R3) when the variables are specified where the weight is always with respect to
v € R3.

Since the regularity property to be proved here is local in space and time, for convenience, we
define the following local version of weighted Sobolev space. For —oo < T7 < T3 < 400, and any
given open domain  C R2, define

Hi (|1, To[xQ x BE) = {f € D' (|71, Ta[xQ x R3);

() f € H'(RT), ¥ € C(T1, Tal), ¥ € (@) }.
The first main result giving the smoothing effect on the solution can be stated as follows.

Theorem 1.1. (Regularizing effect on solutions)

Assume that 0 < s < 1, v € R, —0c0o < T1 < Ty < 400 and let Q C R‘z be an open domain.
Let f be a non-negative function belonging to H7(|Ty, To[xQ x R3) for all | € N and solving the
Boltzmann equation ) in the domain )Ty, To[x x R3 in the classical sense. Furthermore, if,
f satisfies the non-vacuum condition

(1.5) 1tz )l ws) > 0,
for all (t,z) €Ty, T2[x, then we have

feH, (T, To[xQ x RY),
for any l € N, and hence

f e C™(Th, To[xQ; S(R})).

With this theorem, a natural question is whether the Boltzmann equation has solutions satisfying
the assumptions imposed in the Theorem 1.1. In this aspect, let us recall that solutions constructed
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in [E, ] do not works for our purpose because of the lack of the weighted regularity H?, and see
also [p3] for Gevrey class solutions.

Thus, the second main result in this paper is about the local existence and uniqueness of solution
for the Cauchy problem of the non-cutoff Boltzmann equation. We consider the solution in the
function space with Maxwellian type exponential decay in the velocity variable. Precisely, for
m € R, set

&%) = {g e D'(RS,); 3po > 0 st <> g € H™(RE,)},
and for T'> 0
en(0.T] xRS,) = {feC(0,TED(RS,);3p>0

s.t. e”<”>2f e C°([0,T7; Hm(Rg,u))}'

Theorem 1.2. Assume that 0 < s < 1/2 and v+ 2s < 1. Let fo > 0 and fo € 550 (RS) for some
4 < ko € N. Then there exists Ty, > 0 such that the Cauchy problem

fitv-Vof = QU 1),
(1.6) { Flico = fo,

admits a non-negative and unique solution in the function space £ ([0, T,] x RS).
Furthermore, if we assume that the initial data fo is in E(R®) and does not vanish on a compact
set K C R3, that is,
||f0($7 )HLI(RE) >Oa VZEGK,

then we have the regularizing effect on the above solution, that is, there exist 0 < To < T, and a
neighborhood Vy of K in RS such that

f € C=(10,To[xVo; S(R})).

Moreover, if v < 0, the non-negative solution of the Cauchy problem (@) s unique in the
function space C°([0,T.]; H}"(R®)) for m >3/2+2s, p > 3/2+4s.

Remark 1.3. For the inverse power law potential r— =V | the condition that 0 < s < 1/2, v+2s <
1 corresponds to 3 < p < oo which includes both soft and hard potentials.

At the moment, it is not clear whether we can relax the regularity assumption initially made on
the solutions. Note that for example, the condition that f € L'N L% (R7) is enough to give a mean-
ingful sense to a weak formulation for the spatially inhomogeneous Boltzmann equation. However,
the analysis used here can not be applied to this case, and so further study is needed. On the
other hand, the above two theorems give an answer to a long lasting conjecture on the regularizing
effect of the non-cutoff cross-sections for the spatially inhomogeneous Boltzmann equation.

Finally in the introduction, let us review some related works on the regularizing effect and the
existence of solutions for the Landau equation. The regularizing effect from the Landau collision
operator has been rather well studied. See [@, @, ] for the spatially homogeneous case. For
the spatially inhomogeneous problem, a regularizing result was obtained in [@], where the H®
regularity is assumed on the solutions to start with. And similar result was also recently proved
for the Vlasov-Maxwell-Landau and the Vlasov-Poisson-Landau systems, cf. [@] and the refer-
ences therein. As for the existence of solutions, see [@] where unique weak solutions for spatially
homogeneous case have been constructed with rather general initial data, and see [BG] where the
classical solutions for the spatially inhomogeneous case have been constructed in a periodic box
with small initial data.

The rest of the paper will be organized as follows. First of all, in the next section, we will use the
pseudo-differential calculus to study the upper bounds on the collision operator, to give the precise
coercivity estimate due to the singularity in the cross-section and to estimate the commutators
between some pseudo-differential operators and the nonlinear collision operators. In Section 3,
the regularizing effect will be proved under the initial regularity assumption on the solution. The
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strategy of the proof is as follows. We first choose some suitable mollifiers such that the mollified
solutions can work as the test functions for the weak formulation of the problem. We then establish
a small gain of the regularity in the velocity variable, by using the coercivity estimate coming from
the singularity of the cross section. On account of the generalized uncertainty principle, a small gain
of the regularity in the space and time variables can be derived. The H1 regularity now follows
from an induction argument. Finally, in Section 4, local solutions to the non-cutoff Boltzmann
equation which meet the initialization condition of Theorem are constructed by a family of
cutoff Boltzmann equations with time local uniform bounds independent of cutoff parameter in
some weighted Sobolev space. The uniform bounds are established by the aid of time dependent
Maxwellian type weight functions introduced in [@, @} The convergence of the approximate
solutions follows from the compactness argument, while the uniqueness of the solutions can also
be proved by using the sharp upper bounds of the collision operator.

2. PSEUDO-DIFFERENTIAL CALCULUS

With the non-cutoff cross section, the Boltzmann collision operator is a (nonlinear) singular
integral operator with respect to v € R3. In the linearized case, it behaves like a pseudo-differential
operator. We study, in this section, the pseudo-differential calculus on the Boltzmann operator.
It is one of the key analytic tools for proving the regularizing effect of the non-cutoff Boltzmann
equation. Notice that even though the regularity proved in this paper is local in space and time
variables, the collision operator is non-local in the space of v variable. Moreover, since the kinetic
factor in the cross-section is of the form (v)” which may not be bounded, we need to consider
the multiplication by the weight function W;(v) to the pseudo-differential operators. Hence, they
are not the standard pseudo-differential operators of order 0 on the usual Sobolev space. In other
words, we consider the pseudo-differential operators with unbounded coefficients on the weighted
Sobolev space H;"(R3). The variable (¢, z) is considered as parameter for the collision operators
in this section.

2.1. Upper bound estimates. We shall need some functional estimates on the Boltzmann col-
lision operator in the proof. The first one given below is about the boundedness of the collision
operator in some weighted Sobolev spaces, see also [E, ﬁ, @] .

Theorem 2.1. Let 0 < s <1 and v € R. Then for any m, o € R, there exists C > 0 such that

(2.1.1) 1QUf, 9 mm(msy < C||f||LL++(W+2S)+(R§)”gHH(”;iii%ﬁ(Rg)
Jorall f € Ly (1o (RE) and g € HIEZ ) L (R]) .
Remark 2.2. .

(1) The collision operator Q(f, g) has different characters with respect to f and g: (-1.1) shows
that, in some sense, it is linear with respect to the second factor in the velocity variable v because
the action of differentiation of Q(f, g) with respect to v goes only on g when considered in the
Sobloev space. This is clear for the Landau operator which is the grazing limit of the Boltzmann
operator.

(2) The estimate ([2.1.]) is in some sense optimal with respect to the order of differentiation (ezact
order of 2s) and also with respect to the order of the weight in v coming from the cross-section.
In [@], the cases of both the modified hard potential and Mazwellian molecule type cross-sections
corresponding to 0 < v < 1 are discussed. Let us also mention that a similar estimate was given
m [E], but it is not optimal in terms of weight and differentiation. However, its proof is more
straightforward as it only uses the Fourier transformation of collision operator (Bobylev’s type
formula [E] and see also the Appendiz of [E]) Notice that for our purpose, the precise estimate

) is needed.
Proof of Theorem @ :
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Firstly, we consider the case when « = 0. To prove (R.1.1) in this case, it suffices to show for
any m € R

(2.1.2) < O||f||L1’Y

(Q(f, 9); h)Lz(Rg) < ( +25)+(1R3)||9||Hﬁ§z)+(]Rg)||h||th(1Rg)-

The proof needs some harmonic analysis tools based on the dyadic decomposition. It is similar to
the proof i 1n [ , where the hard potential case v > 0 was studied. Interested readers may refer to
the papers | @] for more details even though we will keep the paper self-contained.

Recall

(Q(f, , L2(]R3 /]Rﬂ /52 b(cos8) f(vs)P(|v — vi|)g(v){h(v') — h(v)}dodv.dv,
(v — L)Y, Set

F(v,v.) = ®(Jv — va])g(v),

where ®(|v — v,|) = @(Jv" —v|) =

and write

(s 9), h)p(Rg) - /R 6 /S b(c0s6)1 (02 F(v, v ) {h(e!) ~ h(o)odu,do
:/ fw) (U1 — Us)duv,.

Then we have (formally) by Fourier inverse formula,

U, = /R'f /s2 b(cos ) F (v, vs)h(v )dadv:/]RS RgH(fa%U*)F(&v*)h

where (also formally)

H(é-? m, U*) = / / b(k . g)eiv'g_ivl"’ldodv
R3 JS2

(2.1.3)

(n)d&dn,

[v—

:/ givE—i ﬂ{/ b(k - o)e” z“*"""da}du
R3 s2
_ iv-E— 1U+U* N ~ fi—‘“}“*‘lnlmk n —
— [ e b(ij - o)e do|dv, (7 =mn/lnl)
R3 s2
:/ etvé— 1u+u*.n[/ b(7-o)e }dv
R3 s2
:/ b(7j - o)e {/ e“"(gﬂﬁ)dv} do
s2 R3
= [ 8 e o b = ),
S2
with
_ 1 1
n=gm=lo), nt=5m+nlo),
so that
U =/ [/ b(ﬁ-ff)e_w*"fcla}F(n+ v)h(n)dn.
rs LJs2

On the other hand,
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because formally we have

/ b(cosB)do = / b(7 - 0)do = const.
S2

S2
Therefore, we have the following generalized Bobylev formula

(Q(f, 9): h)

L2(R3)

= o f(”*){/ﬂ§3 /82 b(7 - 0){€_w*'"7ﬁ(77+,v*) — F(n,v*)}%dnda} dv,
= s [ [ v oo Fort ) - o)

X et '”B(n)dnda} dv,.

(2.1.4)

Notice that the above derivation is only formal for non-cutoff cross-section because we can not
split the gain and loss term in this case. However, the derivation can be easily justified as a limit
process of cutoff cross-sections when we combine the gain term and loss term together.

We now introduce the dyadic decomposition in R? as follows:

D drw) =1, ¢x(v) =2 *v) for k>1 with 0 < ¢o,¢ € C3°(R?),
k=0

and
supp ¢o C {|v] <2}, supp ¢ C {1 < |v[ < 3}.
Take also ¢ and ¢ € C§° such that
¢o=1 on {|o] <2}, supp ¢o C {|v] < 3},
d=1 on {1/2<|v|] <3}, supp ¢ C {1/3 < |v| < 4}.

Furthermore, we assume that all these functions are radial. Since it follows from |[v/ — v,| <
[v—vy] < \/§|U’ — v, that

Ok (V" — v)Pr(v — vy) = (v — vi) = Pr(v — V)P (v —vy), k>0,

we get

(Q(f, 9), h)L?(Rg) = I;J/Rﬁ /S2 b(cos ) f (vi) Fi (v, v ) {hie (v, v4) — hg (v, v.) tdodv.dv,

where

(2.1.5) Fulv,0.) = v — 0.)0 (0 — v.)g(v), B0, 02) = B (v — v2)h(v).
Similar to (2.1.4), we can obtain

Qf. 9), h) =§: F(v) b o) e Fy(n*,v.) — € T (n, v.)
L2RY) o /Re R3 J§2

=0

X ety (1, v*)dndo} dv,

R3

= f(v*)ZKk(v*)dv*.
k=0

In the following, we will estimate Y, |[K*(v.)|, regarding v, as a parameter.
By setting
U ={oeS 7 0>1-2""2*@n""},
and . .
Fi(n,0.) = " "Ey(n,04), hi(n,00) = € i (n, 0.),



THE NON CUTOFF BOLTZMANN EQUATION 9

we split K*(v,) into

Koo = [ [ b o { Bl o) = Bl o) Yoo, )dndo

[ [ b ) { Bt o)~ Bl Y. o.)dndo
R3 Js2n0¢

—K}(v.) + K (v.).

Note that
(2.1.6) / 62 b(cosf)do = 27r/ sin @ b(cos 0)6%do
S2NQy, {0€[0,m/2];sin(6/2)<2—F(n)—1}
< Op)*~22k2=2)  if o< s < 1,
(2.1.7) / b(cosf)do = 271'/ sin 6 b(cos 0)do
$2NQ¢ {6€[0,7/2];sin(6/2)>2—F(n)—1}

< O(n)*2%ks . for any s > 0.

It follows from (R.1.7) that

1.
(2.1.8) |KE (v,)] S/ /Szmc b(ﬁ-o)ﬁ(nﬂv*) —Fk(n,v*) ‘h:(n,v*)

dndo

2) dndo> v

)

R3

(/ [ vy RACYRS
R3 Js2nQg

) 1/2
( / / b7 - o) )22 dnd0>
R3 Js2n0¢

<O2°% (D)™ Fio(v,0:)}| 12 (Do) "™ he(, )| 2.

Fr(n®,v.)

IN

hi(n, v.)

Here, we have used the change of variables . — 7™, which is regular because the Jacobian is
computed, with k = n/|n|, as

a(n™) 1 1 1 1

S e k’:—l k-o)= - cos® =

’a(n)’ ’2 +o@k| =34k o) =gcos’3
It should be noted that after this change of variable, 6 plays no longer the role of the polar angle
because the “pole” k now moves with o and hence the measure do is no longer given by sin 8dfdq.
However, the situation is rather good because if we take k* = n*t /In"| as a new pole which is
independent of o, then the new polar angle v defined by cost) = kT - o satisfies

0

b= g do = sintdyds, ¥ € [0, 5],
and thus 6 works almost as the polar angle. Therefore, noting the fact that (n) < 2(n*) < 2(n) we
have . ) . 5
[ o[t o] dodo < [ Doth|Ftat, v o
R3 Js2ng RS,
with

Do) = [ b0 (ntat o)) oo

S C/ <77(77+,0_) >2m+259—2—2sd0
$2NQs
/4
< O<n+>2m+25/ 1Z)7272s sin 1/)d1/} < 22ks<,,74r>2m+457
2k ()1



10 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

which implies () Notice that for p = 0,1, 2,

‘2’“(25‘p)|v — 0[P (v — 0)P(|v — i) (v — va)7*2

(2.1.9) (0)(F25)7 = (v,)(+29)F Pr(v — vs)

< C)H gy (v - w.).

Then, recalling (2.1.5) and using (P.1.9) with p = 0 we have

<Dv>m+2s

T 2 Fin, )

S + —m
K3 (ve)] <Cuy) 02 (D) ™" hie (v, 04) [ L2

L2

— m S 1/2
<C) 2 (du(o = v ) (D)™ 222 427D g2, )
(y+2s)T (v+2s)+

- 1/2
x (19w = v)Du) " hll3e + 275 (Do)~ B3 )
:=CT(vs),

where 't (v, ) stands for the quantity defined by this right hand side up to a constant multiple.
On the other hand, to estimate K¥(v,), write

{Zi(n*, vs) = E(mv*)}ﬁ;(n, Vi) = {E:k(n*, vs) = Fk(n,v*)}{ﬁk(n, 0.) = (0, v*)}
i (VE) 0 vl v.)
-/ (VR 0+ =)0 (VE) 0 dr - (= it ).
Correspondingly, we decompose K¥(v,) into
Kf(v.) = K (va) + K72 (0.) + K72 (02),

For the variable transformation n — nt = %(77 + |n]o), we denote its inverse transformation
n* — 1 by ¢ (n*). Then

k== [ o M) P

<o () - (VE) O v )i v do
=0, with n~(0) =v.(n") —n*,

because o1, 09 € S2 Ny, are symmetric with respect to each other in the sense that, cf Figure ?7?,
1 (01) =1%o, (n7) = 0" = —(We, () = ") = —n" (02).

Write K¥!(v,) into

_/01/01(/Rsfsmmb(ﬁ-a){(vi’i)(fr+7'(77—77+)70*)'(77—77+)}

X {(Vﬁk) (it +stn—nt),v.) - (n— 77+)}d77da) drds.
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Since [n — 2 = |n~|?> = |n|*sin®(A/2) and that the change of variable n* 4+ 7(n — nt) — 7 is
also regular (see the page 2044 of [{]]), (R-1.6)) implies

K w,) SC/; / ([, [, oot w?|(VA) o+ rtn =),

X } (V;L:;) (T +s(n—n"),v) dnda) drds

1 1 —~ 1/2
<o [ ([ ] e (VR )t +rl - ), v.)|dndo)
0 0 R3 JS2NQy,
B 9s—9m - 1/2
X (/ / 62 b(77 - o) (n)> =22 ‘(th) (T +s(n—n"),v) dnda) drds
R3 JS2NQy
<O )24 (T E) | gagany | ) ™ () 2w
Hence, we obtain by using (R.1.9) with p = 1 that
m+2s
k1 (y428)* || (Do)™F k(2s—1)(,
|K (’U*)| <O< > <’U*>(V+2s)+ {2 (U ’U*)Fk(v; U*)} 1
* (277 (0 = v hi(v, ) | r-m
1/2
< (v+2s _ m-+2s . —k m-+2s
<O (Jduw —0) (D™ gllFs 2Dl )

- 1/2
% (190 = v )(D) ™ hlfEe + 274 (D) Al )

which has the same bound T'j(v,.) as in the previous case up to a constant factor. Finally, we

consider
= [ (L s o { (PR rsta =) ert )
R3 J§2nQy,

x {f;k (n*, m)}dnda) drds.
Then, by using ) with p = 2, we have

k,3 (y+2s)T (Do >m+2 k(25—2)(,, 2
[ K77 (vs)] <C{wy) oy BT {2 (v — ) Fe(v,v) H| [he(v, v) || gr-m
L2
SCFk(U*).
Therefore, it follows from the Schwarz inequality that
<

(@0 n) | =il

(Sl — v Doyl w2k oy, 1)
=0 * Y L( +2s)t Y L( +2s)F

< (S0 e Dbl + 2100 )

< Cl[fllrr gl grm+2s ||l r-m,
(yv+2s)F

(v+29)t

which yields (| ). Now the proof of Theorem P.T] is complete for the case o = 0.
To prove ( ) for the case when a # 0, it suffices to show that

ClIfll s

(2.110)  |(Q(f 9). (v)°n)

L2(R3) ot i (yran+ B ||g||H(TZiiS+2S)+(R%)HhHH*m(Rg)-
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The argument is the same as the one for o = 0 except the estimation on hy(v,v,) in (R.1.5) which
must be replaced by

G0 — v) (W) h(v) = (0) Ry (v,0.).

