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REGULARIZING EFFECT AND LOCAL EXISTENCE
FOR NON-CUTOFF BOLTZMANN EQUATION

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU & T. YANG

Abstract

The Boltzmann equation without Grad’s angular ¢i#&ssumption is believed to have regularizing
effect on the solution because of the non-integrable angular singularity of the cross-section. How-
ever, even though so far this has been justified satisfactorily for the spatially homogeneous Boltz-
mann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation.
In this paper, by sharpening the coercivity and upper bound estimates for the collision operator,
establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the
uncertainty principle, and analyzing the commutators between the collision operator and some
weighted pseudo-fierential operators, we prove the regularizirfipet in all (time, space and
velocity) variables on solutions when some mild regularity is imposed on these solutions. For
completeness, we also show that when the initial data has this mild regularity and Maxwellian
type decay in velocity variable, there exists a unique local solution with the same regularity, so
that this solution enjoys theé> regularity for positive time.

Key words: Non-cutdf cross-sections, Boltzmann equation, regularizifigat, local existence,
uncertainty principle, pseudoftirential calculus.
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1. INTRODUCTION

Consider the Boltzmann equation,
(1.1 fi +v- Vi f = Q(f, ),

where f = f(t,x,v) is the density distribution function of particles with positiane R® and
velocity v € R® at timet. The right hand side of (1.1) is given by the Boltzmann bilinear collision
operator

Qa1 = [, [ BO-v.0) (o) (V) - o) ) dori.

which is well-defined for suitable functiorfsandg specified later. Notice that the collision oper-
atorQ(-, -) acts only on the velocity variablee R3. In the following discussion, we will use the
o—representation, that is, for € s2

V+ Ve  [V=V V+ Ve V=V

>t o Vs T o
which give the relations between the post and pre collisional velocities.

It is well known that the Boltzmann equation is a fundamental equation in statistical physics.
For the mathematical theories on this equation, readers can refer to [20, 22, 23, 33, 37, 57], and
the references therein also for the physics backgrounds.

In addition to its special bilinear structure in the collision operator, the cross-sétietv,., o)
varies with diferent physical assumptions on the particle interactions and it plays an important role
in well-posedness theory for the Boltzmann equation. In fact, except for the hard sphere model, for
most of the other molecular interaction potentials such as the inverse power laws, the cross section
B(v-V., o) has a non-integrable angular singularity. For example, if the interaction potential obeys
the inverse power law (P~ for 2 < p < oo, wherer denotes the distance between two interacting
molecules, the cross-section behaves like

VvV =

V— V.
B(V - V.|, cOS6) ~ V= V,["67225, cosh = (——* &), 0<6< 2,
IV_V*l 2
with
p_
-3<y= 1 O<s= 1
y=51<t o1 <

As usual, the hard and soft potentials correspond to @ < 5 andp > 5 respectively, and the
Maxwellian potential corresponds po= 5. The fact that the singularityy2-2% is not integrable on

a sphere leads to the conjecture that the nonlinear collision operator should behave like a Laplacian
in the variablev to some fractional power. That is,

Q(f, f) ~ —(=Ay)>f + lower order terms
Indeed, consider the Kolmogorov type equation
ft +V- fo = _(_Av)sf

Straightforward calculation by Fourier transformation shows that the solution is in Gevrey class
when O< s < $ and is ultra-analytic it < s < 1 for initial data only inL?(R$ x RJ) if it admits

a unique solution (see [50] for a more general study). However, for the Boltzmann equation, the
gain of Gevrey regularity of solution is a long lasting open problem which has only been proved
so far in the linear and spatially homogeneous setting, [48].

The mathematical study on the inverse power law potentials can be traced back to the work by
Pao [52] in 1970s. And in early 1980s, Arkeryd in [15] proved the existence of weak solutions
to the spatially homogeneous Boltzmann equation when £< % while Ukai in [53] applied
an abstract Cauchy-Kovalevskaya theorem to obtain local solutions in the function space which
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is analytic inx and Gevrey inv. However, the smoothinglect of the collision operator was not
studied at that time. Since then, this problem has attracted increasing interests in the area of kinetic
theory and a lot of progress has been made on the existence and regularity theories. More precisely,
that the long-range interactions have smoothifigats on the solutions to the Boltzmann equation

was first proved by Desvillettes for some simplified models, cf. [27, 28]. This is in contrast with
the hard sphere model and the potentials with Grad’s angulaff@agsumption. In fact, for the

hard sphere model, the cross-section has the form (io- ttepresentation)

B(lv — V.|, cos) = qp|v — V.|,

whereqp is the surface area of a hard sphere. For singular cross-sections, Grad [38] introduced
the idea to cut fi the singularity at = 0 so thatB(Jv — v,|, cosd) € L1(S?). This assumption has

been widely accepted and is now called Grad’s angularficagsumption which influences a few
decades of mathematical studies on the Boltzmann equation. Under this angufaassumption,

the solution has the same regularity, at least in the Sobolev space, as the initial data. In fact, it was
shown, [21, 34], that the solution has the form

f(t,x v) = a(t, x,v)f(0, x — vt,v) + b(t, x, v),

when the initial dataf (0, x,v) is in some weighted., space. Herea(t, x,v) andb(t, x,v) are
in the Sobolev spacbl;fx,v for somes > 0. And the termf (0, x — vt, V) just represents the free
transport so that it is clear thé(t, x, v) and f (0, x, v) have the same regularity.

One of the main features of the Boltzmann equation is the celebrated Boltzmann’s H theorem

saying that the H-functional

(1.2) H(t) = f flog fdxdy
R3xR3
satisfies
(1.3) dr + D(t) =0,
dt
where
(1.4) D(t) = - Q(f, f)log fdxdv> 0O,
R3xR3

which is called the entropy dissipation. Notice tigt) is non-negative and vanishes only when
f is a Maxwellian. The non-negativity & indicates that the Boltzmann equation is a dissipative
equation. This fact is essentially used in tetheory of the Boltzmann equation, [33].

By using the entropy dissipatioR and the Q* smoothing property”, the formal smoothing
estimate was derived by Alexandre in [1] and was proved by Lions in [43] showing that

INFT ™Iz < CITIE I+ DINYY, 6= 1o 0= 1,

for any constantm > 3. Some sharp improvements on this estimate have been achieved after-
wards, cf. [19, 42, 44, 56, 58]. Notice that the above regularity estimate idTonot f itself.
Later, some almost optimal estimates together with some elegant formulas, such as the cancella-
tion lemma, were obtained in the work by Alexandre-Desvillettes-Villani-Wennberg [6]. By using
these analytic tools, the mathematical theory regarding the regularifex or the spatially ho-
mogeneous problems now becomes quite satisfactory, cf. [10, 11, 30, 32, 39, 48, 55], and the
references therein.