We can write

(2.1.11) () g (v, v4) =((V2)® + 28 (v, v, ) B (v, 04, it >0,
<’U*> min{(y+2s)",—a} .
(2.1.12) (VY hg(v,v.) = ( o ) Ui (v, v ) hg (v, V), it @ <0.

with a suitable ¥ (v, v.) belonging to Cg°(R3) uniformly with respect to k,v.. For p =0,1,2, we
have

(2.1.13)

’ 9k(a+2s—p) |1) — v*|p¢k(’u — v*)<1>(|v - ’U*|)
<'U*>(OH_’Y+28)+
<’U _ ,U*>o¢+v+25

which is similar to (R.1.9). We first consider the case a > 0. It follows from (R.1.7) that

<C Pr(v —v,) < C)EHH2T g (0 —0,),

K <0+ 2 [ b Bt v.) = Bl o) |Gk,
N N 1/2
<((v,)® + 2F) (/RS /S?rmc b(7) - U)<n>2m+25( En(nt,v.) ’ + ’F‘k(n,v*) 2)dndo>

—
—

Yrhi (1, v4)

) 1/2
( / / b - o) )22 dndo>
R3S JS2NQY

<O ((v2) + 25) [(Do) ™ 2 Fo (v, 02) | 1o [(D0) ™" i (v, 04) [ 2.

Then, recalling (2:1.5), and using (£.1.9) and (2.1.13) with p = 0, we have
<D’U>m+2s 2ks
W@ Fie(v, vi)}

<Dv>m+2s
<’U* > (a+v+2s)t

K5 (0.) sc{<v*>a+<v+2s>*

L2

+ <U>'=>(OL+’Y+2S)+ {2k(a+2S)Fk (1), U*)}

JCE RSl

L

« s)T 7 m+2s — m+2s 1/2
<O 2 (g (v = v )(Dy) ™2 g2 +27HD) R, )

(atvy+28)t (aty+28)t
~ —m _ o 1/2
% (190 = v)(Du) " hlfz + 274 (Du) A 32 )
=CT% (vs),

where I'¢(v,) stands for the quantity defined by this right hand side up to a constant multiple.
Similar to the computation above for K5 (v,), it follows from (R.1.) that

[y ()] + K (0)] < OTR (w),
so that (2.1.1() holds in this case.

The estimation on the case @ < 0 is also similar by using (R.1.19) if one considers the cases
Y+25<0,0<v+2s < —aandy+ 2s > —a« separately. For brevity, we omit th details. And
this completes the proof of Theorem 2.1.

In what follows, we need also estimates on the commutator between the collision operator @
and the weight W;. For this, we need the estimates on |IW; — W/|.
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Lemma 2.3. Letl € N, there exists C' > 0 depending only on I such that

6 6
(2.1.14) W, — W{| < C'sin (5) (W/ + Wlﬁ*) < C'sin (§> WiWy.,
and
/ . 0 / / ! s 1—1 0 /
(2.1.15) |W, —W/| < Csin 3 Wi+ W/ W], +sin 3 Wi.)-
Proof : It follows from |v — v.| = [v/ — v.| and |v|? + |v.|? = [v/|? + |[v]|? that, for any A > 0

o < [o'[* + ol P, W < 22NWE + W5 L),

. 0
lv —v'|? = sin® (§> v — v.|?,

where 0 < 0 < 7/2. Taylor formula yields

On the other hand

Wi -Wi| < Clo—v/|(Wiis + W)
0
< Cin(§) lo vl (Wi + W+ )
. 0 / / !/
< C(Csin 3 v —v*|(Wl_1 + W/, *)
9 ! !
< C(Csin 3 (W1+W1 *>(Wz 1+ Wiy *>
0
< C'sin (5) (Wll + Wli *) < C'sin <—> VVI/WZI %
which gives (P.1.14). For (R.1.15), we have
W —W| < Cl—v (WH + W[_l)
0 -
< Csin (5) [v — v (VVl/—1 + (1 + |v —v’+v’|2) 3 )
0
< C(Csin <§) [v" — o] (W/_l + v — v’|lil)

. (0 1 (0
< Csin (5) ((Wl’ + W{)*>W[_1 + sin' ™! (5) [v' — v;|l>
< Csin (g) (VVZ’ + W/ Wy, +sin'* (g) VVZ’*) :

And this completes the proof of the lemma.

Lemma 2.4. Letl € N, m € R.
(1) If 0<s<1/2, there exists C > 0 such that

2116) (W QU 9) - QU Wi g). 1)

L) < Cllfllzy, @nlgllez, @ lhllca@s).

Moreover, if | > 3 (actually, we need only | > 3 + 2s), then

21an)  |(07 Q. ) - QU Wig), 1)

L) < CHf|‘L12+’Y+(R§))Hg||L12+7+(R3)”hHL?(]RE')'
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(2) If1/2 < s <1, then for any € > 0, there is a constant C. > 0 such that

(2118) ‘((Wl Q(fa g)_Q(fa Wl g))’ h)Lz(RS)
< CE||f||Lzl+2s—1+v+(Rg)||g||H12j;:j1€+w+(R%) Al L2(rs) ,
and
2.1.19 W, - W h
( ) ‘(( l Q(fv g) Q(fv l g))’ )L%Rg)
< O€||f||Ll1+2571+7+(R2) ||g||Ll2+2571+7+(R3) [1]| 2o —r+e g3y -

(3) When s =1/2, we have the same estimates as (2) with 2s — 1 replaced by any small k > 0.

With Lemma 2.2, we immediately have the following improved upper bound estimate with
respect to the weight.

Corollary 2.5.
(1) When 0 < s < 1/2, we have

1R 9l ) < Cllfllr

provided that m < 0 and 0 < m + 2s.
(2) When 1/2 < s < 1, we have

(2.1.20) 1QUf Dl rz) < Cllfllze

max{l+2s—1+~1, (2s+)T}

R3) |G || gm—+2s 3
ax{l+v+,(w+25)+}( “)H ||HL+(23+W)+(R11)’

(%) ”gHHﬁii{zswa, <2s+w+}(Rg)’

provided that —1 < m < 0.
(3) When s = 1/2, we have the same form of estimate as (2.1.20) with 25 — 1 replaced by any
small k > 0.

In fact, this corollary is a direct consequence of Theorem EI and Lemma E

Proof of Lemma @ :
Proof of (1): the case 0 < s < 1/2. By using ®(Jv’ — v.|) < (/)" (v],

(Wi Qs 9) - Wig)). b)
’///b(l)f;g’(Wl’ - W)hdvdu*do‘

C [[[ 01 1Wisrs P 1Wiss9) | 1] dvde,do
= [[[V1010¥isr 1.1 10Viis )] W] oo
) e R e

><(/‘//b|6'| |(W1+7+ )l |hl|2 dvdv*d0>1/2

= OJl X JQ.

+
)7, we have

IN

Clearly, one has
Ji < C||f||Lll+w+ ||9H%lz+ . /sz b(cos ) || do < C||f||Ll1+w+ ||9H%f+ .

Next, by the regular change of variables v — ', cf. [f, [, we have

3 = / Do (s, o) [(Wigys £ |11 [Pdv,d,
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where
/ 0(vs,v,0) ’ /A —1-2s _;
Dy (v,v") = 2/82 T Ty b(cosb(v,,v',0))do < C/o P sin d,
and
costp = ﬁ o, =002, do=sindids.
Thus,

J3 < Clfllcy, IRlIZe,

=

and this together with the estimate on J; give (2.1.16)).

We now try to prove (R-1.17) by using (P-I.15) instead of (R.1.14). For this, we have
(W QU 9) - QU Wi g), 1)

L2 (R3)
|

c{ [ vl 10¥iae 2110V, 1 0] dudedo
[ 610110V 1 (Wi, ) | 8] o

o [ o1 107, 001 (0¥ 0 1] docoio
= M+ My + Ms.
The estimation on My, M3 can be done by the same method for proving ) to have

Mo <ClIfllz Nglez . IBle,
+v I=1+~

My < ClIflz Ngllzz llze.

M can be estimated as follows. Firstly, we have

—c* < ][ vitiawi, n20v,,0 1 dvdv*daf

<c? [[[ bl 40V, )| (Wiso. ). Pdvde.do
< [ [vler 110w, gl Pavdv.do
=M1 X M.
Then, if I — 3 —2s — 1> —1, that is, [ > 25+ 3, we have
Mg < C|\9||L;+||f||2L12+

IN

S

ot

On the other hand, for Mj 2 we need to apply the singular change of variables v, — v'. The
Jacobian of this transform is

v,
v’

_ 8 _ 8 _ 4
] TR

Notice that this gives rise to an additional singularity in the angle 6 around 0. Actually, the
situation is even worse in the following sense. Recall that 6 is no longer legitimate polar angle. In
this case, the best choice of the pole is k" = (v' — v)/|v' — v| for which polar angle v defined by
cosy) = k" - o satisfies (cf. [, Fig. 1])

T—0

2 3

(2.1.21) <1602 0€[0,7/2].

do = sinpdpdy, v e [~ 5.

Y= 12
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This measure does not cancel any of the singularity of b(cos 8), unlike the case in the usual polar
coordinates. Nevertheless, this singular change of variables yields

Mo = C///b|9|l+%|(ng)| W |? dvdv,do

< c// Dy(v,0)(W,, g)| | Pdvdy,

when [ > % + 2s because

/2
Di(v,0') = 6‘“‘%_2()(005 f)do < C/ (g - w)_2_25+l+%_2d¢ <C.
S2 /4

Therefore,
Mi o < CHQHL}’+ 1717
Now the proof of () is completed by the embedding, that is, for [ > %,
||9HL}’+ < C||9HL12+’Y+'
Proof of (2): the case 1/2 < s < 1. Since we look for an upper bounded estimate and & > 0,
it is sufficient to assume s > 1/2 for our purpose. Write

((Wz Q(f, 9) = Q(f, Wi g)), h>L2<R3> = ///Bf,ﬁg’(Wl'—V[/l)hdudu*da

= ///B frg(Wy — W) B dvdv,do = ///B fog' Wy — W) B dvdv,do
—|—///B felg — gYW, — W) b dvdv.do = I + I5.

Taylor expansion gives
1
W, =W/ =V, (v")(v—1") - / (1 —71)V2W,(v' 4+ 7(v —v'))dr(v —v')?,
0
so that

I =— /01(1 —7) ///B FAVEPW (v 4 7(v — ")} o — V)¢’ B dvdv.dodr .

By using the symmetry property shown in Figure ?? ( see also Figure ?? below, and §3 in [@])7
the first order term in the Taylor expansion vanishes, that is,

///B Fod VWi (V) (v — ') B dvdv.do

- e el
L VW (') g'Bdv' dv, = 0.

Here, we have used the notation that for a transformation v — @', its inverse transformation is
denoted by v/ — 1, (v') = v. And 01,02 are symmetric with respect to each other, in the sense

that ¥, (V') — v = = (Ygy (V') = V).
Furthermore, since
HVPW (0 + 70 =)} —v')?| < COu. — V' P{Wia(vi) + Wima (V) + 7(v — v') — v.)}
< COHWi(v.) + Wi(v)} < COWi(v.)Wi(v')

+
and ®(Jv — v.]) < (V20" — 1,))7" < v27 ()7 ()77, we get by the regular change of variables
v — v’ and the Schwartz inequality

(2.1.22) (Ll < Cllflley, |, @nllallez_, @s)llhlls).
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In order to estimate I, we shall apply the Littlewood-Paley decomposition {A;}52,, which is

=0’
a dyadic decomposition in the Fourier variable (see also [, b9, H).

By9(v) = F (&5 (ma(m)). g—ZAJg,

and for m € R,
12590 mm = 2™ 8gllz2, Ngllzm ~ > 27 ™ [1A5g]175-

Then we have the following decomposition
0o o1
I, = Z/ / / B .V (8j9) (v + (v —0")) (v — ") (W, — W) h'da}dvdv*)dT

+Z/ /g B f{(2i9)(v) = (D9) (W) } (Wi — W) I da}dvdv*

= (L2; +13;)
=0

where

QjZQj(vav*):{UESQ? S o> 12l 2”<U_”>2}'

ol
Note that if 1/2 < s < 1, then
(2.1.23) / b(cosf) 0*do = 27r/
Q; {0€[0,7m/2];sin(6/2)<2- 9 (v—v,)~1}
S C2j(2572) <U _ ,U*>2572

sin @ b(cos 0)6%d6

3

and

(2.1.24) / b(cos)fdo = sin 6 b(cos ) 6 df

271'/
{0€(0,7/2];5in(6/2)>2-3 (v—v,) 1}
< C2j(25—1) <’U _ ’U*>2S_1.

To estimate I} ., we need the change of variables

2,5
1 1-—
(2.1.25) voz=v4+7(W-0")= _;Tv—l— 7’(|v—v*|a—|—v*).
The Jacobian of this transform is bounded from below uniformly in v,, o, 7, because
9(2) 1+7 1—7 UV — Uy
EASZY R t( I k:)’ k =
’6(1})’ } ¢ 2 + 2 7 ( |’U—’U*|)
(1—|—T ’ 1—71 (1+71)3 2r -7 L0
1+ k- ‘: 2 Z
1+r 7 25 |1+7  1t+7 0 2
3 _ 3
>(1+7’) 27 +1 T‘:(I—FT) >i'
- 23 1+7 1+7 28 T 23

Recall, cf. [ that the cross-section B(v — v.,6) is supposed to be supported in 0 < § < 7/4.
Furthermore, we have

1 1—
(2.1.26) Iz — v = ;T(v—v*)—l— Lo = .o
| |(1—|—T)2+(1—7’)2+1—7’2k ’1/2
= |v — v, .o
2 2 2
1
:|’U—’U*|T2+(1_T2 COS 2‘ 7| —’U*l,
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which implies (v — v,)25®(Jv — v, |) < C(2)2T7+ (v,)2T7+. Since
(v =)Wy = W))| < COPo — v 2 (Wim1(2) + Way1) < CO v — v PWima (2)Wey_y,
we from (R.1.23) that for any & > 0

1
. <c / ///Q DO (Wirs2eims el |(Wicrs2mins (Vol250)) (2)]{0 — 0.)2 2|1 |dodvdu, dr
J

1
<o | [ (J] (] t10¥issonn 0] [ Ficrsneir. (Fu250)

0 3

1/2
><<v — v*>2—2s|do') dvdv*) dr]
1/2
X [// (/Q b02|(Wl*1+25+’y+f)*| <'U — v*>225|h/|2d0)dvdv*‘|

<C2 YNl w ollgllazezrs, eIl

where we used the regular change of variables v — z defined by () and the regular change of
variables v — v’. The estimate (2.1.24) yields the same bound for I3 ;. Therefore, we obtain

(2.1.27) 1l < Cllfllzg,_, o lol e e ey Il o
Estimates (R.1.23) and (R.1.27) together give the desired estimate )
p.1.19)

For the convenience of the readers, we postpone the proof of (P 9d) to the end of section E
And this completes the proof of Lemma 2.2 because (3) comes from (2) for the case s = 1/2 + k.

2.2. Coercivity estimates. We establish coercivity estimates of the Boltzmann collision opera-
tor. We will show that the angular singularity in the cross-section yields the sub-elliptic estimates
which are the lower bounds of the collision operator (see [[f]). Notice that we need precise weighted
sub-elliptic estimates as given in the following theorem. For more detailed explanation and nota-
tions, interested readers can refer to [E, @]

Theorem 2.6. Assume that vy e R,0<s<1. Let g > 0,#0, g € Lllnax{W ot} N Llog L(R?).

Then there exists a constant Cy > 0 depending only on B(v—uv,, ), ||g||L1 - and ||g||z 10g L,
ax{~y }

and C > 0 depending on B(v—wx,0) such that for any smooth function f € H1/2( )QLVW? (R3),

we have

2 2
221) = (Q 1) f) 0 Z Col Wty = Cllalley o olfIE:, )

Remark 2.7. ;From the proof of the theorem, the constant Cy is seen to be an increasing function
of |gllzz, ||§||Z%1 and ||§||Z%OgL where § = (v)~1"lg. If the function g depends continuously on a
parameter T € =, then the constant Cy depends on inf ez ||(v) Mg ||p1, sup.cz |9-]L 100 . and
sup,cz |9l 21 oty In the later application, we take T = (t,x).

max{~yt,2—~

Proof. Firstly, we have

- /R /S D(|v — vs|)b(cos O)g(vi) f(){ f (V') — f(v)}dodv,dv
L "2 2
== /RG /S2 D (|Jv — vi|)b(cos 0)g(v){ f(v')* — f(v)*}dodv.dv

- = / / (Jv — ve)b(cos 0)g(v){f (V") — f(v)}2dodv.dv
R6 82
=Ri —
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For Ry, according to cancellation lemma (Corollary 2 of [fj]), we have

Ri= %/R /S ®(|v — v.|)b(cos 0)g (v ) { f(V')* — f(v)*}dodv.dv
1 |’U - U*| 1
"2 /JRG /SF {(I) ( cos & ) cos* § Pl v*|)} b(cos 0)g(v.) f (v)*dvdodov,
_ 1 |U - 'U*| 1
2 /RG /Sz ’ < cos 5 ) {6083 5 1} b(cos 0)g(vs) f (v)*dvdodv,

+ % /Rﬁ /S2 {@ <|UC;S§*|> —P(jv— v*|)} b(cos 0)g(v.) f(v)?dvdodo,
=Ri1 + Rio.

For the first term R11, from 1 — cos® g < 3(1 — cos g) = 6sin? %, it follows that

- 2
Ru < O|‘9||L’1Y+HfHLi+/2’

because ® < 1 when v < 0. For the second term Rq2, we first note that the mean value theorem
gives

v — Uy
e I (L)
Cos 5
1 |'U_U*| X 2
_ Do — 021+ (Y2312
(g~ Do+ (P 5
1
SC( 0 —1)‘1)(|’U—1)*|),
COS§
where @ < cosg < a < 1. Similar to R11, we can obtain
Ri2 < CH9||Li+HfH%3+/2.
For the term Rs, we first note that
2 v)7
Bllo =) = (Lo - u)F 2 20
Then, by using the fact that (a — b)? > a?/2 — b, we have
1
Re = 5/ / O(Jv — v4])b(cos 0)g(v){f (V") — f(v)}2dodv.dv
RS Js?
g(’U*) o ! 2
>C b(cos b)) (WY f (V") = f(v)}*dodv.dv
Rre Js2 (vl
- O/ / beos8) L) ()3 £() — (0)% (o) dodvado
RS Js2 (vl
_ g U*) 2 / ol
=C b(cos 0)) {(W)2f () = (v)2 f(v)
Re Js2 (vl
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For the first term Ro;, by using the Corollary 3 and Proposition 2 of @, we have

Ror = Cy coso {< NI FW) = ()2 f(v)}2dodv.do
r6 Js2 Iv\

> Col Wy 2 fII3e — CIIQHLlIIfIILz g

where § = (v)~1"lg. Here C, is an increasing function of ||g||L:, ||g||L1 and ||g||LlogL7 according to

the proof in the last part of [ﬂ see also the Lemma 2.1 of [@
For the second term Raz, note that for some 7 € (0, 1), we have

(2.2.2)

< v — v, | tan(6/2
<’U/+T(’U—’Ul)—’l}*>T| | ten(8/2)
< Cw) T (W — v)? tan(6/2)
(v,) 2" ()% tan(0/2), if ¥ > 0,
= O{ (vy) tan(0/2), otzerwise.

Hence, we get

2
R22_O2/Re/sg 0089 % { <*>\7‘2Y\ }f( )dd*d

ot
<Oy / / b(cos ) tan®(0/2)(v,) 27 g ){ (W) T F(v')}2dodv,dv
R6 Js2
< 2
<Gz, , 112,
This completes the proof of the Theorem @

In the following analysis, we shall also need the following interpolation inequality between
weighted Sobolev spaces in v, see for instance [B3, BY

)

Lemma 2.8. Foranyk € R,pe R,,§ >0,
(2.23) 17 cs) < Coll ALt a1 F ooy

2.3. Commutator estimates. We are now going to study the commutators of a family of pseudo-
differential operators with the Boltzmann collision operator. This is a key step in the regularity
analysis of weak solutions because it requires the mollifiers defined by pseudo-differential operators.
In what follows, we denote (-, -) r2re) by (-, -) for simplicity of notations without any confusion.

Proposition 2.9. Let )\ € R and M (€) be a positive symbol of pseudo-differential operator in Sio
of the form of M(€) = M(|¢|?). Assume that for any ¢ > 0 there exists a constant C' > 0 such that
for any s, 7 >0

M (s)

(2.3.1) ct < ) <C.

<c implies C7'<

Sl®

Furthermore assume that M () satisfies
(232) [M(€)] = 0g M(9)] < CaM(€)(&)71,
for any o € N3. Then the followings hold.
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(1) If0<s<1/2, for any N > 0 there exists a Cy > 0 such that

(23.3) (M(D)QUS. 9) — QUf. M(Dy)g), h)ras)]
< Onllflles, gy (IM9lle2, gy + gl gy ) Il oy

(2) If1/2<s <1, for any N >0 and any € > 0 there exists a Cn . > 0 such that

< ON,s||f||L§25+% (R2)) (HMg”H?;STfUJR%)) + ||9||H$;N(Rg))) Al L2s) -

1+

(3) If s =1/2, we have the same estimate as ([2.3.]) with (2s +~ — 1) replaced by (y + &) for
any small k > 0.

Proof : Firstly, set ®,(v) = ®(|v — v.|) and write

(MDIQUL. 9, 1) = QU M(D.)g), 1)

/ / — V|, 0) (v*)g(v)((M h) (v') — (M h) (v))dadv*dv

RS Js2

/]RS /SQ —vi|,0)f(v *)(Mg)(v)(m—m)dadv*dv

- /R /S (cos) f(vs) ( 9) () IR (W) — { M (®,g)}(v)h (v’)}dodv*dv
+ /R /S b(cos H)f(v*){M(fl)*g)}(v)(h(v’) - W) dodv.dv
—/RG /s\ﬂ b(cos ) f(v.){ P (Mg)}(v)(m—W)dodv*dv

= /Re/sﬂ b(cosO) f(vs) ( +9)(v)(Mh)(v') —{M(®.9)}(v )h(v’)}dadv*dv

+/RB /52 b(cos ) f(vy) [M, Q*]g) () (R(v") — B(v))doduv.dv
= I+711.

The above computation is justified with cutoff approximation, see the remark given after ()
and also [Bg]. The first term Z can be rewritten by using Bobylev formula (see e.g. [fi]) as

= i - v — —iv €T odv
I_/Re /S by oMt *)(M(f) M(€+)) (®.9)(E)e dodv.h(€)de,

where

§£ €lo

5
Notice that in the case of Maxwellian molecule type cross section with v = 0 i.e. ®(Jv —v|) =1,
77 =0.

Since M'(|€[2) = 26 - VM(€)/|¢]? and || < |€] < 2|€T], it follows from (P.3.1)) and (.3.9) that
2

M(ET),

¢t =

(2.3.5) [M(§) - M) <C

‘/S2b(|§—|-o')

sin =
2

and
2

do < C < +o0.

sin =
2
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Thus,

Hl=c / o ”*lfv*l/sz/w |s| ) sin® S M(EDF(@. (v2) 4 9)(6)| (E) decdod,
<o [ 1w sl [ [ e |€| Join? 2 [M(EN)F (@) 7 g) € Pdedodn,)

< ([ sl [ [ o oysne i dedodn. )

< Cllflea, (sup M (D)@ (0.) " g ()]l 22 )|h||L2

where we have used Plancherel’s equality, the change of variables & — & for which d¢ ~ d¢*
uniformly with respect to o, the estimate ®,(v,)~ 7"+ < (v)7+. Then by using the expansion
formula of the pseudo-differential calculus

1
(2:3.6) [M(Dy), @.(0)] g = > —Pua)M©(Du)g + 7w, (v, D va)g.
1<]a|<N;
with Ny > \, and the condition (£.3.9), we obtain
(2.3.7) Sup | M (D)2 (0) 7 g0} 12, < C(IMolzz, +Ilgll - )-
Hence,
(2:3.8) 171 < Ol f s, (1Mglzs, + gl )1l

We now turn to the term Z7. Firstly, set
F(v,vs) = [M, ®.]g(v),

and decompose

IZ:/RS /S b(cos@)f(v*){F(v’,v*)h(v')—F(v,v*)h(v)}dadv*dv

+ /]RG /S2 b(cos e)f(’l)*)(F(U,U*) — F(’U/,’U*))h(fu/)dv*dvda
=Ji + Ja.

According to the cancellation lemma [ﬂ], we obtain

/}R3 /S2 b(COS9){F(U/7 v:)h(v) — F(v,v*)h(v)}dadv = (S * {F( . v*)h})(v*),

where the convolution product is in v € R?, and in this case,

1

cos3(0/2) 1} 40

x/2
S = 271'/ sin 6b(cos 9)[
is a constant function. Consequentl;,
Ji = /}R3 f(v*)(S* {F(-,v*)h})(v*)dv* =5 o f)F(v,v)h(v)dvdv,.
By (£.3.6) and (£.3.7), we get
(2.3.9) |1 SC/RB [f @IIECs )l z2 || 2ll L2 dv.

<ClIf ey, (1Mglzz, + gl ) I1Rllss
vy

To estimate the term Jo, we need to consider the following two cases.
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Case 1: 0 < s < 1/2 . Since the mean value theorem yields

1
F(v,v.) = F(v',v.) = (v—="2') - /0 Vo (F@ 4+ 7(v—v"),v,)dr,

by noticing that
[v) —v| = |v — vi|sin(0/2) = [v" — v.|tan(6/2),

we have

FAR /O (/RXS bleos )0/ — o]l F I A@)II(VoF) (0 + 70 — ), v.)dvdu.do ) .

1/2
<0( [ Meost)lolto.) 1w ) 1A Pdviv.do)

1 _ 2 1/2
X / (/ b(cos 0)[0](vi) 7| f (vs)] [ = .| (Vo F) (V' 4+ 7(v — "), vy) dvdv*da) dr
0 R6xS2 <’U*>’YJr

=C J21 X J22.
By the change of variables v — v for which dv ~ dv’ uniformly in v, € R3, 0 € S? (see [[i]), we get
(2.3.10) T3 < Cllf ey lIR]1Za-

To estimate Jao, we apply the change of variables () and use () Setting

* _ <U B ’U*>
Vi (v) = oy

we get

JZ, < C/O1 [/RXS b(cos9)|9|<v*>w|f(v*)|\¢*(z)(vvzv)(z,v*) 2dzdv*da} dr

< Cllfllzy, sup 19" () (Vo F), 0:) |-

On the other hand, it follows from the expansion formula of pseudo-differential operators that,
with @, (v) = (1 + |v — v.|?)?/? we have for any N; € N

(Vo F)(v,0.) = Vo[M, @.]g(v)
1 o o -
(2311) = Z a {(V(I)*(a))M( )(Dv)g+(1)*(a)M( )(Dv)vvg} +TN1(U7Dv§U*)g
1<|a|<N;
=Fn, (v, Dy; vi)g(v) + 7N, (0, Do vi)g(v),
where 7, is a pseudo-differential operator with symbol belonging to Sf‘)aN ! uniformly with respect
to v, € R3 (cf. [|t]]). Since

(v —v.)

<v*>7+

(v — v*yfla\ < Co (V)7

1Z)*(I):k(a)| S Oa

by (R.3.9), we have for o # 0 that,
|M((€) €] < CaM (€))% < CaM(9).

Hence
2 2 2
(2.3.12) T < O, (1Mol +1lglFs ).
Now, it follows from (2.3.9), (B-3.10), and (£.3.19) that
(2.3.13) 221 < Clflls, (1Mgllrz, + llgll g ) 1Al 2

holds when 0 < s < 1/2.
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Case 2: 1/2 < s < 1. We now decompose Jo as follows:
1
Jo = / (/ b(cos ) f(vi)h(v)(v =) - (Vo F) (' + 7(v — v'),v*)dvdu*do) dr
0 R6 xS2

- /R , beosOf @)h(v) (v = v) - (Vo F)(v', vi)dvdvwdo

1
+/0 (/RXS b(cos 8) f (v: )h(v')
(v =0") - {(VuoF) (' +7(v—2"),vs) = (Vo F) (', vi) } dvdu*do) dr
=J9+Jy.

The essential feature of this decomposition is that J§ vanishes by symmetry as in the proof of
Lemma @ Indeed, we have

5= [ fen)

{/S b <% -a) ‘%‘(%(v’) - v’)da} (Vo F)(v',v,)dv'dv,
=0,

because of the symmetry in o7 and o9 in the sense that ¢, (v') — v = —(¢4, (V') — v'), cf. Figure
77

Now, by the change of variable v — z = v/ + 7(v — v') defined by (£.1.25), we consider
Jy (1) = / bf (v )h(V') (v =) - {(VoF)(2,vs) — (Vo F) (V' vi) }dodu,do.
R6 xS?
By recalling the expansion formula (2.3.11]) of (V,F)(v, v.), we first consider
J3 (7, )

:/ bf (v )h(V) (0 =) APy ()M MV, g(2) = Bo(oayM MV, g(v') }dvdv.do
R6xS2
(2.3.14) = /RS bf (0 )R(V) {@o(a)(2) = Pu(ay(V') } (v —0") - M DV, g(2)dvdv.do

+ / bf (0. )R(V) Py (V) (0 = V') - {M DV, g(2) — MV, g(v')}dvdv.do
R6 x§?
=Jy° (1, @) 4+ Ji(T, ).

Notice that the case when |a| = 1 is the most difficult case in the sense that M(*)(D,)V,, is a
pseudo-differential operator of order A with symbol bounded by C M (&) due to the assumption
(B:3.9). By writing (1) instead of (a) when |a| = 1, we have

|{<I)*(1)(z) — Q)*(l)(v/)} v — v’” <Oz —v.)76%,
which gives

1/2

(2.3.15) \J;O(T,(l))‘g(/R b92|(v*W*f(v*)||h(v’)|2dadvdv*)

6% §2

x / DO (0,7 f (02
R6 xS2
<Ol fllzs 1M gllzz, [1hl]z2-

{(z = v)

. 2 1/2
o M@ V,g(2)| dodvdv.
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In order to evaluate the term J3(7, (1)), we take the same Littlewood-Paley partition of unity
{1;(€)} as in the proof of Lemma P.4 and write

3 (7, (1))

= /RG o bf(v*)h(v’)q)*(l) (v/)(v _ 1)/) . {M(l)vvg(z) _ M(l)vvg(v/)}dvdv*do_

B Z /Re <2 bf (v )h(V)@ua) (V) (0 = 0') - (g5(2) = gj(v")) dvdv.do
=0 /ROx

= Z j21,j (1),
3=0
where g;(v) = ¥;(D,)M™Y(D,)V,g(v). For each j we apply the following decomposition by using
Q; introduced in the proof of Lemma .4 to have
j21,j (1)

_ /0 ' ( /R N /Q D) By () (0 = )

J

(2 =")Vgj(v' + s(z — v’))da) dvdv, )ds

+ /RG </Q; bf(v*)h(v/)(l)*(l)(v’)(v — ’Ul) . (gg(z) _ gj('U/)) dO’) d’Ud’U*
=Ty (1) + Iy} (7).
By setting

v, =0 +5(z—0"),

we have

5 1
e (] ( / b’ v|2|f<v*>||h<v’>||<1>*<1><v’>||v9j<v;,s>|do> dvdv. ) ds

< C/Ol (/}R6 (/QJ b(cos 0)6 (v — v,)2 72 (v, ) 25T D+ | £ (0,)|

(0], — )24

x |h(v")]

AR Vi, ) da)dvdv*)ds

) ) 1/2
< cz—aﬂ( / ( / b(cos 0)6229(2=29) (y _ y,)2725 (3, ) (2s+7=1)x | f(v*)||h(v')|2da>dvdv*>

’ da) dvdv*) 1/2) ds

<v/ >(25+,Y,1)+ 2j(2572+s) ng (v;—,s)

T,8

—ej 71,1 51,1

=C2 EJJQJ-J(T) X J21j)2(T).
By using the same change of variables as for J5; in the previous case, it follows from (f1.29) that
(2.3.16) Ty (1) < OISl ) lZe.

(2s+~—1
Similarly, by taking the change of variables v — ’U,/,_)S as in the previous case again, (2.1.23) leads
to

@317) B <Oy, (1M gl + 192y s2eare )

(@sty—1y (2s+y—1)4 H(25+w71)+
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where we have used

29252V, (0)]2 <O(IMglBpree + 2w sneosic)-
+

(2sty—1)4 (2s+y—1)4

Hence, it follows from (2.3.16) and (£.3.17) that, for Ny > A\ + 2s — 1 + ¢, we have

(2.3.18) T3 (7)] < €27 £]| s (2l zgree + Nl )bl

(2s+vy—1)4 (2s+v

On the other hand, for jzlf(T), note that

Li(r) = Ux (1 v—"2")g;(z)do | dvdu,,
Jy5(7) /RG</be()()‘1’<)( ) )g()d>dd

by the symmetry in €. We have

e [ ([ bleost)oo )20 ) B0 ()
RS Qf

<Z _ ,U*>2s+'yfl

oy %)

<02 / / b(cos 0)62/172) (v = v.)1 72 (0.) 1 £ (0, [0 *do ) dvd, )
]RG Q

/ / b(cos §)6270 72 (v — v, ) 172 (v,) D £ (0,
R6

1954

x [h()| da) dvdv,

1/2

@s+r—1)4 gi(2s—14e) (7| 1/2
(z) 2 gi(2)| do)dvdv,

P (e [

(2547

< C27||fl|

(@s+y—1)4

because of (R.1.24). This together with (R.3.15) and (R.3.1§) yield

1
(2.3.19) BN <Ol (1M gllzpee, gl Yiblze.

It is easy to see that all other terms coming from Fy, (v, Dy;v.)g(v) in (R-3.11)) have the same
bound estimated above. Moreover, all the terms coming from 7, (v, Dy;v«)g(v) can be estimated
by

ClIAN Ly lollmzy ) Il

(2s+y—1)4 (2s+~

Therefore, we finally obtain

_ 1
ol = 131 < Ol ey, .,y (M gllazgree + ol ) llee.