However, for the spatially inhomogeneous equations, there are much less results. The main
difficulty comes from the coupling of the transport operator with the collision operator, and the
commutators of the tlierential (pseudo-fierential) operators with the collision operator. Some
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progress has been made on the local existence of solutions between two moving Maxwellians in [4]
by constructing upper and lower solutions as was done for théfd@wdtzmann equation studied
by [40]. Some theories on the linear kinetic equations were given in [8, 9] and [18]. In particular,
a generalized uncertainty principle in the view point offEaman [35] (see also [45, 46, 47])
was introduced in [8, 9] to study smoothinffexts of the linearized and spatially inhomogeneous
Boltzmann equation with non-cufocross sections, and partial smoothireets for nonlinear
Boltzmann equation. In the following analysis, this partial regularity result will also be used.

This paper can be viewed as a continuation of our recent work [9]. Under some mild regularity
assumption on the initial data, we will prove the existence of solutions andGfenegularity
with respect to all (time, space and velocity) variables. Even though it is still not known whether
only some natural bounds, such as total mass, energy and entropy on the initial data, can lead
to the C*® regularizing €fect, the results in this paper firstly justify ti@&° regularizing &ect
for the nonlinear and spatially inhomogeneous Boltzmann equation without Grad’s angutir cuto
assumption.

To state the theorems, let us first introduce the notations and assumptions used in this paper as
follows. The non-negative cross-sectiB(g, o) for a monatomic gas depends only [@and the
scalar produck é,o >. In most cases, the collision kernel cannot be expressed explicitly, but to
capture the essential properties, it can be assumed to be in the form of
V-V, n
|V - V*| ’ 2

Furthermore, to keep the presentation as simple as possible, and in particular to avdid-the di
culty coming from the vanishing of the cross-section at zero relative velocity, we suppose that the
kinetic factor® in the cross-section is modified as

B(lv — Vi, cosf) = O(|v — v.|])b(cosd), cosh = ( o), 0<6<

Y
(1.5) OV - v,|) = (1+|v—v*|2)2, y e R.
And without angular cutid, the angular factor is assumed to have the following singularity.
(1.6) sing b(cost) ~ KO 125 when 6 — O+,

where 0< s < 1 andK is a positive constant. In fagt = 0 corresponds to the Maxwellian
molecule;y < 0 corresponds to the modified soft potential, and 0 corresponds to the modified
hard potential. In the following analysis, it is clear tlsat % is a critical value. The case when
O<s< % will be called the mild singularity.

It is now well known that the singularity of the collision kernel (1.6) implies a sub-elliptic
estimate in the velocity variable(see [6]). In the following analysis, we need a precise weighted
sub-elliptic estimate in the velocity variable. Indeed, we will show thayfarR and O< s< 1,
if f>0,20,feLiNLIogL(RY), there exists a constaa > 0 such that for any function
g € HY(R3) we have

@7 CTIAML Iy < GG Duzgy + CllFI el ey

wherey* = maxy, 0}. HereW = Wi(v) = (1 + M?)"2 = (v ,| € R, is the weight function in the
variablev € R3.

Similar sub-elliptic estimates, proved first in [6] and then in many other works such as [51, 56],
have been used crucially at least in the following two aspects:

i) the proof of the regularizingfBect of the cross-section on the solutions to the spatially homo-
geneous Boltzmann equations, see [10, 11, 32, 39, 48];

i) the proof of existence of solutions to the nonlinear and spatially inhomogeneous Bolztmann
equation [4, 12, 57].



THE NON CUTOFF BOLTZMANN EQUATION 5

In this paper, we will apply it to the study of smoothinfjext for the spatially inhomogeneous
and nonlinear Boltzmann equation.

As is known, the Landau equation can be viewed as the grazing limit of the Boltzmann equation,
and has the collision operator in the form offdrential operator instead of a singular integral op-
erator for the Boltzmann equation. However, it should be kept in mind that while Landau equation
involves partial diterential operators (up to some nonlinear convolutions), the Boltzmann operator
naturally involves singular integral behaving like a fractiondlledential operator as shown in [2].
Therefore, the analysis on the Boltzmann equation is more involved because it requires the essen-
tial use of the harmonic analysis. More precisely, we shall use a generalized uncertainty principle
which was introduced in [8, 9], and the estimation of commutators used in the work [49] for the
study of hypo-elliptic properties.

Throughout this paper, we shall use the following standard weighted (with respect to the veloc-
ity variablev € R3) Sobolev spaces. Fan, | € R, setR’ = Ry x RS x RS and

H'®R) = {f € S'®R); Wi(v) f € HT(RT)},
which is a Hilbert space. Hetd™ is the usual Sobolev space. We will also use the function spaces
HI"(RQ v) and HI"(RS’) when the variables are specified where the weight is always with respect to
3
veR.
Since the regularity property to be proved here is local in space and time, for convenience, we

define the following local version of weighted Sobolev space.-+eor< T; < T» < +o0, and any
given open domaif c R3, define

HI(T, TAxQ xR = {f € D'(Te. ToxQxRY);

ey () € H'RY), Vo e CP(T, T2, v € CF(Q) ).
The first main result giving the smoothingect on the solution can be stated as follows.

Theorem 1.1. (Regularizing efect on solutions)

Assume thad < s< 1, y € R, —0 < T; < T, < +o0 and letQ c R3 be an open domain.
Let f be a non-negative function belonging%q?(]Tl, To[xQ x RY) for all | € N and solving
the Boltzmann equation (1.1) in the domiin, T2[xQ x RS in the classical sense. If, further, f
satisfies the non-vacuum condition

(18) || f (ta X, )|||_1(R\3/) > O’
for all (t, x) €]T1, T2[xQ, then we have
f e (T, ToIxQ X RJ),

forany le N, and hence
f € C¥(T1, T2[xQ; S(RY)).

With this theorem, a natural question is whether the Boltzmann equation has solution satisfying
the assumptions imposed in the Theorem 1.1. In this aspect, let us recall that in [4, 12] the exis-
tences of both the renormalized solutions and the solutions bounded by two travelling Maxwellians
were proved. However, neither of these results works for our purpose because of the lack of the
weighted regularit;ﬂ{f’, see also [53] for Gevrey class solutions.