(st

In summary, when 1/2 < s < 1 we obtain instead of (2.3.13) that
(2:3.20) 721 < Clfllny,,._,, (I llizgree +lolloy ) IBlee

(2s+y—1)4 (2s+y—1)4

By combining (2.3.§), (R.3.13) and (P.3.20), the proof of Proposition P.g is completed.

The rest of this section is devoted to proving () of Lemma @
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Proof of (.1.19) of Lemma [2.4.For m = 2s — 1 4+ ¢ > 0, we have with A = (1 — A,)'/2

(mQs, 9) - Q(r. wig). h) = ((A7"QUf, 9) = Q(F, A7™g)), WiA™h)

+(ch2 1, A77g) = QUf WiA™g)), A™h)
+( A" Wi g) — ’mQ(f,Wzg))aAmh)
+(<A " WQU, 9) = QUf [AT", Wilg), A™h)
= (1) +(2) +(3) + (4).

It follows from (P.3.4) with M(£) = A~™ that

WIS, wW||g||L§2WU+||h||H;n,
<OVl IWiglzs, lalle.

(2s+~v (2s4+~—1)+
By means of (R.1.1§), we have

(@) < Cllfllz llgll 2 res

14+2s—14~71 I+2s—14~+

To estimate (4), we first note that

(A= Wil = >0 (W) (o (A™ ™) ¢ Wi_1R(v, D),
la|=1

where R is a pseudo-differential operator which belongs to S7 8”‘72. Write

W= ({(A‘m)(a)Q(ﬁ 9) = Q(f. (A"")(“)g)}a (W) )A"™h)

|a]=1

la|=1
+ (R(U, D’U)Q(fa g)a VVlflAmh) + (Q(f, VVlflR(’U, D'U)Q), Amh)
=(a) + (b) + (¢) + (d).

It follows from (P-1.])) that
(@ <l Dl a-=Nhllay, <ClAle Mol Pl#e,,

(v+2s)F (v+2s)F

(@] < CINRU, Wi Rg) 2 llPllz < Cliflle ,  Mlgllee 1]l £

I—14(y+2s)F

By exactly the same method as the one for (R.1.1§), namely, by replacing W; by (W)@ which is
bounded by W;_|,|, we have

N@
OOz, (™) Vel Wl <CUly Nl WAl

s—2+~t 1—2+42s+~+ I4+2s—24~TF

The estimation on (a) is the same as the argument in Proposition @ by replacing M (D) by
(A=™)(@) except for the corresponding term to Z. Notice that Dg((&)™™) = M (@) (€) is no longer
a function of |¢|2. Instead of (R.3.9), we only have

(2.3.21) M@ (¢) — M@ (Eh) < C

inf i
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Thus, we need to use the symmetry property as in the proof of Theorem @ The corresponding

term to 7 is
vy)
= [ L

» (M<a><£> MO (EH)) F(ug)(€ e dodu, Ty €)de,

where hg = (W})(q)A™h. By letting

F(v,v.) = Mg(v), h(v,vy) = —=

{va)7*
we write
7= [ () fw.)
/ / M(a)(é) _ M(a)(é--i-))eiv*&*ﬁ(g-l-’v*)eiv*Eﬁ(€7v*)do—d§}dv*
ws Joo TEL T
= [ @) o)L o
]RS

Set
E‘(§7’U*) = eiv*§F(§7U*)7 E(§7U*) = eiv*gﬁ(guv*)u

and write

L(v,) /R3/S R a)(g)—M(a)(ﬁ‘i‘))g‘({i"v*)(z(@v*)_Z(§+7U*))dad§

+iAu—ﬂ AwébﬁTa ~

X (VEM@) (e + (6 — £5)(E )2 (€, v)h(er, v.)dodg bdr
=L (v.) + L (v).

By the same symmetry property as shown in Figure 7?7 in the proof of Theorem @, we have
/ / )(VeM@)(EY) - € (o) F(EF, v )h(EF, v.)dodé = 0.
w Jo 1€
Then it follows from (P.3.21]) that
sup| L (v.)] < Cligllz Ihollzz < Clighizz, [1llspm,

and

sup [£2(v.)] < Clgllzz, [hollze < Cliglrz, Ikl
Vi Y Y

whence we obtain

(0%
Iz < Clifllee,  Ngllez Al

In summary, we obtained the desired estimate (2.1.19).
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3. REGULARIZING EFFECT

In this section, we will prove the regularizing effect on solutions to the non-cutoff Boltzmann
equation starting from f € HP(JT1, To[ x2xR3)). Actually this will be proved by using an induction
argument in the following subsections. In the first step, we will show the gain of regularity in the
variable v mainly by using the singularity in the cross-section, that is, the coercivity property in
() In the second step, we will apply the hypo-elliptic estimate obtained by a generalized
version of the uncertainty principle to show the gain of regularity in (z,¢) variables. Then an
induction argument will lead to at least one order higher regularity in (x,t) variables. By using
the equation and an induction argument again, at least one order higher regularity can be obtained
in v variable. Therefore, the solution is shown to be in HP(]T1, To[ xQ x R3) which by induction
leads to H®*(|T1, To[ xQ x R3).

Let f € HY(JT1, To[ xQ2 x R3)), for all I € N, be a (classical) solution of the Boltzmann equation
(L1). We now want to prove the full regularity of ¢(t)y(x)f for any smooth cutoff functions
¢ € C(T1, To)), v € C(),

3.1. Initialization. Here and below, ¢ denotes a cutoff function satisfying ¢ € Cg° and 0 < ¢ < 1.
Notation ¢1 CC ¢ stands for two cutoff functions such that ¢o = 1 on the support of ¢;.

Take the smooth cutoff functions ¢, 2, ps € C§°(JT1,T2[) and ¢, ¥a, 93 € CF(2) such that
¢ CC 2 CC @3 and ¥ CC g CC ¢P3. Set fi = p(O)Y(2)f, f2 = p2(t)Y2(2)f and f3 =
w3(t)s(x)f. For a € N7 |a| <5, define

9=0%(pt)¥(2)f) = 07, (p()¥(2) f) € LF(RT).
Firstly, the translation invariance of the collision operator with respect to the variable v implies
that (see [@, @, @] ), for the translation operation 75, in v by h, we have

G(f, 9) = Q(Tnf, Thg)-

Then the Leibniz formula with respect to the ¢, x variables yields the following equation in a weak
sense

(3.1.1) gi+v - 8eg = Q(f2, 9)+G, (t,z,v) €R,
where
(3.1.2) G = > Cas (8a1f2, 8“2f1)

ar1tas=a, 1<|aq |

0 (pel@)f +v - Dal@)p(®)f) +10% v - A)(e(t)0(@))
(4) +(B) + (O)

To prove the regularity of g = 9%(¢(t)1(x)f), the natural idea would be to use g as a test
function for equation (E) But at this point, g only belongs to L?(RU so that it is only a
weak solution to equation (m) By using the upper bound estimate on @, we have Q(f2,g) €
L*(R} ,; H?*(R3)). Thus, we need to choose the test functions at least in the space L*(R} ,; H?*(R3)).
For this, we will use a mollification of g with respect to the variables (z, v) as a test function.

For this purpose, let S € C§°(R) satisfy 0 < .S <1 and
S(r)=1, |rf[<1; S(r)=0, |7| =2

_|_

e SNn(D2)Sn(Dy) = SQ272N|D,*)S(272N|Dy|?) « H *(R%) — H[(R°),
is a regularization operator such that
(SN (D2)SN(Do)f) = fllLz@ey — 0, as N — oo.
Choose another cutoff function ¥ CC 11 CC 19 and set
Py =¥1(2)SNn (D) Wi Sn(Dy)-
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Then we can take
g="Py, (Png) € C'(RyHT™(R"))
as a test function for the equation (B.1.1)).
It follows by integration by parts on R” = R} x R3 x R? that

([SN(Dv)u v] - VoSN(De)g, 1(x)Wi Py 9)L2(R7) =

P Q ) ) ‘l ) L2(R7 (G7 ) 7’
W l’lC]l imphes tlla!t

(313) ~(QUf2 Pr.19), Prag) |, = —([Sx(D0), o] - VeSn(Da)g, wr(@)WiPy, g)

—i—(PN,z Q(f2.9) — Q(f2, Pn,19), Pyt 9)L2(R7) + (Gv §>L2(R7)'

L2(R7)

By using ()7 we can deduce the regularity of g from the coercivity property of the collision
operator on the left hand side and the upper bound estimate on the right hand side. And the
detailed calculation will be given in the next subsection.

3.2. Gain of regularity in v. In this subsection, we will prove a partial smoothing effect of the
cross-section on the weak solution ¢ in the velocity variable v .

Proposition 3.1. Assume that 0 < s <1, v € R. Let f € H}(JT4, To[ xQ x R3) be a solution of
the equation ([L.1) for alll € N. Assume furthermore that

(3.2.1) ft,z,0) >0 and ||f(t, )]z ®s) >0,

for all (t,z,v) €]Ty, To[ xQ x R3. Then one has,

(3:2.2) A3fi € HP(RT),

for any l € N, where f1 = o(t)(x)f with ¢ € C(|T1,T2]), v € C=(£).
Proof : Firstly, the local positive lower bound assumption (8.2.1)) implies that

inf t, T,- 3y = cg > 0.
(t,z)Esupp @ xsupp Y1 ||f2( )HLl(RZ) 0

Thus, the coercivity estimate (R.2.1)) in Theorem .4 gives that for any v € R, 0 < s < 1,

_ P P = — P P dzxdt
(@t Prag) Pras) == [ [ (@l Puag), Pag) e

z// (Collws o Pra gt 2, ) e sy
R, /RS
—Cllfatr My, nIPragtn s,y )dedt

ax{yt,2—

> CollASW, j2PnagllTaery = Cllfoll e g 10

max(y+, 2+ (BD) 1w g||L2 L(RT)

where Cy depends on co,supy ,, [|f2(¢, %, ") || L1 (rs) and sup, , || f2(t, 2, -)||L10gL(R%), see Remark P.7.
For the terms in (B.1.3), firstly note that
(3.2.3) [Sn(Dy), v] - Vo Sn(Dy) =272N(8) y(Dy) Dy - Vo Sn(Ds) : L*(RS,) — L*(RS,),

is a uniformly bounded operator so that

(183 (Do), v - Ve Sw(D2)g, 1) WiPa g)

L2(RT) ||f1||H5 (R7)"
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Hence, by using (B.1.3), we get, for I > 3/2 + 2,
(324) AW, oPxaaliegn < OL(14 1falgzss o) Il + \(G, )

L2(RT)
+’ (PN,Z Q(f2,9) — Q(f2, Pni9g), PN,ZQ)

In the above, constants C' > 0 are independent of N.

We complete the proof of Proposition @ by estimating the last two terms in () through
the following three Lemmas.

L2(R7)

Lemma 3.2. Assume 0 < s < 1,y € R. Let f € H}(|T1, To[ xQ2 x R3), 1 > 3/2+ 2. Then, for
any o € N7, |a| <5, we have, for any & > 0,

(3.2.5) ’(G g) = Cgllfsll‘ifmw(w) +ell AW, 2Py gl e ey )
Proof : Firstly, we prove that
(3.2.6) G e LAR}, H 7 (RY)),

for any [ € N, where (2s — 1+ §)" = max{2s — 1 + 4,0} and § > 0 satisfying 2s — 1+ § < s. By
using the decomposition in (B.1.9), it is obvious that

(B) = 0* (pep(@)f +v - vu(@)p(t)f) € LR,
and
IB) e, < Cllfallms, oy
Since [0%, v - 0] is a differential operator of order |a|, we have

(O 2@my < Cllfall s gry)-

For the term (A), recall that a; + a2 = @, |a] <5 and |ag| < 5. In the following, we will apply
Theorem with m =1 — 9 — 2s. We separate the discussion into two cases.

Case 1. If |ay| = 1,2, we have

/ / ||Q(6a1f27 8a2f1)(t,x, ')”?{1*‘5’25 R3 dxdt
R, Jr3 : (R3)

< C O™ fo(t, x,-)||? 0% f1(t, x, )% dadt
h /Rt /]Ri 197 folt. . )||Lll+(2s+w)+(R3)H Az, )”Hzlﬂést)*(R%) !

< CO0* fo? . 22 f1(t, x, )| dxdt
= || f2||L (Rgm,LllﬂzSﬂﬁ(Rg)) /Rt /Ri’ || fl( y L, )||Hll+(2s+w)+(R%) X
< C|f2l? 2 .

= ||f2||H12++://22++55+(23+w>+(R7) I f1 ||H15+(25+7)+ (R7)

Case 2. If |ay| > 3, then |as| < 2, it follows that

(03] . 2 [65) . 2
L LNl w0 R s e

I+(2s+y
< Cllo*2fi)? _ 0% fot, x, -)||? dadt
< OWP Aliag s iy o [ VBN e
< O fl? 2xr 2 .
- Hfl||H12++<1zsi:?f+5/2(R6)||f2||Hf+3/2+s+(2s+w>+(R7)

By combining these two cases, we have proved (B.2.4).
Now if 25 — 1 < 0, then (B.2.6) implies that

’ (G’ g) L2(RT)

< C||f3||?f{f+4+w+(uv)~
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On the other hand, if 0 < 2s — 1 and v < 0 (the case v > 0 is easier), then (B.2.6)) implies that

‘ (G’ g) L2(R7)

< C||f3||§{f+4+w(]1{7) Wiy 2PN 09l L2rs |, o1 m3)),

S NGl oy o205 @) Wit 2PN gl Lo e pr2e 2o )

because 2s — 1 4+ § < s. Therefore, the proof of Lemma is completed.

We now turn to the estimates of commutators between the mollification operators and the
collision operator, which are given in the following two lemmas.

Lemma 3.3. For any v € R, we have
(1) If 0 < s < 1/2, then for any suitable functions f and g with the following norms well defined,
one has

(3.2.7) SN (Dw)Q(f,9) — Q(f, SN(Dv)g) | L2(ms) < C||f||L;+(Rg)H9||L3+(Rg),

for some constant C independent of N.
(2) If 1/2 < s < 1, then for any § > 0 there exists a constant Cs > 0 such that

(3.2.8) SN (Dw)Q(f,9) — Q(f, SN(Dw)g)ll2rs) < Csll fllnr

(23+W71)+(R3) HgHH?;;:jflﬁ(Rg) ’

and

3.2.9)  [[Sn(Dv)Q(f,9) — Q(f, SN (Duv)g)ll p—2a=srz) < Csl fl 11

(2s+w—1)+(R3) Hg”L2

3Y).
<2s+v—1>+(Rv)

(
(3) When s = 1/2, we have the same form of estimate as with (2s + v — 1) replaced by
(v + k) for any small k > 0.

Before giving the proof of this lemma, notice that when v = 0 in the Maxwellian molecule case,
the following proof of Lemma B.3 is similar to Lemma 3.1 in 5§ (see also Lemma 5.1 in [H]) by
using the Fourier transformation of collision operator. However, here we consider the case for v € R.

Proof of Lemma @ : The proof is a slight modification of the proof for Proposition E Set

M(le]) = Sn(€l) = S@*N¢).
Then Sy € S, uniformly. Even though it does not satisfy (R.3.9), we have

0°Sn (I€D)] < CaSna(lE]) < &>
with C,, independent of N € N. Thus, (2.3.3) implies (B.2.7) and (.3.4) implies (B.2.§) respectively.
For (B2.9), note that with m = 25 — 1 4 § we have
(SnQ(f,9) = Q(f, Sng),h) = (A" Q(f,9) — Q(f, A"™g)), A" Snh)
+ ((SvQ(f,A™™g) — Q(f, A" Sng)), A™h)
+ ((Q(f, SNA™™g) — A7™Q(f, Sng)), A™h)
=(I) + (I2) + (I3).

By applying (R-3.4) with M (£) = (€)™ to (I1) and (I3), we obtain
)+ < O, lglee,

(2s+~v—1

([Pl

+y-1t

because Sy € 57, uniformly. The same bound on (I5) follows from (B.2.§).
Notice that the case of s = 1/2 follows from the case of s = 1/2 + & for any positive k because
the main concern here is the upper bound. And this completes the proof of the lemma.

The following lemma is on the commutator of the collision opertor with mollifier in the x variable.
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Lemma 3.4. Let 0 < s <1 and v,m € R. For any suitable functions f and h with the following
norms well defined, one has
(3.2.10) 198 (D2)Q(f; h) = Q(f, SN(Dz) h)llp2rs , pm-2:(r3))

< O27 Y| Vafllpems,, 2 @yl mn @)

1
2s+7) st

for a constant C' independent of N.

Proof : Let us introduce Ky (z) = 23NS’(2~NZ)2N2. Note that Ky € L'(R?) uniformly with
respect to V. Then for any smooth function h, one has

(w02 @t m=Qu. svam). i), = | B L[ Exe-w)

< (QVaf (b +7(x —y). ), 27 Vhlt,y, ), e, -))Lz(R%)dtdzdy}dT.

By applying Theorem @ with m — 2s, the right hand side of this equality can be estimated from
above by

c{stl)lfnvxf(t,x, -)IIL(12M+<R3>}x

L L RN 20l sy @7,y

< O27N||vmf||L°°(]Rﬁz;L1

(2s+y)t
which completes the proof of the lemma.

@llla@, oy @Bl e e,

We now apply (B-2.10) with h = Sy(D,)g and m = 1, we get
(3.2.11) 198 (D2)Q(f, Sn(Duv)g) — Q(f; Sn(Da)SN(Du)g)llp2rs , mi-2s(r2))

S CVafllLes L(128+W)+(]R3))”gHL?(R;{w, 12,1 (R3):

Here, we have used the fact that a mollification operator Sy (D, ) in the v variable has the property
that

127 Sn(Dg(t, . ),

where C' is a constant independent on N.

sy < Cllg(t, @, )| 2 (R3)>

+’Y)+( (2s+7)F

Now we are ready to complete the proof of Proposition E

Completion of proof of Proposition .
We study now the commutator terms in (B.2.4). For this, we have

(3.2.12) (PN,z Q(f2.9) — Q(f2, Pnyg), Py 9) L2(R7)
= (SN(DU) Q(f27g) - Q(an SN(DU)Q)’ SJJ{/(DI)MJ1 (I)WZPN’Z g) L2(R7)

+ (D) QU2 S8(D1) ) = QUz, SN(D)SN (D) g), n(e)WiPrsg) |,

+

(¢1(@)Wi Q(f2, Sw(D2)Sn (D) 9) = Q(f, Py g)s Prvag)

(1) +(2) + ).
Note that A%y (x), Sn(D,)]Sn(D,) is an L? uniformly bounded operator with respect to the
parameter N for 0 < s < 1, and that [W;, Sn(D,)] is also a uniformly bounded operator from

L? to L? | with respect to the parameter N. The discussion on (B.2.13) can be divided into the
following two cases.

L2(R7)
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Case 1. 0 < s < 1/2. In this case, Lemma B. implies that , for | > max{4, (y + 2s)*},
(D] < Cllfall et

And Lemma @ implies that
|2 <ClIVafollpoms, L

As for the term (3), we use Lemma P.4 to have

@) 9l zz®n 9l Lz, @y < C||f3||§{gl(w)-

1
yt+2s

@) 9l L2wa Lf’+(Rg))||g||L§L(R7) < O||f3||§{gl(R7)-

1
yt+2s te

I3 < Cllfell Lo, LZIMHQS(Rg))||9||Ll2+ S(]R7)||PN,ZQ||L2(R7) < C||f3||§1gl(ug7)-

T2

Case 2. 1/2 < s < 1. By using (B.2.9), we have

(D < Cllfallpoews, | 12 @3 llgllz2
-1 I+

feo Lot L@ IWa2Prigllra e, oe-ves )

~yt42s—
< el ASW 2Py g3 ey + Cel Fallhs |

We can use (B.2.11)) to show that
12)] < ClVafallpeo s

t,x

1yt R

Li++2S(R§))”gHL2(R§m L @)W PN gl Lems || mree-1re))

'2y++25
%+2 S 2

CellFal} 2, + AW, 2P, 1912y

Then, ) implies that

B < Cllielpmes. . 1

IN

1
2s41—147~ 2s+l—14~v4

4490
< Gl + IS, 0Py gl e .

In summary, we have obtained the following estimate for the second term on the right hand side

o G2
‘(PN,Z Q(f2,9) — Q(f2, Pny9), PN,ZQ)

< Os||f3||§{%(ug7) + 5||A1S;Wv/2PN,l9”%2(]@&&)-

L2(R7)

Finally, it holds that
(3.2.13) 1AW, 2P gllgaan) < CllfslES, g,

where the constants C, k, and k" are independent of N. Therefore, Proposition is proved by
taking the limit N — oo.

3.3. Gain of regularity in (¢,2). First of all, let us consider a transport equation in the form of
(3.3.1) fi+v-Va.f =ge€ D (R,

where (¢, z,v) € R7*"+" = R2»+1 In [§], by using a generalized uncertainty principle, we proved
the following hypo-elliptic estimate.

Lemma 3.5. Assume that g € H™* (R2**1), for some 0 < s’ < 1. Let f € L*(R2"1) be a weak
solution of the transport equation ) such that AS f € L2(R?*"Y) for some 0 < s < 1. Then it
follows that

A;(l—s')/(s-ﬁ-l)f c L2,s_s/(R2n+1)v Af(lfS’)/(sH)f € L% . (R,

SH1 +1

where Ay = (14 |Dq|?)1/2.

+(R%))le(ac)SN(Dw)SN(Dv)9||L2(1R;{z,H?S*l*‘f (Rg))”PN,lQHL%RU
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As mentioned earlier, this hypo-elliptic estimate together with Proposition @ are used to obtain
the partial regularity in the variable (¢,z). With this partial regularity in (¢,z), by applying
a Leibniz type formula for fractional derivatives, we will show some improved regularity in all
variables, v and (¢,2). Then the hypo-elliptic estimate can be used again to get higher regularity
in the variable (¢, ). This procedure can be continued to obtain at least one order higher regularity
n (¢, z) variable.

For this, we first recall a Leibniz type formula for fractional derivatives with respect to variable
(t,x).

Lemma 3.6. Let 0 < XA < 1. Then there exists a positive constant C # 0 such that for any
f € S(R™), one has

(3.3.2) 1D, f(y) = F (1€} F(€)) = C

Indeed, note that

fy) —fly+h) .

Rn |h|ntA

wdhz f(g)eiy'f/ ﬂdhdﬁ,
R"

|h|n+>\ |h|n+)\

1 — e th€ dh — A\ 1—671-“.% d
o =
so that (B.3.9) follows from

RTL
while

e
1_6717J,T
/n 7|u|n+A du # 0,

which is a positive constant depending only on A and the dimension n, but independent from ¢&.
Using this Lemma, we have the following Leibniz type formula,

(333) D, (I c/ 1y |h|(f+th) (w+h),
= GWID,PIW)+ FWID, Pl + s [ )~ S+ l’;}fn (oly + 1) = 9)) 5,

We now turn to the analysis of the fractional derivative with respect to (¢,z) of the nonlinear
collision operator. Denote the difference with respect to (¢,2) by

frlt,z,0) = f(t,x,v) — f((t,x) + h,v), hE Rﬁw
It follows that for the collision operator (where n =1 + 3),

(334)|Dt,m|)\Q(f7 g) = Q(|Dt,w|>\f7 g) +Q(f7 |Dt,m|>\g) +C)\ ‘/RAL |h|_4_>\Q(fhu gh)dh

This kind of decomposition will be used extensively below in order to get the partial regularity
with respect to the (¢,x) variable.

First of all, we have the following proposition on the gain of regularity in the variable (¢,z)
through the uncertainty principle.

Proposition 3.7. Under the hypothesis of Theorem |I.1, one has
(3.3.5) A, fr € HY (RT),
foranylGNandO<$0:%.
Proof: In fact, for any [ € N, it follows from Proposition that
ASWig € L*(R7).
Then the upper bound estimation given by Corollary E with m = —s implies that
WiQ(f2, g) € L*(R;y; H*(R})).
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On the other hand, Proposition B.9 and (B.2.4) give
WiG € LA(RY,; H-s—1+9 (R3)).
By using (B.1.1)), it follows that
(3.3.6) O (Wig) +v - 0:(Wig) = WiQ(f2, g9) + WG € H*(R").
Finally, by using Lemma @ with s’ = s, we can conclude (B.3.§) and this completes the proof of

the proposition.

Therefore, under the hypothesis f € H}(JT1,To[xQ x R3) for all [ € N, it follows that for any
[ € N we have

(3.3.7) A (pO(@)f) € HIRT), AR (p(D(@)f) € HI(R).
We now try to improve this partial regularity in (¢, z) variable.

Proposition 3.8. Let 0 < A < 1. Suppose that f € H}(|Th, To[ xQ x R3) is a solution of the
equation @ for all 1 € N. Furthermore, assume that for any cutoff functions ¢, 1,

(3.3.8) A (pt)p(x)f) € HP(RT), AR (p(t)y(2)f) € HP (RT).
Then, one has
(3.3.9) ASALL (p(D)(2)f) € HP (RT),

for any l € N and any cutoff functions ¢, 1.

Proof: Set
9N = Pnig = v1(2)Sn(Da) Wi Sn(Dy)0% (p(t)0(2) ),
where a € N7, |a| < 5 and [ € N. Then (B.3.§) yields
||A1S;QN,l||L2(R7) < C||A1S;aa(90(t)¢(x)f)||Ll2(R7)7
and
1A% canallz2ery < ClIALLO%(0()9 (@) )l 2 e
where the constant C is independent of N.

It follows that gy ; satisfies the equation

(3.3.10) O(gng) +v - 0z (gng) = Q(f2, gna) + Gnis

where Gy, is given by
Gni = (@)W [SN(DU), v} - V.Sn(Dy)g + (PN,l Q(f2, 9) — Q(f2r Pwu g))
(v - Va)1(@)) Wi Sy (D2)Sw (Du)g + Pya G,
with G defined in (B.1.9).

We now choose | Dy . |*2(z)|Dy..|*gn.1 as a test function for equation (B.3.1(). It follows that

(3.3.11) (v @) IDealons va@)Duclo) ,

= (02D QU2 gna) + Gva}s a(@)Dealana) |,

L2(R7)
It is sufficient to prove that, for any [ € N,
(3.3.12) AN Pnug € LP(RT),

and is uniformly bounded with respect to N. In the rest of the proof, we use C' to denote a constant
independent of N.
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We first consider the linear terms in (8.3.11)). On the left hand side of (B.3.11]), the hypothesis
(B-3.9) implies that

o+ @eDalan] e, < Ol a0 (o 0A@ Dz, 0

For the linear terms in Gy, by using (B.2.J), one has

\|th2(2)| Dy o | {01 (2)W1 [Sn(Dy), v] - VaSn(D g}HLz(R7)
< ClllAvz 0% (e (@) )l L2 gy,
and
[2(2) Do (v (Vo 1)(2)) Wi S (D) Sn (Do) 1o ey
< ClllAea* 0% (09 (@) ) 2, , @r)-
Similarly, concerning the linear terms (B) and (C) in G, we have
[[2(@)|De P ((B) + (O)) || 2 ry < ClllAa* 0% (@ (£ (2) ) 2

l+1(R7) .

For the nonlinear terms in (B.3.11), we shall use the formula (B.3.4).First of all, the coercivity
estimate (R.2.1)) gives, as in (3.2.3), that

(3.3.13) _(Q(f27 U1(2)|De oM an)s 1 ($)|Dt,m|’\9N,l>
> CollAsW, j2t1 (2)| D | g a1 72 )

—COllfellpoe@e,nr o, . @l ($)|Dt,w|A9N,l||i§

{~vt,2

L2(R7)

RS

On the other hand, the upper estimate of Theorem EI with m = —s and @ = —y/2 > 0 (the
case v > 0 is easier) gives,

‘ (Q(|Dt,m|>\f2a Y1(x)gna), Y1 ($)|Dt,m|’\gN,z)L

< O|||Dt,z|Af2||Loo(R;{z,Ll @3y l[Pr(z)A

lvl/2+~yF+2s

2(R7)

wIN 2 @) [[11(2)[Dyo| MW, 298 il L2 rr)

Iv1/2+~ ++2
<elltn (x)|Dt,w|)\AZW'V/29NJ||%2(R7) + CE|||Dt,:E| f2||Loo(R4 L2 ||A QHL (
M/2+v++2s+4 [v1/24~y T +2s+1
For the cross term coming from the decomposition (B.3.4), by using again estimate (2.1.1]) with
m = —s and o = |y|/2, we get
[ (@I i), @D ox)
R
< Ol (@) [Da AT

R7)"

dh‘
L2(R7)
/291\/,,1||L2 R7)

o e (S P T LA O

Iv1/24~ ++25(R7)dh'
Furthermore,
/ A=A (f)nll e R, L‘lﬂ/2ﬂ++2s(R3))||Af)(gNl) ||L‘2 . +W++2S(R7)dh
< /h|< B~ ()l e e, Lk, @®3)) 1A% (gn,0)n IIL‘z e, @R
+4CA| foll Lo rs SRR . ))HAvgNZHL\2W\/2+W++2S(R7)
< 2/h|<1 B~V foll oo ra e @ AsgNallez L enydh
+4CA| foll Lo s, LDt B 5))[[AG gNl||L‘2 .t
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Thus
[ (e (avom) w%wnwm/m,z) a
R4 L2(R7)
< elvr(@) Do AgnallTa gy + CellAp o follFoeas e [ASgn Il (®7)"
\ [/2+yF+2s +4 [vl/24+~t+2s
Hence, the formula (B.3.4) yields

’(|DM|XQ(f2, 1 (2)gn) — QUDe x| fo, ¥1(2)gn), 1 ($)|Dt,z|kgzv,l>

< |t ()| Dea MW, 29l 2 rry + CellAL 4 f2 17 o g

t,x?

L2(R7)

(R3 ))||Avg||L2

2 Ty
L Iv \/2+v++2s+z(R )

[v1/24~F 42544

In conclusion, we get from coercivity property () that

(3.3.14)  [ASW, 0t (2)| Deo [ gn a3y
<CIAL o foll Lo s r2

3
ey \/2+v++2s+4(Rv))

% (1Dl gl13 @) + 1ALl

7
LHlvl/24F+2s LHlvl/24F+2s (R )>

+ ‘(|Dt,m|>\(PN,lQ(f2v 9) — Q(f2, PN,IQ))a 1/’%(1’)|Dt,z|)\gN,z)L2(R7)
(

|Dt,1|>\PN,l (A)a w%(‘T”Dt,mP\ gN,l)Lz(R7)
= (I) + (II) 4 (III) .

For the term (II), since [|Dy.|*, 91 (z)] is a bounded operator, we can replace Py, by Py, =
W, Sn(Dz)Sn(Dy). Again, the formula (B.3.4) yiedls,

(|Dt,z|>\(PN,lQ(f2a 9) — Q(f2, Pnug)), ¢§($)|Dt,m|A9N,l)L2(R7)
= ((PN,IQODt,mP\fZ; 9) = Q(|1Dt2 f2, PN,IQ)), w§($)|Dt,x|>\gN,l)
+((PvaQ(f2r 1Dral*9) = Q(f2, PralDalg)), (@)Dl )

L2(R7)

L2(R7)

+Cy /}R4 |h|74d((151v,z@((f2)h7 gn) — Q((f2)n, Pnougn)), ¢§(I)|Dt,z|)‘gN)l) dh.

L2(R7)

Similar to (B.2.13), for the case when 1/2 < s < 1 ( The other case when 0 < s < 1/2 is similar
and easier to handle.), by applying Lemmas E, @ and @, we have

(3.3.15) ‘((PN,ZQ(|Dt,m|>\f2a 9) — Q(|Dtz|* fa. PN,lg)), ¢§($)|Dt,m|’\gzv,z)

L2(R7)

142
< OIAL follpoera sz%iw(n@g))||g||L2(Rﬁz) i @yl [ D, <2l 2 (R7)-

By using ) of Lemma , we can get, for 2s — 14§ < s,

((PxaQ(f2: IDealg) = Q(f2: PralDral9)), ¥3(@)|DesPgn)

L2(R7)

< C||Atmf2||L°°(]RtI, o R3))|| |th| 9||L2 tZ,LZQHW%AW(JRg))
x| [Dg|* ¢19N,l||L2( CHZ U (@)

< e||ASW, oth (2 )|th|)\gNl||%2 (R7)

2k’ A 12K
+CE||A f2|| Lz2+3/2+5+(w+2s 1)+ (R3) ” |th| g||L2 Ry > L3 (RY))
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and

’/|h|_4_k (PnaQ(fons 9n) — Q(fon. Pnagn)), ¢§($)|Dm|kgzv,l)

dh‘
L2(R7)

A
< ClAeahafolloms iy, o, c@l9le@s, w2 @l Dol gllz @
< Clfall gz+as2+s @nlldogllz - @o)ll Dol gl 2 )

14+3/2+48+(v+2s—1)+F

Thus, we have
() < el AWy 2t (@) DraPanalager
A 12K s 112
+ CRlE ey (1Dl Il ).

We now consider the last term (ITT) of (B.3.14). Recall that (A) stands for the nonlinear terms
from G given in (B.1.9). Precisely

W= > caQ(amh, o).
artaz=a a1 #0

By using (R.1.1)) (We consider also only the case 1/2 < s < 1.) and formula (B-3.4), we have
ta 2, 1)), Pnaa(x)|[Dez|” gng
(1D (@0 12 91, Prssi@IDes )

< CIA "Wt (@)| Do Poallan {||Q(IDeal 0 12, 0% 1)

L2(R7)

L2(RE HPY o (R3))

+[@(o £ ID1aPo2 1),

L2RY o3 HY 12 (RD))

+H/h 2Q(0% (fa)n, 02 (f1)n ) dh ‘

WGR%»}'

We divide the discussion into two cases.
Case 1. |oy| =1,2. Take m = —s. We have

l@(1Deal o™ £z, 0°21) |

. +[@(9 £z 1Deal 0 1))

L2(RE o5 H Ly o L2RY o H i 2 (RD))
< O A0 follpoe(rs ot - ++25(11%3))”Ai/\éacmﬁ||Ll2+w++25(11@7)
<C A
= Ol o el e
and
h=* ’\Q(am(h) 9**(f1) )
H/ RY o /2 (RD)
<0 [N hlamtins, oo )>||A:;aaz<f1>h||leW2s<R7>dh

< Cll 0% fal| poo (rs et yas =) | Asamvt*xfl)||Lz2+w++2s(R7)

< Cllfallpsasss oINSl

R7 .
14+3/2454+~+ Pt 2s BT

Case 2. |a1| > 3. By the same argument as above, one has
|Q(1Deal o oy 0211 s +||e (o™ oy 1Dealo 1) |
LERY o3 H, 2 (RD))

< C|| A0 f2||L2(JRtm,L @y | ASAD 02 Sill Loows iz

L2RY o H L 2 (RD))

Iyt +2s Iyt +2s (&)
< CHA f2||H5 R7)||Avfl||H2+4/2+’\+5(R7)-
I+~yt42s

143/24+684+~ ++2
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When |a1| = 3,4, we have

H /R Q0 (fan, 0 )b

Hifi1/2(R0)

3y, dh

L? (
tails I4yt42s Y

<C [0 Glzaces Al

t,z) I4+~++2s
< VtmaalfzﬂL?(RWL L@ A0 )l Lo my s
< Cllfallms

”fl”H?I;‘ﬁZi”<R7>’

2 3
. B2,y (B3)

while when |ay| = |a| =5, we have

H /sz hQ (8a(f2)h’ (fl)h)dh’

L2(RE 3HL (R2)

(R3 ))HA (fl)hHLOO(]RtI,L (R%))dh

tws I4+~t+2s I+~t42s

<C||aaf2||L2(Rtm,L ta2s (BD) WAV ez fi)ll L@ .12 (R3))

LTyt s
<Clfellas,, .00 oo

<C [N Glaaces

(R7)||f1||Hl1++jf++zi+6(R7),

Thus, by the Cauchy-Schwarz inequality, we obtain
(1) < el|AZW, j2001 ()| Dt | g il 7 2 ey + C€(|| A?,mf3||§{;l+ RGO | ASfS”%ng ++7(11@))-
Finally, we get from (8.3.14) that

[ASW, 21 ()| Dex Mg il 72y < C(||A?,gcf3||lirél ®") T ||Asf3||H5 (]R7))'
kl4vyt+7 214yt 47

Therefore, we complete the proof for Proposition E

We are now ready to prove the following regularity result on the solution with respect to the
(t,x) variable.
Proposition 3.9. Under the hypothesis of Theorem , one has
(3.3.16) ML (et (@) f) € HP (RT),
for any l € N and some € > 0.