Thus, the second main resultin this paper is about the local existence and uniqueness of solution
for the Cauchy problem of the non-ciit@oltzmann equation. We consider the solution in the
function space with Maxwellian type exponential decay in the velocity variable. Precisely, for
m € R, set

EN(R) = {ge D'(RS,); Fpo > O st. @2*ge HM(RE,)}.
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and forT >0
EM([0. T] xRE,) = {f € C%(0. T]; O'(RE,)); p > Ost. eV f e CO([0, T]; H™(®RS,)}-

Theorem 1.2. Assume tha® < s< 1/2andy+2s< 1. Letfy>0and § € SEO(RG) for some
4 < kg € N. Then there exists,T> 0 such that the Cauchy problem

(1.9) { fr + v Vyf = Q(f, f),

fli=o = fo,

admits a non-negative and unique solution in the function sp&q§0, T.] x R®). Precisely, there
existsp > 0 such that

eVt e CO[0, T.]; HY(R)).
Furthermore, if we assume that the initial datgid in 83(R®) and does not vanish on a compact
set Kc R, that is,
”fO(X, .)”Ll(Rs) >0, Vxek,

then we have the regularizingfect on the above solution, that is, there exist fo <T,anda
neighborhood Y of K in R3 such that

f € C*(0, To[xVo; S(RY)).

Moreover, ify < 0, the non-negative solution of the Cauchy problem (1.9) is unique in the
function space &[0, T.]; HE'(R®)) for m> 3/2+2s, p> 3/2+4s.

Remark 1.1. For the inverse power law potentiat®-1), the condition thab < s < 1/2, y+2s <
1 corresponds t®@ < p < oo which includes both soft and hard potentials.

At the moment, it is not clear whether we can relax the regularity assumption initially made
on the solutions. Note that for example, the condition tha L' n L*(R’) is enough to give
a meaningful sense to a weak formulation for the spatially inhomogeneous Boltzmann equation.
However, the analysis used here can not be applied to this case, and so further study is needed.
On the other hand, the above two theorems give an answer to a long lasting conjecture on the
regularizing &ect of the non-cutd cross-sections for the spatially inhomogeneous Boltzmann
equation.

Finally in the introduction, let us review some related works on the regulariffiegteand the
existence of solutions for the Landau equation. The regularifiiegtefrom the Landau collision
operator has been rather well studied. See [31, 24, 14] for the spatially homogeneous case. For
the spatially inhomogeneous problem, a regularizing result was obtained in [26], wheté the
regularity is assumed on the solutions to start with. And similar result was also recently proved for
the Vlasov-Maxwell-Landau and the Vlasov-Poisson-Landau systems, cf. [25] and the references
therein. As for the existence of solutions, see [31] where unique weak solutions for spatially
homogeneous case have been constructed with rather general initial data, and see [36] where the
classical solutions for the spatially inhomogeneous case have been constructed in a periodic box
with small initial data.

The rest of the paper will be organized as follows. First of all, in the next section, we will use the
pseudo-dferential calculus to study the upper bounds on the collision operator, to give the precise
coercivity estimate due to the singularity in the cross-section and to estimate the commutators
between some pseudofitirential operators and the nonlinear collision operators. In Section 3,
the regularizing #ect will be proved under the initial regularity assumption on the solution. The
strategy of the proof is as follows. We first choose some suitable mollifiers such that the mollified
solutions can work as the test functions for the weak formulation of the problem. We then establish
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a small gain of the regularity in the velocity variable, by using the coercivity estimate coming
from the singularity of the cross section. On account of the generalized uncertainty principle, a
small gain of the regularity in the space and time variables can be derivedH Theegularity

now follows from an induction argument. Finally, in Section 4, local solutions to the norifcuto
Boltzmann equation which meet the initialization condition of Theorem 1.1 are constructed by
a family of cutdf Boltzmann equations with time local uniform bounds independent officuto
parameter in some weighted Sobolev space. The uniform bounds are established by the aid of
time dependent Maxwellian type weight functions introduced in [53, 54]. The convergence of
the approximate solutions follows from the compactness argument, while the uniqueness of the
solutions can also be proved by using the sharp upper bounds of the collision operator.

2. FSEUDO-DIFFERENTIAL CALCULUS

With the non-cutff cross section, the Boltzmann collision operator is a (nonlinear) singular
integral operator with respecttos R3. In the linearized case, it behaves like a pseudtedintial
operator. We study, in this section, the pseudtedéntial calculus on the Boltzmann operator.

It is one of the key analytic tools for proving the regularizirfteet of the non-cutd Boltzmann
equation. Notice that even though the regularity proved in this paper is local in space and time
variables, the collision operator is non-local in the spacewafriable. Moreover, since the kinetic
factor in the cross-section is of the for¢w)” which may not be bounded, we need to consider
the multiplication by the weight functiow/ (v) to the pseudo-dlierential operators. Hence, they

are not the standard pseuddkeiential operators of order 0 on the usual Sobolev space. In other
words, we consider the pseuddfdrential operators with unbounded fd@ents on the weighted
Sobolev spacH{“(Rfj‘). The variablef( x) is considered as parameter for the collision operators in
this section.

2.1. Upper bound estimates.We shall need some functional estimates on the Boltzmann colli-
sion operator in the proof. The first one given below is about the boundedness of the collision
operator in some weighted Sobolev spaces, see also [5, 7, 39] .

Theorem 2.1. Let0 < s< 1andy € R. Then for any ma € R, there exists G 0 such that

(2.1.1) I, Dllnpgy < ClIfllz, - @pllGlkezs  w3)
3 2 3
forall f e L(ll++(y+25)+(R\,) and ge H2° . (RY) -

Remark 2.1. .

(1) The collision operator Qf, g) has dfferent characters with respect to f and g: (2.1.1) shows
that, in some sense, it is linear with respect to the second factor in the velocity variable v because
the action of dfferentiation of @f, g) with respect to v goes only on g when considered in the
Sobloev space. This is clear for the Landau operator which is the grazing limit of the Boltzmann
operator.

(2) The estimate (2.1.1) is in some sense optimal with respect to the ordgiecéuliation (exact

order of2s) and also with respect to the order of the weight in v coming from the cross-section. In
[39], the cases of both the modified hard potential and Maxwellian molecule type cross-sections
corresponding t® < y < 1 are discussed. Let us also mention that a similar estimate was given
in [8], but it is not optimal in terms of weight andf@rentiation. However, its proof is more
straightforward as it only uses the Fourier transformation of collision operator (Bobylev's type
formula[16] and see also the Appendix[6f). Notice that for our purpose, the precise estimate
(2.1.1) is needed.
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Proof of Theorem 2.1 :
Firstly, we consider the case when= 0. To prove (2.1.1) in this case, itffiges to show for
anyme R

(2-1-2) ’(Q(f’ g), h)LZ(R\?) < CHf”L(ly+25)+(Rﬁ)”g”Hgﬁzﬁ(Rﬁ)”h”H*m(Rﬁ)‘

The proof needs some harmonic analysis tools based on the dyadic decomposition. It is similar to
the proof in [39], where the hard potential case 0 was studied. Interested readers may refer to
the papers [5, 6, 39] for more details even though we will keep the paper self-contained.

Recall

(QAF. 9. h) o = fR i fs _b(cosa) f(v.) (v - v.)gM){h(v) ~ h(v)}dodv.dv,
whered(lv — v.|) = O(|V' — V,|) = (V' — V,)". Set
F(v, V) = O(v - v.))g(v),
and write

(Q(f. g). h) fR 6 fs _b(cost) f(v.)F (v, v.)(h(v') ~ h(v)}derdv.dv

L2®Y)

(2.1.3)
= [, )01 - Uz

Then we have (formally) by Fourier inverse formula,

U, = fRa fSZ b(cosh)F (v, v.)h(V)dodv = \[1@ Ls H(&, 1, Vi) F (&, v.)h(n)dédn,

where (also formally)
Al GUABES f f b(k - o))"V "dordv
R3 J§2

- f e [ (k- o)e "2 dor|av
R3 s2

_ f gttt f b - o)eF M kdor|dv, (7 = /i)
R3 S2

= f Cane | f b(ii - o)e "2 dor|dv
R3 §?

= | bG-o)e™| f M dv]der
SZ R3

= | b o)™ do o€ - n"),
§2

with
1 1
n = 50 = Inlo), nt= >0+ o),
so that

U1

fRs [ . b(7 - a)e“v*'”‘da]ﬁ(,f, v.)h(m)dn.
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On the other hand,
Uzzffb(COSH)F(V,V*)h(V)dU'dV
R3 SZ
:[ fs ] b(cose)do-] fR . F (7, v.)h(r)dn
_ fR 1 fg b o)dr] (. v. ).

because formally we have
b(cosf)do = f b(77 - o)do = const
s2 s2
Therefore, we have the following generalized Bobylev formula
(. 9. ),
= f f(w)| f f b - )& F(r*.vi) — F (. v.) () dndor|dv.
R3 R3 Js2

:‘[R3 f(v*)[LS js; b(7 - o’){eiv*.nﬂf(,f,v*) - eiv*.fllf(n, V*)}
x V() dndo|dv,.

(2.1.4)

Notice that the above derivation is only formal for non-dtitross-section because we can not
split the gain and loss term in this case. However, the derivation can be easily justified as a limit
process of cutd cross-sections when we combine the gain term and loss term together.

We now introduce the dyadic decompositiorRipias follows:

D) =1, &) =¢@™) for k21 with 0< o, ¢ € Cy(R?),
k=0

and
supp¢o C {|V| < 2}, supp¢ Cc {1 < |v| < 3}
Take alsapo and¢ € C5 such that
¢o=1 on {v < 2}, suppdo C {M < 3},
$=1on{l/2< <3}, suppé c {1/3 < V| < 4}.

Furthermore, we assume that all these functions are radial. Since it follow$Arewn < [v—v.| <
V2)V - v, that

(V' = V)PV — V) = BV — Vi) = Bk(V — V. )ek(V — Vi), k=0,

we get

(QF. 9. 0) sy = kz_(; fR i fs  b(c0s8) (V) Fi(v. V)PV, v.) = hig(v. Vi) derdlv. .

where

(2.1.5) Fi(V, v.) = gi(v = V. )(Iv = v.)g(v), hie(V, Vi) = i(v = vi)h(v).
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Similar to (2.1.4), we can obtain

CULRFE) [l [ [, b e v - @ 1utav.)

x €1y (n, v.)dndor|dv,

_ f f(v*)i KX(v,)dv..
R3 k=0

In the following, we will estimate’;” IKX(v,)|, regardingv, as a parameter.
By setting
Q={res? jj-o21-22%m7,
and . N
Fr(n.v.) = € TF (. V). Dk, v.) = €% 7hi(m. va),
we splitKX(v,) into

<= [ 00 ) - Fv . v ine

c L[ b Bt ) - Pt vt vdnder
R3 J$2nQ¢

=K¥(v.) + K&(v.).

Note that
(2.1.6) f 62 b(cosh)do = 2 siné b(cost)6°dy
S2NQ {6€[0,n/2]; sin@/2)<2K{n)~1}
<Cm* 222 ifo<s<1,
(2.1.7) f b(cosh)do = 2n sing b(cosH)de
$2nQ¢ {6€[0,7/2]; sin@/2)>2-K(n)~1)

< C(my?2%s, for anys> 0.

It follows from (2.1.7) that

@18 Kwis [ [ b o) - Ao

- 2 -
S(f f b(f]-(T)<17)2m+25(|Fk(17+,V*) + |Fk(77, Vi)
Rr3 Js2nqe

2 1/2
x[ f f bGG - o) ry2™25 dndo)
R3 SZHQE

<C2%2|(D)™ 2 F (v, V)l o 1KDV) "V, Vi)l 2.

Here, we have used the change of variables> n*, which is regular because the Jacobian is
computed, withk = n/|n|, as
U
a(n)

hi(77, Vi)

dndo

) 1/2
)dndcr)

1 1 1 1 0
_’él +§O'® k‘—§(1+ k'O')—ZCOS?E.
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It should be noted that after this change of variablplays no longer the role of the polar angle
because the “polek now moves withr and hence the measude is no longer given by siadode.
However, the situation is rather good because if we take= 7*/|57*| as a new pole which is
independent of-, then the new polar angledefined by cog = k* - o satisfies

6 . b4
W= > do = sinydyde, y €0, Z],

and thus? works almost as the polar angle. Therefore, noting the factthat 2(n*) < 2(i7) we

have
[ [ by
R3 Js2nag

Do(r*) = fs b o)t o)™
20 E

i 2
Fr(n™,v.)| dn*

Fr(@*,V.)

2
dndo < Cf Do(n")
RS,

with

<C <77(77+’ O') >2m+239—2—25d0_
$2nQ¢

/4

< C(n+)2m+25f (//_z_zssint//dt// < 22ks<n+>2m+4s’
2—k<n+>—1

which implies (2.1.8). Notice that fqg =0, 1, 2,

<V -V, >’y+25
oz V=)

< CWI*2 g (v — ).