Proof: Fix sg = S((l S)) Then (B.3.7) and Proposition B.§ with A = so imply

ASA}%,g € HP(RT).
It follows that,
(A%9)e +v - 0s(Aj%9) = A%Q(f2, 9) + AL%G € H*(R).
By applying Lemma @ with s’ = s, we can deduce that
A3 (p(t)y () f) € H (RT),
for any [ € N. If 259 < 1, by using Proposition @ with A = 259 and Lemma @ with s’ = s, we
have
A () (@) f), ALR (p(t)d(2)f) € HY(RT) = AJY (p(t)(2)f) € HY (RY).
Choose kg € N such that
koso <1, (ko+1)sp=14¢>1.

Finally, (-3.14) follows from (B.3.5) and Proposition B.§ with A = kgso by induction. And this
completes the proof of the proposition.
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3.4. Proof of Theorem E In this subsection, we give the proof of Theorem 1.1 with the above
preparations. The proof is also based on the induction argument.

From Propositions E and @, it follows that for any [ € N,
(3.4.1) A3 (e (@)f), Via (pt)y(2)f) € HP(RT).
These will be used to get the high order regularity with respect to the variable v.

Proposition 3.10. Let 0 < A < 1. Suppose that, for any cutoff functions ¢ € C§°(|T1,Tz|), v €
C§e () and alll € N,

(3.4.2) AS (p(w(@)f), Va(ot)p(e)f) € HP (RT).
Then, for any cutoff function and any l € N,
(3.4.3) AT (o) (@) f) € H (RT).

Proof : Recall that g = 0%(¢(t)y(x)f) with || <5 and
9N = Pnig = 1(@)Sn(De) Wi Sn(Dy)g.
Choose A2 gn; as a test function for equation (B.3.10)). Then, one has

(3.4.4) ([Aﬁ, v] - 0w g, Aﬁgzv,l)m(w) = (Aﬁ{Q(fz, gn1) + G AﬁgN,z>L2(R7)~

Since
[A), v] - 9x =AA)20, - Os,
and A)~29, are bounded operators in L2, for any 0 < A < 1, we have, by using the hypothesis
(B.43) that
(3.4.5) (A2, 0] - Gegmss Adawa) , 0 | < CIA gllczen) 1V gl czcer)
and when 1/2 < s < 1.

(3.4.6) ’(Af}\GN,l; AﬁgN,z) (®) [AY T2 09Nl pa e

A
por| S Cla g 1N laz
< 5||A2Wv/2AﬁgN,l||%2(R7) + C€||f2||§1§’(]R7) 1A 9”%%[(11@7)-
By setting M = A} in Proposition @, we have

(3-4-7) ‘(A;\Q(ﬁ gN,z) _Q(.fv Af;\gN,l)v Af}gN,z)

L2(R7)

A

< COllfelles iny @) (HAf;\gN,l||%2(R§YI;L?Y+(R3)) + ||gN7l||%2(R7)) A3 g .ll 72y

IN

C|| fall gz ey 1 A2 g||%12+1(R7)7

when 0 < s < 1/2. Moreover when 1/2 < s < 1, we have
(3.4.8) ‘(AﬁQ(fz, gn) = Qf2, Ajgn), AﬁgN,z)

< C”f2||L°°(R§jm;L(123+W71)+ (B3))

L2(R7)

A A2s—145
X (HAUQN,I||2L2(R§’I;L?2S+771)+(Rg)) + ||gN,l||%2(R7))||Av+2 " 9N>l||%2(R7)
< < AW, oA a3y + Cell ey 12 61125, .
Now the coercivity estimate (R.2.1) gives,
(3.4.9) —(Q(f2, Adgn i), Ai\gN’l>L2(R7) > Co||AfJWV/2Aﬁ9N,lH%2(R7)

—C| follpos s i @ AYgnalT2 -
’ ma } ~+

x{yt,2-~1 /2
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Thus, Proposition is proved by the following estimate

(3.4.10) 1AW, 289wl ey < O (I falldigqary + 1A 9135, )

where C' is independent on V.

We can now conclude the following regularity result with respect to the variable v.
Proposition 3.11. Under the hypothesis of Theorem B, one has
(3.4.11) A (p(t)d (@) f) € H (RT),
for any l € N and some € > 0.
Again, this result follows by induction. Indeed, notice that there exists kg € N such that
kos <1, (ko+1)s=1+e>1.
Then we get (B.4.11]) from (B.2.9), Proposition with A = ks and (B.4.10), by induction.

High order regularity by iterations
From Proposition @ (more precisely (B.3.16)) and Proposition , we can now deduce that,
for any I € N, and any cutoff functions ¢(¢) and ¥(z),
p(t)v(x)f € HP(RT).
The proof of Theorem EI is then completed by induction.

Indeed, if f is a solution of Boltzmann equation satisfying the assumptions of Theorem EI,
then, when m > 5, we have

feHM(Ti, To[xQxR3), Vie N = feH " (T, To[xQxR3), vVl e N.
Thus, the full regularity of Theorem is obtained by induction from m = 5.

4. EXISTENCE AND UNIQUENESS OF LOCAL SOLUTIONS

The local existence of solutions to the spatially inhomogeneous Boltzmann equation without
angular cutoff is so far not well studied. The strategy of proving the existence in this section
is to approximate the non-cutoff cross-section by a family of approximate cutoff cross-sections
and approximate the Boltzmann equation by a sequence of iterative linear equations. Then by
proving the existence of these approximate linear equations and by obtaining a uniform estimate
on the solutions with respect to the cutoff parameter in some suitable weighted Sobolev space, the
compactness will lead to the convergence of the approximate solutions to the desired solution for
the original problem. One of the techniques used here is to introduce a transformation defined by
the time dependent Maxwellian developed in [@] The purpose of this transformation is to get
an extra gain of one order higher weight in the velocity variable in the expense of the loss of the
decay in the time dependent Maxwellian. Moreover, the uniqueness of the solution is also proved
in some function space.

4.1. Modified Cauchy Problem. By taking &, p > 0, we set, for 0 <t < Ty = p/(2k),

e (t) = plt,v) = e (PO,

and
f=wt)g,  Tg,9) = px(t) Q1 (t)g, 11 (t)g)-
Then the Cauchy problem ([L.) is reduced to
. 2y, _ Tt
(41.1) { gt +v-Vag +r(1+v[)g =T"(g,9),
glt=0 = go.

The existence theorem can be stated as follows.
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Theorem 4.1. Assume that 0 < s < 1/2,v+2s <1 and k,p > 0. Let go € H(R®), go > 0 for
some l >3 and k > 4. Then there exists Ty €]0,Ty] such that the Cauchy problem ) admits
a unique non-negative solution

g € C°0,T.); Hf(R®))() L*(10, T[; Hfy 1 (R®)) .

We prove Theorem Ell by cutoff approximations. For simplicity of notations, we will denote
i (t) by p(t) without any confusion.

Recall that the cross-section is in the form of B(|v — v.|,co86) = ®(Jv — v,|)b(cosf) which
satisfies ([.2) and ([.). For 0 < e < < 1, we approximate (cutoff) the cross-section by

_f b(cos®), if |6] > 2e,
be(cos 0) = { b(cose), if |0] < 2e.

And denote by T'‘(g, g) the collision operator corresponding to the cutoff cross-section B, =
O (v — vy )be(cos 6).
By using the collisional energy conservation,

o+ [0 = fou|* + vl

we have i, (t) = p=1(t) p’(t) i’ (t). Then for some suitable functions U, V, it holds that

P V)0) = t”/@xy v, )OOV = (U p(O)V ) do. dor

(4.1.2) = //11&3 . B.(v — v, 0)ps(t) (ULV' = UV)dvodo = T (U, V, p(t))

Q.(u()U, V) + / / | B0 ) () = i (O)ULV v

Then we have the following formula coming from the Leibniz formula in the z variable and the
translation invariance property in the v variable. For any o, 3 € N3,

9y o, TL(U, V)
= Z Cal az,01,82,03 E(aalaﬁl 8a2852‘/7 353M(t))

artas=a; f1+PB2+83=

Q-(u(t)U, D20V + // |y B0 e 000 = ROV 0200 o

+ Z Coi,az,61,82,8 5(851851 ) 8;12852‘/7 853U(t))
loca[+B2] <|a+B] -1
(413) = A +Ay+As.

Firstly, we give the following upper weighted estimate on the nonlinear collision operator with
cutoff.

Lemma 4.2. Let v € R.Then for any e >0, k > 4,1 > 0, there exists C' > 0 depending on €, k, [
such that for any U,V belonging to Hﬁ (RY)

p
(4.1.4) ITeWs Vg eey < ClUNme o)1V llx_ eys O <t<To= o

2Kk
Proof. To prove ([L.1.4), put
= 03O0, hy = 03202V, ps(t) = 0 u(t),
Te(g1, ha, ps(t) = 725 — 1.7
Throughout this section, the estimates
u(tv),  |us(t) = [0 p(t,v) < Cpp et e[0,T], v eR?,

will be used often.
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Firstly, we compute 7_t as follows.
Wy
WL < C [ [0 = vul) . 00) g e (Wi L (Wi oo
<c[//‘ t0s) = i.a }1/2[//@/ oV (Wigr Y. (Wika) [Pdvsdo]
W) | dv.do — v, " «do
= H3(t, (W), (W) 9 12
1/2
<o [ [ 10Wisr 902 Wiy ha) o]

— / / Wi . .
where we have used |v — v,| = |0/ — v} and vty < 1. Since the change of variables

(415) (U,U*,U)—’(U/,U;,O'/), O'/:(U—’U*)/|’U—’U*|,

has a unit Jacobian, we get

|‘WZZ+||%2(RG) < O//// |(Wl+’y+gl);(Wl+’y+h2)l|2d’0*d0'd1}dz
B C////|(Wl+7+91);(Wl+v+h2)'|2dvido’dv’dx

< C/||(Wl+w+91)||%2(Rg)||(VVl+w+h2)||%2(Rg)d$-
If |1 + B1] < k/2, then we have
IWI T | 2re) < Cll(Wint g1l Loe ma;p2ca) | (Wisq+ h2) | 2(rs )
<Ol @IVl ey
because of the Sobolev embedding theorem and the fact k/2 + 3/2 < k when k& > 4. When
|ag + B2| < k/2, the proof is similar. This completes the proof of the lemma.

4.2. Cutoff approximations. We now study the following Cauchy problem for the cutoff Boltz-
mann equation

. 2., _ 7t
(4.2.1) { gr+v-Vag +r(v)°g =Ty, 9),
gli=0 = 9o,
and try to obtain a uniform estimate in the weighted Sobolev space.

We first prove the existence of weak solutions to this cutoff Boltzmann equation.

Theorem 4.3. Assume that v < 1. Letk > 4,1 > 0, e > 0 and Dy > 0. Then, there exists
T. €]0,Ty] such that for any non-negative initial data go satisfying

g0 € Hf (R®), 1901l rz3 ey < Do,
the Cauchy problem ) admits a unique non-negative solution g° having the property

g° € C°(J0,T.[; Hf(R®)), 9%l o o, 7. 1; 5 Reyy < 2Do.

Moreover, this solution enjoys a moment gain in the sense that
(4.2.2) 9° € L*(J0, T.[; Hy 1 (R%)).

Remark 4.4. (1) Notice that we do not assume go € Hf', | (R%) and the gain of the moment will
be essentially used below in the proof of uniform estimates to compensate the singularity in the
cross-section.

(2) The regularity of g¢ with respect to t variable follows directly from the equation (£.2.1]).

(3) Fiz -, k, 1 as in the theorem. Then T¢ is a function of € and Dy. In the following, when we
need to emphasize this dependency, we write

T = TE(DO)'
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(4) If vy <0, we may take k = 0. And in this case, we do not have the moment gain ([-2.3) which
is not needed.

Proof of Theorem [{.3.  We prove the existence of non-negative solutions by successive ap-
proximation that preserves the non-negativity, which is defined by using the usual splitting of the
collision operator (J.1.9) into the the gain (+) and loss (-) terms,

Lt lo.h // — Vs, ) (t) gL' dvido,
R3 ><S2
Ft _(97 h) - hL )

// (v — Vg, ) pu(t, v4) gedvsdo.
RS ><S2

Evidently, Lemma E applies to F?i, and in view of ), the linear operator L. satisfies
(4.2.3) 1050 Le(9) (8, 2, 0)| < Clo) 17102 9|l 12(zs), T € [0, T0),

for a constant C' > 0 depending on ¢, because |u(t, v.)92 (v — v,)7| < C(v)7~18l,
We now define a sequence of approximate solutions {g"},en by

0
g =49go;
(4.2.4) 09"t 4 v Vog" 4 w(o)2g" T =TEH (9", ") =T (9", "),
9" =0 = go-
Actually, in view of ([.2.3) we consider the mild form
(4.2.5) gt z, v) =MD =VT(t, D go(z — tv, v)

t
+/ RV =)=V LTS+ (gr g (5.7 — (£ — 5)o, v)ds,
0
where .
V(t, s) = / L.(g")(s,x — (t — s)v, v)ds.
First, we note from Lemma {.2) that for any T €10, To], To = p/(2x), go > 0, and
g" € L*(0,T; Hf(R%),  ¢" >0,
the mild form ([£2.5) determines ¢"*! in the function class
(4.2.6) g™t e L>(0,T[; HF 1 (R%), g" Tt >0,

and solves () Thus ¢g"*! exists and is non-negative, but appears to lose weight in the velocity
variable. We shall now show that the term x(v)2¢g™+* in ([.2.4) not only recovers this weight loss
but also creates a higher moment. More precisely, we have the following lemma. Introduce the
space and norm by

X =L>(]0,T[; HF(R®)NL*(J0,T[; Hfy,(R)),

2 _ 2 2
Nglll* = llgll % (10,T; HF(RS)) + HHQHLQ(]O’T[; HE, | (RO)) *
This norm depends on k, I, T, x, but we omit this dependence in the notation for simplicity.

Lemma 4.5. Assume that v <1 and let kK > 4,1 > 0, > 0. Then, there exist positive numbers
C1,Cs such that if p > 0, Kk > 0 and if

(4.2.7) g0 € Hf(RY), g" € L=(0,T[; Hf(R)),

with some T < Ty, the function ¢g" ' given by () enjoys the properties
gnJrl c X,

(4.2.8)

g™ 12 < T (11golZe oy + L119™ 3 g0 2, 6oy )
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where Ky, is a positive constant depending on ||g" || o 0,1, HE(re)) and K.
Proof. Put
h™ = hy = 0%".
Differentiation of equation ([.2.4) yields
Oh" T 4 v - VAT 4 g (0)2RMT = G — G 4 G + G,
Gf =0°Tz* (9", "), Gy =0°Te™ (", ¢"™),
Gy =—[0%, v-V,]g"™,
Gy=—r Y C300()200 0D gn+t,
|Bl=1,2
Let x; € C§°(R?), j € N, be the cutoff function

{ L l<id,

Xj(v): O7 |'U|Z]+1

We remark that ([2.q) does not necessarily imply Wi h"t1(t) € L2(R®), but y,; Wi h"Hi(t)
€ L?(RY) for all j € N. Hence, we can use x2W/2S5% (D,)h" ! as a test function to get

J
1d

(1.29) S ISN (DD Wil 2 4+ | Sy (D) Wi P
= (Gf = Gy + G+ G3, Sn(Da) X W2R™ ).
Here and in what follows, the norm || || and inner product (, ) are those of L*(RS ) unless

otherwise stated. We shall evaluate the inner products on the right hand side. Observe that
Lemma @ gives, for t € [0,T],
‘(G;‘,S]?Vﬁvvfhnﬂ)‘ = ‘(SNXJ‘Wl—leaSNXle+1h"+1) < OIWiea G [ [Snx Wit b
< OITE (9", g s ey ISnx; Wi "L
< Ollg" e gy | 1S3 Wi 41|

¢ n| 4 K n+1(2
< g W oy + S ISXG Wi b2
On the other hand, Lemma @ is not enough to evaluate G| because G contains g"*! which is
not known, at this moment, to have moments required by Lemma @ However, this obstacle is
only superficial. Observe that

Gi= Y Caupras (079" (07 L0 g™):
(a1,B1)+a2=a
Define,

Hii(9) =Y Ix;Wio°gl?,
i<k

and write H'; = H,(t) = H;(gn(t)). By recalling #23), we get

G SEWA D £ 3 Cavsranl 007 W10 g™ 1 02" | 1S Wesh™ |
(a1,B1)+az=a
< Cllg” s oy | ()2 1S Wb |

Cl n n K n
< g g oy H o+ SISwg Wi b

Here C,C’ are positive constants independent of k.
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The estimate on the remaining two inner products are more straightforward and can be given
as follows.
(G2 + G, SIGWER™)| < ClGWir Gz + G|l [ SnxWasa ™|

(k+1)?