ZK(ZS_ p)|v - V*|p¢k(v - V*)(D(|V - V*|)
<V*>(«y+25)+

(2.1.9)

Then, recalling (2.1.5) and using (2.1.9) wjth= O we have

<Dv>m+23

2ks
W{Z Fk(V, V*)}

IKE(V.)] <C(v, ) 029" 11{Dy) ™Mk (V, V..)lI.2

L2
- _ 1/2
<C(v.)0+29 (||¢k(v—v*)<Dv>m+zsg||ﬁ(2 L2 k||<Dv>"‘+zsg||ﬁ(2 | )
y+29)* y+29)*
~ _ _ _ 1/2
X (1Ifk(v = v.)(Dy)hiIZ, + 27KDy)"hiIZ,)

:=CTk(Va),

wherel'k(v.) stands for the quantity defined by this right hand side up to a constant multiple.
On the other hand, to estimam{(v*), write

(Fur . v.) = B Vo). v) = (B va) = Bl va) P, v2) = P v.)
-n - (VE;)(U*, VOR(v.)
- [ (TR + el — 1)) — (VR v - (Yt ).
Correspondingly, we decompok&(v.) into

KE(v.) = KEYV) + K%(v) + K3,
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For the variable transformatiop — n* = %(77 + |nlo), we denote its inverse transformation
n" — nbyys(n"). Then

— Ul |0Weln)
Kaov) = fR fM ey ol o)

xn (o) - (VE;)(UJZ V*)ﬁ;(rfr, v,)dn*do
=0, with 77(0) = woln) — 1"

becausery, o € S2 N Q are symmetric with respect to each other in the sense that, cf Figure 1,

n (1) =¥, (1) =" = =(Wo,(n") = ") = =1 (02).

Ficure 1. Symmetry obr; ando

Write KX(v,) into

1 1 —
Kihw) = - fo fo ( fR fs o, D (VE) + 2= n)v) (a1

x {(VR)Gr* + s7 - 7%).v.) - (n — n*)}dpdler)drdis
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Sinceln — 1t = |72 = In|? sirf(6/2) and that the change of variabje + 7(n — ) — nis also
regular (see the page 2044 of [9]), (2.1.6) implies

K <C fol fol (/. fgzm 6 b - o) ?| (VR + 7l = 7). v

(VR)0r + sn —7%).v.)

X

dndor)drds

e 2 h(5 2+2s+2m|(o 2 V.. + . 1/2
scf f (f f 6° b(7 - o)) |(VFk)(n +7(n = 1%), V) dndO')
0 0 R3 SzﬂQk
x f f 6% (7 - O’)<77>2_25_2m|(vﬁ<)(77+ + (- 17"), Vi) dndo-)l/ 2drds
R3 JS2nQk

<C2CE )y M VF)ll 2yl (VIK)llL 2.
Hence, we obtain by using (2.1.9) wih= 1 that

<Dv>m+25

ki (r+29*
IK7(Vi)l <C(Vs) AR

(2Cs D (v — v,)Fie(v, v..))

L2
(127K = V)i (V. V)l
e o~ _ 1/2
<CW) 2 (v - v DY ™2gIZ,  +27MKDY™H g, )

(y+29)* (y+29)*

~ 2
x (1B(v = V)P ™hIZ, + 271Dy ™hi2,)

b

which has the same bourdg(v.) as in the previous case up to a constant factor. Finally, we
consider

1 L —
KP(w) = - fo fo ( fR fs o, D (PR + 7l =)0 -7

x (At v.)dndor)drds
Then, by using (2.1.9) witlp = 2, we have

<Dv>m+28

o 2T V)R )

lIh(V, V)llg-m
L2

K3 (V)] <Cev)0+29"

<CTk(vs).

Therefore, it follows from the Schwarz inequality that

‘(Q(f, 9. h), .| <Clfll:

L2(R3) re2et

X (S Udv - vw)OY™ZGR,  +2D)™ R, )
k=0

(y+29)* (y+29)*

x (11 = v )W hIZ, + 274KD IR,
k=0

<C|f hilx-
<Clflls  lglhypzs [hlhsem,

which yields (2.1.2). Now the proof of Theorem 2.1 is complete for the eas®.
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To prove (2.1.1) for the case when 0, it sufices to show that

(2.1.10) ’(Q(f, 9), <V>“h)Lz(R3)

The argument is the same as the onedfer 0 except the estimation di(v, v.) in (2.1.5) which
must be replaced by

< Cllfll:

= s eage @Gz IPll-meg).

+y+29)*

PV = VL) (WP h(V) = (W) he(V, V...

We can write

(2.1.11) WMV, Vi) =) + 2Yne(V, Vi )i (V, V), if >0,
V) min{(y+2s)*,—a}

2112)  W°h(wv) = (7) VI L), fa<o

with a suitableyk(v, v.) belonging toC;"(Rg) uniformly with respect tk,v.. Forp =0,1,2, we
have

| 2k(a/+2S— p)|v - V*lp(ﬁk(V - V*)(I)(|V - V*|)
<V*>(a+y+2$)+

<V -V, >(x+y+25
W‘Pk(V — Vi

(2.1.13)

) < C<V>(a+y+25)+¢k(v _ V*),
which is similar to (2.1.9). We first consider the case 0. It follows from (2.1.7) that

K <t +2) [ [ bt Pt v - Fatav)
Rr3 Js2nae

s(<v*>“+2k“)( f f b - o) (my? ™2
R3 J$2n0;

5 1/2
x( f f (7 - ) () 225 dndcr]
R3 SZmQﬁ

<C22S((v, )™ + 257) |[{DW)™ZSF (v, V)| o I1KDV) ™™ (v, Vi)l 2
Then, recalling (2.1.5), and using (2.1.9) and (2.1.13) with 0, we have
<Dv>m.LZS
<V*>(y+23)+

<Dv>m+23
(V* >(a+y+2$)+

Uhi(n, Vi) |dndo-

1/2

= 2 =
Feln®,v)| +[Putn.v.)

2)olnolo-]

ﬁﬁk(nv V*)

IKX(v.)| <C {(v*>"+(7+25)+ 122%SE, (v, V,.)}

L2

+ <V* >(a+y+25)+ {2k(oz+25) Fk(V, V*)}

} IKDv) ™ "hi(V, Vi)l 2
L2

y i o~ _ 1/2
<CW)" O (ge(v - v )DY™P G, + 27DV ™lZ, )

(a+y+29)* (a+y+29*

~ _ _ _ 12
X (IlK(v = v.)(Dy)™hiIZ; + 27KDy) "hifZ, )
=CTIy(v.),
wherel'y(v.) stands for the quantity defined by this right hand side up to a constant multiple.
Similar to the computation above fKr‘2<(v*), it follows from (2.1.6) that
IKEH )] + K3l < CTR(v.),

so that (2.1.10) holds in this case.
The estimation on the case< 0 is also similar by using (2.1.12) if one considers the cases
v+25<0,0<y+2s<—aandy+ 2s> —a separately. For brevity, we omit th details. And this
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completes the proof of Theorem 2.1.

In what follows, we need also estimates on the commutator between the collision ofggrator
and the weighW. For this, we need the estimates|ah — W/|.

Lemma 2.1. Let | € N, there exists C- 0 depending only on | such that

(2.1.14) W — W] < Csm(Z)(W’ W) < CSIn(Z)W’ »
and
(2.1.15) Wi — W||<Csm(2)(W’+W|’ W+ sin” l(2)WI )

Proof : It follows from [v — v,| = [V — V'] and|V|? + |V.|> = [V'|? + |V.|? that, for any > O
MZ < VE+IVE Wy < 28(W) + W ).
On the other hand
v — \/|2_S|n2( )|v A
where 0< 6 < nr/2. Taylor formula yields

Wi — W]

A
@)
<
|
=
=

AR

+
=
Sl

IA
O
2
>
—

IA
@]
0,
=]

(vv' + W, )(W.'_l + Wy )
(

< Csin

I

(
< Csm(
( ) W W, )<Csm(2)W’W’

which gives (2.1.14). For (2.1.15), we have
Wi - W]

IA

CV = V|(Wi_y + W_,)

IA

: 0 ’ 2 0;21)
Csm(é) |v—v*|(VV|_1+(1+|v—\/+\/| ) )

IA

CSIn( ) IV = V(WL + v = Vi)

< C3|n(2)((W’+W1*)WI'1+SmI 1( )IV'—V;I')

2
And this completes the proof of the lemma.

< Csin(g)(w’+vvl W+ i 1(2)W' )

Lemma?2.2. Letle N, me R.
(1) If 0<s<1/2, there exists C- 0 such that

@116)  |(W Q. 9 - Q(F Wi g). )

L2(R3) < C” f |||_|l+7+ (RY) | |g| | L|2+y+ (RY) ||h| | L2(R3)-
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Moreover, if > 3 (actually, we need only# % + 2s), then

(2117)  |(w Q. 9 - Qf, W g), h)

(2) If 1/2 < s< 1, then for anye > 0, there is a constant C> 0 such that

L2(82) <C|f ||L|2+y+ (Rg))llgIIle+y+ (R3)||h|||_2(R3)-

(2.1.18) (W Q(F. @) - Q. Wi g, ),

<Cellfllen, el eaylhiliees)
and
(2.1.19) ‘((VVI Q(f, g) - Q(f, Wi 9)), h)Lz(Rg)

< Clif |||_|1+2H+y+ (Rg)llgl||_|2+25_1+y+ (R§)||h||H|2H+s(R§)~
(3) When s= 1/2, we have the same estimateg2pwith 2s — 1 replaced by any smal > 0.

With Lemma 2.2, we immediately have the following improved upper bound estimate with
respect to the weight.

Corollary 2.1.
(1) When0 < s< 1/2, we have
||Q(f,g)”H|m(R§) < C||f|||_1 ’(Rg)llgllezs )+(R§)’
Y.

max(|+y*, (y+29)* 1+(2s+

provided that m< 0 and0 < m+ 2s.
(2) Whenl/2 < s< 1, we have
(2120) ”Q(f, g)”Hlm(Rg) < C”f“Lrlna><l+2&l+y+.(25+7)+}(R3)||g||lei};f:%2$l+y+s(25+y)+)(R§)’

provided that-1 < m < 0.
(3) When s= 1/2, we have the same form of estimatg(24.20)with 2s — 1 replaced by any
smallx > 0.

In fact, this corollary is a direct consequence of Theorem 2.1 and Lemma 2.2.

Proof of Lemma 2.2 :
Proof of (1): the case0 < s < 1/2. By using®(|V' — V.|) < (V)Y (V.)’", we have

(W Q. @ - QF. Wi g ),
|ffqu> £/ (W) - W) h dvudo]
C [[[ oot 10w 1.1 100001 I dvctucior
= [[[ biwhsy 0.1 0049 1 vetu
of [[[ b 1y 11100k, @)Pvedr)
X [[[ oot 004y 6211 dvducir)

= J]_X Jz.

IA

IA
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Clearly, one has
Z < Clifll Nz, f b(cosd) 6] do- < ClIfll2 _llgliZ,
l+y* l+y*t JS§2 l+y* l+y+
Next, by the regular change of variables» v/, cf. [6, 12], we have

J% = ff DO(V*,\/)l(VVH)/* f)*”h/|2dv*d\/,

where
~ O(V, V, o) f T ase;
Do(v,V) = ngz RN O_)/z)b(cosa(v*,\/,q))da <C ; W siny dy,
and
Vv -V, .
cosy = v V] -0, W =0/2, do = sinydyde.
Thus,

2 2
J5 < Clifll.e AT,
l+y*

and this together with the estimate dngive (2.1.16).
We now try to prove (2.1.17) by using (2.1.15) instead of (2.1.14). For this, we have

(W Q. 9 - QUf. Wi g, ),

C{ f f bIol' (Wi, F).] [(W,..g)'l [hl dvdv.der

IA

+ f f f bIOl [(Ware F)] (Wit 6] 1H] dvdvdor

+ f f f bIol IO, £).] (Wi, 0)'| dvd\4d0'}

Ml + Mz + M3.
The estimation oMy, M3 can be done by the same method for proving (2.1.16) to have

Mo < CJif||, 2 2 hil, 2,
2<Clfls_liglz il

Ms < Cllflle lglhz Il

M can be estimated as follows. Firstly, we have
2

M2 =C? (ff b16]' (W, f).lI(W,, )| |h'| dvdv.de
«c? f f D161 3 (W, G)lI(Wi,.. ). /2dvdv.der

xff bl 2|(W,, g)|IF [2dvdv.do-
=M1,1 X Ml,z.
Then, ifl - 3 - 2s-1> -1, thatis| > 2s+ 3, we have

2
Maa < Cliglle 1117
Y l+y*
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On the other hand, foM; > we need to apply the singular change of variaMes— V. The
Jacobian of this transform is

8 8 4

OVi| 3 3
’| _ k@g, Cl-k-ol  sink(6/2)

2.1.21 —|=
( ) Y

<1607%, 9€[0,7/2].

Notice that this gives arise to an additional singularity in the afgbeound 0. Actually, the
situation is even worse in the following sense. Recall fhiatno longer legitimate polar angle. In
this case, the best choice of the pol&kis= (V' — v)/|V — V| for which polar angles defined by
cosy = k" - o satisfies (cf. [6, Fig. 1])

T—0

. mn
y="5—  do=singdyds, ye[z.3].