1/2 K
< Cle+ D(HE™) IS Wiah™ ) < " HPH 4 211 SnG Wi b1,

The constants C,C” are independent of € and k.
Putting together all the estimates obtained above in () yields

n n 1 n
||SNXJVVlh +1|| +—||SNXJWZ+1h +1||2 C”/{ (1 + ||g ”Hk RG))}H RS _”g ||H7C (RS)"

2 dt
Summing up estimates for A"t = A2t over |a| < k then yields,
d
T (Sng™ ) + KHj i (Sng™) < CLEnHu(9™ ") + || "5 o)

where

K,=r+— (||9 HLDO(OT[H’“(RG)) + 1)

and C7 > 0 is a constant independent of €, x while C5s is independent of x but depends on €. By
integrating the above estimate over [0,¢] and taking the limit N — oo, we get

t
HIF(8) + / H'H (r)dr
C t
< HPH0) + 1K, / HIPY( )d7+?2/ g™ () 7s (geydrs ¢ € 10,77,
0

which gives a Gronwall type inequality

t
(4.2.10) Hj’ffl(t)+,{/ Ll L () dr
0

C t
CiKynt o1 _2 C Kn(t_T) n 4
< R0 + 2 [ g )y aydr, e 0T,
for all j € N. Since

HH0) < lgoll?

gil > g0l k>

and 1 < e“1En(t=7) < eCrlnt (1 21() gives

Hjj'l —I—FL/ HJ l++11 )dr < eCrknt {”90”%;@ + ?/0 lg (T)val{lk(RG)dT}v te[0,T].

Since the right hand side is independent of j, we see that {x;0°¢" " }jen, |a| < k is weakly*
compact in L>(]0, T[; L}(R®)) and weakly compact in L*(]0,T[; L}, ,(R®)). Take a convergent
subsequence. Apparently, its limit is A"T1(¢). This is true for all |a| < k so that we can now
conclude that

9" € X = L¥(0,T[ Hf (R%) N L2(J0, T[; Hfy, (R%)),
and by Fatou’s theorem,

g™ HHI1? < 1ijniggf ||H}fl+1||L°° o,z + ’fhmlnf IH 4 e go.rp

< eclKnT(HQOH%(lk + — ||9 ||L4 10,TT; Hk(RB))

Now the proof of Lemma @ is completed.
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We are now in the position to prove the convergence of {¢"},en. Fix k > 0, let Dy, go be as in
Theorem and introduce an induction hypothesis

(4.2.11) 9" Lo, 71; EE(E)) < 2Do.

for some T €0, Tp]. (Notice that the factor 2 can be any number > 1.)
(211) is true for n = 0 due to ([£2.7). Suppose that this is true for some n > 0. We shall
determine T' independent of n. A choice is
24C; 2Dy +1
eCrEoT — 9o 2TD(2) =1 where Ko=k+ 07—’—,

KR

(4.2.12)

or

T . log2 K
= min
ClKQ 2402D2

In fact, (f.2.9) and (£.2.11) yield that ¢"*' € X and

n+1|||2 < eClKUT(

Cs n
g ||90||§{k(R6) + ?T||g ||4oo(]o,T[; Hf(]RS)))

< @Kol (Dg Cs T24D0) < 4D2.

That is, the induction hypothesis () is fulfilled for n + 1, and hence holds for all n.
For the convergence, set w™ = g™ (t) — g"(t), for which (.2.4) leads to
(W)wtt = Tt (w, ") +Tet(g" ", w™),
—Fé’i(’wn, gn+1) _ Fé,f(gn717 wn+1)7

O™t + v Vyw™ T + &

w”“ |t:0 =0.

By the same computation as used for (), but more straightforward since we can now use a
test functions as Sy (Dy)? W20 w1, we get

1 1
™2 < 5CoeH T~ {]lgm 3

°(10,T[; Hk(]RS)) + ||g ||Loo (10,T; Hk(RS))

n—1 n
+ 119" M7 o, Hf(RS))}”w IZ e 0,1 1 Ry

with the same constants C;,Cy and K as above. Then, (4.2.11)) and (§.2.12) give

g™+ = g"[II* < 2°CoDgr™"Tllg" = 9" 7 e qo,rp a1 (ro) -

Finally, choose T' smaller if necessary so that

L
210y DERTIT < -

.

Then, we have proved that for any n > 1,

1 _
(4.2.13) g™ =g™lll < 5 lllg™ = g" Il
Consequently, {¢g"} is a convergence sequence in X, and the limit
9° € X,

is therefore a non-negative solution of the Cauchy problem ([.2.1)). The estimate ([.2.13) deduces
also the uniqueness of solutions.
By means of the mild form ), it can be proved also that for each n,

g" € C°([0,T]; Hf (R®))

and hence so is the limit g°. The non-negativity of ¢g¢ follows because g™ > 0. Now the proof of
Theorem is completed.
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4.3. Uniform estimate. We prove now the existence of solutions for the Cauchy problem ()
by the convergence of approximation sequence {g°} as e — 0. The first step is to prove the uniform
boundedness of this approximation sequence. In what follows, the constant C' are various constants
independent of € > 0.

Theorem 4.6. Assume that 0 < s < 1/2, v +2s < 1. Let go € HF(R®),g0 > 0 for some
k>4, 1> 3. Then there exists Ty €]0,To] depending only on ||go||Hl;C and independent of € such
that if for some 0 <T <Ty ,

(4.3.1) g° € C°(0,T]; Hy (R)) N L2(0,T[; Hy1(R?)),

s a non-negative solution of the Cauchy problem , then it holds that
(4.3.2) 195N o< o, 7. s EF RE)) < 2l190] 2 (o)

for Ty = min{T, T.}.

In the following, p > 0, k > 0 are fixed. Furthermore, recall Ty = p/(2x). We start with a
solution ¢° subject to ([.3.1]) for some T’ €]0,Tp]. For a € NS, |a| < k, the differentiation of the
equation ([.2.1)) deduces

(4.3.3) 0:(0%g°) +v - V4(0%¢°) + r(v)2(0%¢°) = 0°TL (g%, ¢°) — [0%, v - V]|g° — K[0%, (v)?]¢°.
Since 9%¢° only belongs to L?, now as in Section E, we take,
Py Pn.1(0%g°)

as a test function in ([.3.3), where I > 3 and Py, = Sx(D.)Sn(D,) Wi (we do not need the cutoff
functions ¢, v here). Then we have

(4.3.4) > dt”PN 109 ) ()12 ey + KWL Pn,1(0%g%) (6) 172 moy
A (ISn (D), (PIW0 (076°), Sw(Da) Pr,i(0°°) )
= (A1 + Ay + As + Ay + As, Py Pn,i(0%9%))
where Ay, As, Az are defined in ) with U =V = g and

L2(RS)

L2(RG) )

A4:—[8°‘, U-VI].gE, 5= —K Z C 8ﬁ 80‘ (05
181=1,2
We have firstly,
(43.5) (s P Pra(0°69)) oy < g™ 012 o
and
* (0% K
(4.3.6) (A5, PR P 0%9%) o g | < ORI s oy + F107 O o

We also have

(4.3.7) r(ISx (Do), (W0 (9°6°), Sn(D2) Py, i(07°) )

L2 (RS)
K
< C“Hg ( )”Hk(]RS ZHQ ( )HHl’v+1 (RS)"

We study now the term A; by using the non-negativity of g° and the coercivity of collision operators.

Proposition 4.7. Assume that 0 < s < 1/2, v € R. There exists C > 0 independent of € such
that for any o € N® |a| <k, k >4,1> 3,

(4.3.8) (A1, PR iPN.1(099%)) 1o o) < Cllg(t )||§1;c<Rs)||95(f)||H;vM+(R6)7
forany 0 <t <T <Ty.
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Proof : By setting h = 0“¢°, we have,
Ay, Pi P h) :(P < h), (P h)
( b PRPNR) e N 1Q(1g®, h), (Pn,ih)
- g, (Px k), (P h)
(Q:(u(t)g*, (Py.uh)). (Pxih) -

+(PN,lQa (M(t)gsv h) - Qe (M(t)gsv (PNJh))? (PNvlh))
= By + Bs.

L2(RS)

L2(RS)

Since u(t) g°(t, x, v) > 0, we have, in the same way as Theorem E with the cancellation lemma,

2
b= - //// Be(v = vy, 0) (u(t) 9°)- ((PN,lh)/ - (PN,zh)) dv.dodvdx
2 Rngngg* xS2
1 2

/)] Ba(v = vu, o) (u(0) ). { (Pw.th)') = (Pn.ih) } dv.dodvds

R3 xRS xRS xS2

2

1//‘// Bs(v — Ux, U) (/L(t) ga)* {((PN,lh)l) — (PNﬁlh)Q} dv.dodvdz
2 R3 xR3 xR XS2

O/ // (1(t) %)« (v = v.)7" (P, 1h)?dvdv, dz
R3 xR3 <R3

CluWo+ g% ()| Loe 31 e IWih(E) | L2 s ) [Wign+ RO L2 Rs )
Cllg"Ollrsrz+s@e HIg"Ollmp e 9" Ollar e ), €10, T],

IN

IN

IA A

where we used the fact that b.(cos#) < b(cosf).
By putting Sy = Sy (D.) Sy = Sn(D,), we decompose

By — (sN gN{WlQEW)gE, h) — Q- (u(t)g", (Wm))}, (PN,zh>)L2(RG)
+ (Sn {8 Qe (u®)g", (Wih)) = Qe (u(V)g®, Sw(Wih)) }, (Pa.uh))

+ (v Qe (u(t)g", (SyWih)) = Qe (u(t)g", Sw(SwWih), (Pw.ih) )

L>(RS)

L2(RS)
= B21 + B2 + Bas.
By Lemma .4, we get
|Boy| = ‘({WzQs (n()g®, h) — Q(u(t)g®, (Wih)) }7 (SNSNPN,lh))Lz(Ra)

<l Ol ) [ Wisoshlzzges) | Py bl do
< Cllg* @l o= mssr2@an l9° Ol g @) lg” Ol ax_ @o)s
< C”gg(t)”irlk(ﬂ@)”gg(t)HHl’ler(Rﬁ)v t €0, T].
It follows from Lemma B.9 that
1/2
| Bao| < </g 1SN Q= (u(t)g", (Wih)) — Q:=(u(t)g", SN(Wlhm%?(Rg)dx) 1Pn, 1h] 2 ms)
R
< C||M(t)9€(t)||Loo(Rg;L;+(Rg))||Wl+7+h||L2(Rg)||95(t)||H;v(R6)
< g (Ol eyl Ol s qaoy, 1€ 10,T)
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Lemma @ with m = 2s yields
| Bas| < C|ISnQ(u(t)g®, (SyWih)) — Q(u(t)g®, Sn (SNWih))||z2ms, pacray) | P, thl| L2 (e
< ONp) Vgl Lo s, L§2SW+(R3))||(2_N§N(VVlh)||L2(Rg, H(2255+7)+(R3))||PN7lh||L2(1RG)

< Cllg* s oy l9° Ol @s), ¢ €0, 7.

I+t (
Combining the above estimates proves Proposition @
For the term Ay and As, we prove the following proposition.

Proposition 4.8. Assume that 0 < s < 1/2, v+ 2s < 1. Then, for any § > 0, there exists C > 0
independent of € > 0 such that for any a € N® |a| <k, k >4,1> 3,

(439) (A2 +A37 PJ*\(/,IPN,l(aaga))LQ(RS) = CHg ( )H%{{C(RG)HQ ( )”Hk (w+25+5)+(R )

fort e 0, T).

Proof. By putting h = 8%¢g° and h = WZ_QPK,JPN, 1(0%¢%) , we get

Be(v = v, 0) (2 () — 1, (6)) (9", (W2h)dv. dodvde

L2(1RS RS xR3 xRS xS2

< / / / / B(w— ., 0)|jas () — 1 (8)]|(6°)L | (Wik (Wik)|dv, dodude
R3 xR3 xRS xS2

] B(v—va, 0)|(112(6) = 1 ()] 1(6°), | Wi — Wi | [0 (Wil dodvda
R3 xR3 xR3 xS2
=1 + Is.

'(Az, W2h

To estimate I7, we notice that
(4.3.10) |p(t,v.) — p(t,v2)| < Clo, —vl|* < COMo —v.|* < COMY' =0, A e[0,1], t €[0,Tp),

which is elementary for A = 0,1 and is obtained for general A € (0,1) by interpolation. Since
v+ 2s < 1 is assumed in the proposition, there is A € (0,1) such that A > 2s,v + A < 1. By the
manipulation on the primed and non-primed variables ( see (f.1.5) ) we have

n=cfff] (o = )T G2 (gL |(Wihy | Wik dododud
R3 XR3 xRS xS2Z

< C/// 072 2N (Wi qay+97)s / |(Wig (4 0)+ h) (Wih)' |dv}dv*dadgc
R3 xR3 xS2

< C||g€(t)||1:oo RS'Lé )\)+(R3))||ga(t)||Hlk(R6)||g (t )||Hl;c+

<Cllg°(t )||Hk

G+ B

9" Ol (RS))

(0t

for I > (v 4+ AT + 3/2. In the third inequality we have used again the fact that the Jacobian of
changing of variable v — v’ is bounded.

Using (R.1.14) gives
r<c|[[[] (W = 00712 (1) + ()07 ), (WIWL) R (Wil do, dodvda
R3 xR3 xR3 xS2

= C(Jl + JQ)



52 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

By the Schwarz inequality and the Sobolev inclusion, we have

n=cf[[ 07125 (D) (W= 6, (Wi s B (Wih)|dvdordvds
RE xR3 xRS xS2

- 1/2
< c/ (/// 02 . (12 (Wih)Pdvdv. do
R3 RS xRS xS2
—1-2s ey/ 72 1/2
< ( 0712 (Wi g°) (Wi Y Pdvdvnder ) da
R3 xR3 xS2
< C||M||L2(Rg>/g Wi (@) L2 @3 Wiy 9% (@) || 22 23) Wiy P(2) || L2 3 die
R
< Ol || L r2 ;12 (R3) | Wit ol L2 oy | Wik || L2 (o)
< Ollg s, o197 g ee)-
On the other hand, again by the manipulation on the primed and non-primed variables,

necf[[ 012 () Wiy 65 ). (Wi h) (Wil dovdordud
R3 xR3 ><]R3 xS2

<O//// 07 2 () Wiy 9°)s / (Wi hl| (Wi )|dv}dv*dadz
]R3><R3 x82

< COllp&)Wigy+9° ||L°°(R3_;L1(Rg))HWHwhHL?(RG)||Wlh||L2(R6)
< OHgEH?{lfc(Re)||g€||Hl’€+7+(]Ra).

Here, we have used Wy +u'/2(t) < C.
We consider now the term Az. For any a € N°, |a| < k, k > 4,1 > 3, denote

hy =871 g°, hy = 8°2¢°,

where
ajt+a<a, as <.

We shall compute

(Tt o,y wih) = ][] Bu(in(t) — (1)) (b YLKy (WE ) dv, dordvda
L?(R®) R3 xR3 xR3_ xS2
+ / / / / B (jih1), (W — W)) hy(Wih)dv.dodvdz
RS xR3 xR3 xS2

+ (Q(ihy, (Wih2)), Wih)

For the last term, by Theorem @ with m = 2s < 1, there exists C' > 0 independent of € such that
for |az| < |a| —1and § > 0,

L2(RS)

1Qu(h, (Wita) ) Eoquey < € [ stz s asy [Wiha)(t Dl qagydo
R3 2s) (v+2s)

< CHﬂhl(t)HLoo(RS L3/2+( o )++5 R%))H(Wlfw)( )”Lz ]R3 H(25+2 )+(R%)) ) |041| S 25

a C”ﬂhl(t)HLz(Rs Lz/zﬂw”sﬁﬁ(m))||(VVlh2)( )HLoo(Rs H2 L R) 1| > 2,
C”hl( )HH'*/?H (R3; L2(R3)) ”(VVIhQ)(t)H%z(Rg; H?2s (R3)) > |041| <2,

< (v+29)t

o Cllha(t )HL?(RS L2 ]RS))H(Wlh2)(t)||§{3/2+6(ugg; HE (B ] > 2,

< Ol Ol D2 ey, k24>342s 1> (y+25)" +3/2

L(+>+
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The estimation on the first term is similar to (Ag,th) r2(re) by taking account of the same
manipulation concerning as. The estimation for the second term is also similar to the part Jy of
I, as above. Hence, we have obtained

(A3’ lh) L2(RS)

This completes the proof of Proposition .