This measure does not cancel any of the singularity(cdsg) not like the case in the usual polar
coordinates. Nevertheless, this singular change of variables yields

My = Cff b|0|'+%|(Wy+g)| |h'|? dvdv.do

<C f f Da(v, V)I(W,, @)l I Pcval,

whenl > 3 + 2sbecause

7T/ 2
D1(V,V) = f 63 2p(cos)do < C f (’—2r _y)2sie3-2gy < C
S2 /4

Therefore,
Mz < Cligl, IIIE-

Now the proof of (2.1.17) is completed by the embedding, that id, :ﬁog,
||g||L1 < C||g|||_2 .
vt I+y+

Proof of (2): the casel/2 < s < 1. Since we look for an upper bounded estimate ando, it
is suficient to assume > 1/2 for our purpose. Write

(W QUF. @~ Q. W g, h),,.0 = [[[ B LW - Whndviueo

= fffB f.o(W - W) i dvdv.do = fffB f.0'(W - W) i dvdv.do
+fffB f.(0-9)W - W) K dvdvwdo = I1 + I5.

Taylor expansion gives
1
W= W = DW= ) = [ (L T v V)t - VIR,
0
so that

= - fo w-n [[[ & 192w + otv - v - vy2g i dvatudodr.
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By using the symmetry property shown in Figure 1 ( see also Figure 2 below3aind39]), the
first order term in the Taylor expansion vanishes, that is,

[[[ & tevwierw- v dvauao
SR e

. YW(V) g'dvdy, = 0.

oW (V)
a(v)

o) - V)da}

Here, we have used the notation that for a transformatien V/, its inverse transformation is
denoted by — v, (V) = v. And o1, 0 are symmetric with respect to each other, in the sense

thatys, (V) -V = —(¢e, (V) - V).

Vo, (V)

Vo, (V)
Ficure 2. Symmetry obr; ando

Furthermore, since

(VAW + (v = V)V = V)P < COV. — VIAWI2(V.) + Wia(V + (v — V) — Vi)

COHWI(V.) + WI(V)} < CWI(V.)Wi(V)

IANIA

and®(lv — v.|) < (V2V —v))"" < V2 (v,)Y (V)" , we get by the regular change of variables
v — V' and the Schwartz inequality

(2-1-22) ||1|§C”f”|_1 (R§)||g|||_2 (Rs)”h”Lz(Rs)'
l+yt l+yt

In order to estimaté,, we shall apply the Littlewood-Paley decompositian}<? ,, which is a

j=0’
dyadic decomposition in the Fourier variable (see also [17, 59, 5]),

2i9(v) = F Y1 (mam), ZA,g,

and forme R,
' 2 2j 2
l2jgllbm = 2Ma5dllz,  IDllGm = § 2 JmIIAjglle-
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Then we have the following decomposition

P)

B f.Vu(2;9)(V + 7(v—V))(v— V)W — W) i do{dvdv )dr
2 [ (L), B 1 djiva)

% . f B 1,1(410)(V) — (4;0)(V)I(W — W) I dorfdvly

i(l i3

j=0

where
Qi =Q(VV) ={oes? ~— Y 551212y _y,)2
] — ] s V) — 1] = * .
|V - V*l
Note that if /2 < s< 1, then
(2.1.23) f b(cosh) 0’de- = 2x sin® b(cosh)s>de
Qj {6€[0,7/2]; sin(@/2)<2- i (v—v,.)~1}

< C2j(2$—2)<v _ V*>25_2,
and
(2.1.24) f b(cos®)0do = 2rn sing b(cos) 6 do
Qf {6€[0,7/2]; sin/2)>2-I(v—v,)~1}
< C2](25—1)<V _ V*>23_1.

To estimatd%j, we need the change of variables

1 1-

(2.1.25) Vo z=V +1(V-V) = ;Tv+ TT(|V—V*|0'+V*).
The Jacobian of this transform is bounded from below uniformiy.ino, , because

(2 1+T 1-7 V-V,

k k=
3| == ook k=gmp
(1+T)3 1-7 (143 2t 1-7
’1 1+Tk O-|_ 28 1147 21+T 052

(1+‘1')3 2r 1—7" 1+7)3_ 1
> + = > —.
23 11+7 1+71 23 23
Recall, cf. [6] that the cross-sectid(v — V., 0) is supposed to be supported in06 < /4.
Furthermore, we have

1
(2.1.26) Z— V.| :‘ T

1_
(V=) + TTW— V*|0"

1+72 ,d-1y2 1- 12
:|v—v*|( ZT) +( ZT) i K- 0"
= V- V|2 + (1-7?)cod = | % - Vil,

which implies(v — v,)25®(|v — v,|) < C(2)257+(v, 25"+, Since

(V= V)W — W)| < CEV = V. P(WI_1(2) + Wi_1) < COAV — Vi PWi_1 ()W, 1,
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we from (2.1.23) that for any > 0

1
1305C [ [[]| DIWEsc200, 0 (W32, (B )@Y — Vo) P v
i

1
< C[fo (ff(fg BO?|(Wi- 14254y, T)sl [(Wi—14251y, (Vv [0)) (DI

X{(V — v*)z_zslda)dvdm)l/zdr]

1/2
f f ( f b6%(Wi-1251, f)- <v—v*>2—25|h'|2da)dvd\4]
Q

<CZNIfG  maldlizss @plihllees,

2s-1+y+

X

where we used the regular change of variables z defined by (2.1.25) and the regular change
of variablesv — V. The estimate (2.1.24) yields the same boundfgr Therefore, we obtain

(2-1-27) ||2| < C||f|||_|1+25_1(R\?;)||g||H|2+5551_+f(R3)||h|||_2(R\3,)-

Estimates (2.1.22) and (2.1.27) together give the desired estimate (2.1.18).
For the convenience of the readers, we postpone the proof of (2.1.19) to the end of section 2.3.
And this completes the proof of Lemma 2.2 because (3) comes from (2) for the eabg + «.

2.2. Coercivity estimates. We establish coercivity estimates of the Boltzmann collision opera-
tor. We will show that the angular singularity in the cross-section yields the sub-elliptic esti-
mates which are the lower bounds of the collision operator (see [6]). Notice that we need precise
weighted sub-elliptic estimates as given in the following theorem. For more detailed explanation
and notations, interested readers can refer to [5, 39].