If (£3.9), (£3.6), [3-7), (£:3.9) and ([{3.9) are combined, then it follows from ([£.3.4) that

(4.3.11)

< Cllg™ (1) sy 9 ()

Crypos (RE)”

1d o o K
5 71 P10 B2 ey + KIWL Py (0 9) Ol Fgmoy — 519" Ol e
<C (llg" Ol ey + Calg Ol an g Ollis o) -

Take the sum over |a| < k, integrate from 0 to ¢ € [0, 7] and make N — oo. Then there exists
C1,C3 > 0 independent of € > 0 such that , for any 6 > 0 and ¢ € [0, T,

(4.3.12)

t
9 () 5 | D7), an

t t

< 10 O) g + O | o O oyr + Co [N OBy ao " Dl o
Remark 4.9. We give here some technical reason about the choice of the time dependent dis-
tribution u(t) as moment control in the equation ) If we take k = 0 in the definition of
Mazwellian distribution u(t), the above computation gives also ) without the second term on
the left hand side because k = 0. But the upper bounded estimate, by using Theorem , always
gives the last term in ([{.3.13) with the factor ||g°(t)|| g+ ®s)- If v+2s <0, there is no loss

I+ (v+28)t 45

of moment, we can get (4.5.15 m with k = 0. If 0 < v+ 2s < 1, we choose § such that v+2s+§ <1
so the second term on left hand side absorbs the last term in ) because

llg" ) 22 re) < [lg°(¢ )IIHk L (RO)-

l+(w+2s+6>+(

In conclusion, the choice of u(t) is mainly for the hard potential.

Completion of proof of Theorem {.g. Set X(¢) = ||g°(t )||Hk (re) and F(t) = fOtX(T)(l +

X (7))dr. Since v+ 2s < 1, by ([.3.19) there exists a C' > 0 independent of € > 0 such that

t
K
(4.3.13) X(t) + 5 /O ||gs(T)||§I{c+l(R6)dT < X(0)+ CF(¢t).
Noting that F’(t) < (X (0) 4+ CF(t)) (1 4 X (0) + CF(t)), we have
”g()HHk(Rs) Ct
9% (D157 rey) < , for t €]0,T).
Hy (R) 1- ( - ]‘)||go||Hlk(]RG)
We choose T, > 0 small enough such that
eCT-
1- (ECT* - 1)”90”%#(]1@6)
Then ) 5
7= g (14 ),

1 + 4||90||Hk RG)

is independent of € > 0, but depends on ||go||Hk(R5) and the constant C' which depends on p, &, k
and . Let Ty, = min (T, Ty). Then we have ( ).
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From (J£.3.9) and (j£.3.19), we get also, for x > 0,

(4.3.14) B9 22 0.7 s, oy < 2190013 oy (1 + 20T (1 + 20208 o) )

I+1

We have proved Theorem @

4.4. Convergence and uniqueness. The second step is to prove that, for any 0 < ¢ < 1, we
can extend the approximation solution ¢°, obtained by Theorem , to a fixed interval 0, T}]
with T, > 0 determined in Theorem @ which is independent on € > 0. Then this sequence is
convergent.

Theorem 4.10. Assume that0 < s < 1/2, y+2s < 1, go > 0, go € HF(RS) for some k >4, 1 > 3.
Let T, > 0 be given in Theorem @ Then the Cauchy problem ) admits a unique non-negative
solution up to Ty satisfying

g° € L=(10,T.[; HF(R)) N L*(J0,T.[; Hf,,(R%)).

Proof: We recall the notation T = T.(Dy) from Remark 4. Then Theorem [£.3 assures that the
Cauchy problem ({.2.1)) with initial data gy admits a unique non-negative solution

1
g5 € C°([0, 2T0 s HF(R®) N L*(10,2Thc[; HE(RY)), The = 3 Te(llgoll rp me) )-
If 71 . > T, then the proof is completed. If T . < Ty, then Theorem @ implies

||9§(T1,a)||Hf(R6) <2 ||90||Hf(R3)'

We now consider the Cauchy problem (§.2.1) with initial data ¢°(T4 ). Again Theorem [.3 assures
that there exists

1
T2,€ = 5

such that the Cauchy problem ({.2.1]) admits a unique non-negative solution

T€(2”90HHZ’“(RG))7

g5 € C°[The, The+2Toc); HER®) (L2 (The, The + 2Tocfs Hfy 1 (RY)).
By uniqueness of solution, we obtain a non-negative solution of the Cauchy problem (§.2.1]),
9" € CO[0, Ty o +2Toc]; HF(R®)()L*(10, Thc +2Toc[; Hfyy (RY)).

ItT . +2T5 . > T, we finish the proof. If Th . +2T15 . < T, we consider again the Cauchy problem
(:21) with initial date g°(7},c + T.c). Since Theorem [i.§ gives again

9°(T1e + Toe)ll ke rey < 2190l x (res),

the interval of the existence of solution is the same, that is, 275 ., so that we can extend the
solution to

g% € L2(0, Ty +3T2c[; HF(R®))(\L2(0, T1c + 3Toc[; Hfyy(RY)).
By iteration, there exists m € N such that
Tic+mise <Ty, The+ (m+ 1T > T,
and we extend the solution up to
9" € CO(0, Thc+ (m+1)Tac]; HF(R®)(L?(0, T1c + (m+ D)Toc[; Hf 1 (RY)).
We have proved Theorem .
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Theorem assures the existence of an approximation solution sequence
{9} cco, s HERO)) (L2107 i, (RY)),
e>0
and
195l Lo o,z 1; mp rey) < 211901 5 msy-
This implies that it is a weakly* compact set of L*°(]0, Ti[; HF(RS)). Let
g € L*(|0,T.[; Hf(R®)),

be a limit of a subsequence of {g5}5>0.
On the other hand, by using the equation () and Theorem @, we obtain

105 e gor mipceoy < C(I8imqormr, sy + 16 mqormats mpcesy
< 20 (1 +2([goll mp rey) | goll i sy -
Thus, {ga}s>0 is a compact subset in
CU0(0, Tl By (2 X RY)),

for any compact bounded open set 2 C R3 and for any § > 0. For the variable v, we have the
weight W;_1 with [ — 1 > 3/2. Then, we can take the limit in the equation ({£.2.1)) and also in
the mild form ([£2.5). Then g is a solution of the Cauchy problem ([.L.1]). The limit g belongs to
L2(10,T.[; Hf,,(R®)) deduced from ([L.3.14). Now if go > 0, Theorem [1.§ implies that g° > 0, so
that the limit g is also non-negative on ]0, T.[. We have completed the proof for the local existence
of solutions stated in Theorem @

It remains to prove the uniqueness of solutions in Theorem EI We state it more precisely as
follows.

Proposition 4.11. Assume that 0 < s < 1/2, y+2s<1,0<T < Ty, m >3 and go >0, go €
HJ(R). Suppose that the Cauchy problem (f.1.1)) admits two (non-negative) solutions

g1, g2 € C°([0,T]; HJ'(R®)).
Then g1 = ga.
Set f = g1 — g2, by using (§.1.1), we have

(4 4 1) ft +v- vwf + K/(l + |U|2)f = Ft(glu f) + Ft(fﬂ 92) )
o flt=0 = 0.
We can now take W3 f as a test function to get
1d
ST I WaF (O aqes) + KIWaF () 3age) = (Wal' (g1, )+ Wal" (£, go) Waf )
Recall that

4.4.2 .
(4.4.2) L2(RS)

Mg 1) = Quthg. W+ [ B(ult). — u(t))g. ' dv.do.

RS xS§2

We estimate the last two terms of ([.4.9) in the following lemma.

Lemma 4.12. Assume that gg > 0. Then for any € > 0, there exist constants C. > 0 and
K(e, g2l oo, 7,y (rE))) > O such that

(43) (Wl (on, 1), Wsr ), o < EIWAT Ol o) + Cellor o go,riap oy [ () e,
(4.4.4)

‘(stt(f, 92) W3f) <e||Waf ()1 72s) + K (&, lg2ll oo o, 725 @) W3 f ()| 72 s

L2(RS)
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Notice that by using the above lemma with ¢ = #/4 and (f4.3), we get

d
E||W3f(t)”%2(]RG) < (C||91||L°° qo, Ty (o)) T K (& lg2ll Lo o, Tps 23 (r9) )) W f(8)1172 ey -

Then ||[W3f(0)| z2®s) = 0 implies [|[W3f(t)||z2rey = 0 for all 0 < ¢ < T which gives Proposition
fLi1]

Proof of Lemmalt.12. As for (.4.3), we have
(WBFt(glu f) W3f)

LQ(]RS)

= (WQuitg N War) |+ [[[[ B ). — ey s w3 fav.doduis
= (Q(u(t)gl,wsf>,wgf) 2RG)+(Wscz(u(t)gl,f)—@(u(t)gl,wm Waf)

//// u()) g, (W f)' Wa fdv.dodvda
+ / / / / B (u(t)x — p(t)2) 1. (Ws — W3) f'Ws fdv.dodvda

= Dj+ Dy + D3+ Dy.
For the term D1, it is the same as Bj in the proof of Proposition @ By using p(t)g1 > 0, we have
Dy < Cllgr(lmsr2vsms I O)llzz@s I @)Lz
for some small § > 0. The term D5 is similar to By and we can obtain
|D2| < Cllgr(®)llrsrzes mg yIFOllzee, pIf Oz ee -
The terms D3, D, are similar to I, Is in the proof of Proposition @ Namely
[Ds| + [Dal < Cllgr®llgerzes s I Ollzsee, ) I1F B2z

RG
3t (y42s+8)+ T ' ot (yrastart e, )

L2(RS)

ot (RS )

Thus, for any 0 < t < T and m > 3, we have
(ngt(gl, f)vwsf)L : < Cllgillz=qo,rimp s HIWaf@)llz@s ) IWaf (@)l z2s ),

2 (RG

which implies ([.4.3). The left hand side of ({.4.4) can be written as
(Ws T(f, g2), W3 f)

L2( ]RG)
= (W3Q(ﬂ(t)f7 92)7W3f (w0 + ////B (u(t)s — p(t).) fLgs W2 fdv.dodvdz
- (WBQ(M(t)fa 92), W3f //// w(t).)fl (W3gz)'W3fdv*dgdvdw
//// n(t)) [ (WB - W3)92W3fdv*dadvdx
= By + By + Es.

Using Corollary @ with m = 0,1 = 3 gives

|Ex | S/ [WsQ(u(t)f, g2)llL2we)IWsfll L2 (rs) da

<0 [ WOy, el eIWsfleds
< O||g2||L°°(O,T[><]R3 HE @) If Ol L2e) W3 f(E)]] L2 (re)

< Cng”Loo(]O)T[ 3/242s+6 (Rg))||W3f(t)||%2(R5)'

3+(v+2s+8)F
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The term FEs is similar to D3, and we have
@) W3 f ()]l L2®e)

|Es| < C||f(t)||L2(R3 ! ]R%))Hg2||Loo(]0)T[XR?z,;L2 (R3
&) 1921l Lo go, 71, H3/240 (6) ) [Ws f ()l L2(rs)

0 (y42s +5)+ s+t
<C
> ||f( )”L;HHPIJr2 +5)+

< Cllgall e 13725 oy W F (1) g
For the term Es3, we can use ( ) with | = 3. Then

|E3|<//// (cosB) (v—v)" |ut)s — p)L] | f1] ‘Wg—Wé| \g4| |Ws f| dv.dodvdz
O//// sin 9 b(cos 0) [(Wigy+ )l (Wsiy+g2)'| W3 f| dv.dodvda
- C////Sm blcos0) p ()|(W3+7+f) 1 v+92) | |W3 f| dv.dodvdz

+ C////sin3 5 b(cos 0) s (O)|(Wasns )] [(Wosg2)'| [Ws f| dvsdoduda
= 31+ E32+4 E33.
Since 0 < 2s < 1 is assumed, for any € > 0 there exists C; > 0 such that

Baal € [ 17ty

IN

@) 192t @, lpzws) 1t @, )l L2@s) dx

14yt
< Cllf ()2 (R3; LY, (R3)) 921l Loo qo,rixre; L2y I1f (Ol L2ee )

< O]z gt 1921 o, 875+ oy IO e

3/24641+~ +
< (cIWafONaee ) + CEIWaf (Daqe. ) ) 19210 1 o2, 11272 s
Similarly

|Es32| < C/R3 () f(t, =, ')||L1M+(Rg) g2(t, , ')||L3+(Rg) £, =, )Lz ms) dz

< C”g?”[‘oo(]oj[; H:/Hé(Rgm))||f(t)||L2(]Rgm)||W3f(t)||L2(R§,U) :

Since 3/2 + (3 + 7+) > 4, we can not estimate Es5 3 in the same way as for E3 5. Instead, we have

|Bssl < CIWyegallgorpees / / / 69b(cos 8) ua(8)|(Wiaos )| | [Ws f| dvsdodude

< Cllg2ll poe o, HIY (RS /11&3 (// 01b(cos ) . (t)|Wa f|? |dv*dodv>

><( / / 65b(cos ) s ()] (Wig s )2 |dv*dadv) dz.

We now take the singular change of variables v, — v. The Jacobian is computed in (R.1.21) which
is of the order of #~2. Then this singular change of variables yields

[[[ evicost) . 010Wsir 11 Voo
< O [[ Dioesel) e OWsos LI | o,

with Dy (v, 0}) = [q2 0°2b(cos 0)do < Cfﬂ/z

[ eovicost) e 1Was 1. Voo
< Oty IWs e £ 2, ) g

(5 — ) 272575724y < C. Hence
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Therefore,
B3| < Cllgzll oo go.rp; 53+ e, IWa |2 @e ) Wyt fll2mg

By combining the estimates on F, Fy, F3, we have proved ([.4.4). Now the proof of Lemma
is complete.

4.5. Proof of Theorem [[.d. Assume that fo € £°(R5). Then there exists pg > 0 such that
ero(v)® o e HFo (R%). Choose 0 < p < pg and k > 0 small enough. By setting gy = e * fo, then
go € H lk °(RS) for all [ € N. Theorem @ assures that the Cauchy problem () with the initial
datum gy admits a non-negative local solution

g € CO[0, T.); H* (R%) () L2(10, Tu[; H[?, (R%)),  VIEN,
with 7. €]0,Tp] (To = £). Then
Flt,z,0) = e 070 gt 2 0) € CO[0, Tn); Hf* (RO)) () L2(0, T [ Hf* (R®)),  VIEN,

is a non-negative solution of the Cauchy problem ([.§). Since for 0 < t < T, < Ty,

p

(4.5.1) e5W7 e ([0, Tn]; H 0 (RY)),

we can conclude f € £ ([0,T.] x RS ), which leads to the local existence stated in Theorem [[.9.
£l
&

Suppose now for some fo € 5), the Cauchy problem ([L6) admits two solutions f; €
EY([0,Th] xRS ) and fy € £4([0, 5] x RS ). This implies that there exist po, p1, p2 > 0 such that

6
T,V
(R

P00 £ e HA(RE),
and
e 0 fy e €00, 1) HY(RS)), e 5 € CO(10, To); HA(R)).

Take 0 < p < min{po, p1, p2} and k > 0 sufficiently small such that £~ > T,. = min{Ty,T>}.
Then we have

go—@p fOEHl (RG)
for any [ € N, and

g1 = =@ £ e OO([0, Tu); HE(RY)),  go = e 0 £y € CO([0, Tou]; HEA(R)),

are two solutions of the Cauchy problem ({.1.1)) with the common initial datum go. Then Propo-
sition gives g1 = g2, so that f; = fy fort € [O, T..]. Now the uniqueness of solutions stated in
Theorem [1.9 is obvious since T} = T = Th..

On the other hand, in view of ([5.1)), ||f(t, =, -)||z: is continuous for (t,z) € [0,T.] x R3.
Therefore, if for a compact K C R3, we have

;g{ | fo(z, )z = co >0,
then there exist 0 < Ty < T, and a closed neighborhood of K denoted by Vj in R3 such that

inf )2 D
(t,z)€[0,To] x Vo
Now Theorem DI implies that
fe (\H00, To[x Vo x R3) € C*(10, To[xVo; S(R)).
leN

It remains to prove the uniqueness of solutions of Theorem in the soft potential case v < 0.
In this case, the uniqueness of solution can be proved in a larger function space. We state it as
follow.
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Proposition 4.13. Assume that0 < s <1/2, v<0,0<T < +oo andm > 2s+3/2, 1 > 2s+3/2.
Let fo > 0, fo € H,, (R%). Suppose that the Cauchy problem (IL6) admits two non-negative
solutions

fla f2 € Loo(]OaT[7 Hﬁ2s(R6))
Then f1 = fs.
Proof: The proof is similar to the one for Proposition . Set F' = f1 — fo, by using (E), we
have

(452) Ft+Uva:Q(fluF)+Q(F7 f2)7
Fli=o = 0.
We can now take Wi I as a test function to have
1d
(45.3) 2 il F Oz ey = (W QUL F) + WL Q(F, f2), WiF)

Since f1 > 0 and v < 0, similar to the analysis on B; in the proof of Proposition @, we have
(@ WeF) WiF) < A0 s i IO s

Using (R.1.17) with 4 = 0 gives

(WZQ(fla F) = Q(f1, WiF) 7W1F)

2 (RG

< OHfl(t)”LOO(Rg;Lf(Rg))HF(t)”%L?(Rg,v)a

L2(RS)

and
(WQE, f2) = QUE Wif) ,WiF) (Rﬁ)} < OIF®) sz I F2(0)l| o s 12msy) IOl 2es -

Finally, for [ > 3/2 4 2s, we have

‘(Q(F, Wifa) WiF)

L2 (ro) < ClQE, Wifo)ll L2 eI F ()| 12 rs)

1/2
< [F Ol 3w, ( / 3 ||F<t7x,->||%;S<Rg>||f2<t7x,->||zﬁ25mg>>

< CIF O 72 ey |l F2(O) | oo s 122, r3))-
Thus, we have, for any 0 < t < T and ¢ > 0 small enough,

’ v )

Therefore, [[F'(0) L2(re) = 0 implies [|F(¢)|| 2y = 0 for all ¢ € [0, T'[.

d
E”F(t)H%f(RG) <C (||f1||Loo(]07T[ H13/2+6(R2, ) + ||f2||Loo(]07T[ H13+/§:5+25(R2,v))) “F(t)H%f(]RG)'
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