Theorem 2.2. Assume thay e R, 0 < s< 1. Letg> 0,20, g ¢ Lﬁqa)w 2, Llog L(RD).
Then there exists a constany G 0 depending only on @ - v.,6), [Igll_x and||gllL 1og L.
maxyt,2-y*}

and C> 0 depending on & - v,, 6) such that for any smooth functionef H;/Z(R\s,’) N L§+/2(R\3;),
we have

2 2
(221) _(Q(ga f)’ f)LZ(R\:;’) = Cg||Wy/2f||Hs(R§) - C||g||L#a><y+’277+}(R3)”f||Li+/2(R§) .

Remark 2.2. From the proof of the theorem, the constanti€ seen to be an increasing func-
tion of |||l z, ||g"]||[ll and ||g||[,1ogL whered = (v)"Mg. If the function g depends continuously on
1

a parameterr € Z, then the constant £depends onnf .z VY gell 1, Supez llge I log L @nd
Sup.z gl . In the later application, we take = (t, X).
maxyt,2-y*}

Proof. Firstly, we have
(Qg, f), f) = fR i fs (v = al)b(cost)g(v.) fWI (V) - f(V)}dodv.dv
_1 ~ SR
B 2fRe fgzq’("’ v.))b(cost)g(v.){ f (V)? — f(v)?ldodv.dv

1 _ o
> fR ] js; , d(lv — v.])b(cosd)g(v.){f (V) — f(v)}*dodv.dv
=R1 - Ro.
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For R, according to cancellation lemma (Corollary 2 of [6]), we have

R1=}f f O(lv - vi)b(cost)g(v.){ f (V)? — f(v)?)dodv.dv
=5 1. { (lv : ]—1 7 —<I><|v-V*D}b(cos@)g(v*>f<v>2dvdfrdv*
RS Js2 0082 0033§
f f (|v V. ]{ g - = 1} b(cosd)g(v.) f (v)?dvdodv,
RS Jg2 0082 CO§—

T -
R6 J§? 2

= 7%11 + Rlz.

For the first termRyy, from 1— cos’ § < 3(1- cosf) = 6sir? ¢, it follows that
Ri1 < Cligl IF1I%,
Y yt/2

becauseb < 1 wheny < 0. For the second termR;,, we first note that the mean value theorem
gives

V=Vl
<I>(|

) — O(v - Vi)

s3

1 V — V|
= —(—5 - Dv- vﬁ<2(1+(|
CoS5

)2)"

1
< C(— - DP(v - vil),
CoS5

whereg < cosg < a< 1. Similar toR;1, we can obtain
2
Ri2 < Cliglls, 11117

Y y+/2

For the termR,, we first note that

2 4 22
O(v-v.) =1L+ |v-V.)2 > W



THE NON CUTOFF BOLTZMANN EQUATION 23
Then, by using the fact thaa - b)? > a?/2 — b?, we have
= }f f O(lv — v,|)b(coss)g(v,){ f (V) — f(v)}’dodv.dv

>C bcost) IV v (F(v) - F()Pdodv.dy
R6 J§?

v

=C f b(cos@) g( >|)| W2 F(V) = (W2 f(v)}2dodv.dv
R6 Vi

_C f b(cos@)<g( >|)| (WY EW) = (Wi (V)

+ (W2 (V) = (V)2 f(V)}2dodv.dv
>Cy f f b(cosd) g(v- ){(\/)gf(v’)—(v)gf(v)}zdadv*dv
R6

V) | |
-Cy f f b(cosd) o(v- ){<v>%f(\/) — (V)2 f(V)}2dordv,dv
R6 J§2 <V*>M
= Ro1 - Roo.

For the first termR»1, by using the Corollary 3 and Proposition 2 of [6], we have

Ro1 = Cy f b(cose) o(v- >)| (V)2 F(V) = (v 2 f(V)}2dodv.dv
R6 J§2 V.

(2.2.2) j
> CyllWy /2 fIIZs — C||9||L1||f|||_2 ,
yt/2

whereg = (v)"Ig. Hereég is an increasing function afg||, 1, ||g||[11 andll@ll[fogp according to
1

the proof in the last part of [6], see also the Lemma 2.1 of [48].
For the second terR»,, note that for some € (0, 1), we have

WE-w)t o erlv-v)'T

bl = Iyl v—V|
(Vi) 2 (Vi) 2
Z‘J_M
< C Ve 2 V' - v,|tan@/2)

V+1(V-V) - v*> 7

IA

CVHI"(V = v,)2 tan@/2)

c{ V) F (V)i tan)2), ify = 0,
(V) tan@/2), otherwise

Hence, we get

y v)2
Ryp = Cy f f b(cose)g(v*){w} f(')2dordv.dv
R6 J§2 V.) 2

*

<C f f b(cose)tar?(9/2)<v*>2—v+g(v*){<\/>%f(\/)}Zdo—dv*dv
R J§2
2
< Callgly IR,

This completes the proof of the Theorem 2.2.
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In the following analysis, we shall also need the following interpolation inequality between
weighted Sobolev spacesynsee for instance [32, 39].

Lemma 2.3. Forany ke R,pe R,,6 > 0,

2
(2-2-3) HfIlH'B(R\S/) < C6||f||H'2<;‘5(R\?;)||f||Hg+d(R§)-

2.3. Commutator estimates. We are now going to study the commutators of a family of pseudo-
differential operators with the Boltzmann collision operator. This is a key step in the regularity
analysis of weak solutions because it requires the mollifiers defined by psdietemtial op-
erators. In what follows, we denote, () 23 by (-, -) for simplicity of notations without any
confusion.

Proposition 2.1. Let A € R and M(¢) be a positive symbol of pseudgfdiential operator in %0

of the form of M&) = M(|¢]%). Assume that for any = O there exists a constant € 0 such that
forany st >0

(2.3.1) cl<S<c implies ct<MO ¢
T M(7)

Furthermore assume that () satisfies

(2.3.2) IM©@(&)] = 10fM(€)] < CaM(E)E ™,

for anya € N3, Then the followings hold.
(1) 1f0< s<1/2, forany N> Othere exists a § > 0 such that

(2.3.3) ((M(DY)QA, 9) -~ Q(f, M(DVY), h)izs)|
< Cnll Flliz, ey (IMllz, ) + gty Il ey

(2) 1f1/2 < s< 1, forany N> 0and anye > O there exists a §. > 0 such that

(2.3.4) [(M(DVQ(F. 9) - Q(F. M(DL)). h),2(x3)

<Crellfllcy, e (IMGllzsee gy + Il agy Il ages) -

(3) If s=1/2, we have the same estimate as (2.3.4) @8+ v — 1) replaced by(y + «) for
any smallk > 0.
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Proof : Firstly, setd,(v) = ®(|v - v.|) and write
(M(DYQ(F, g), h) - (QF, M(Dy)g), h)
f f B(Iv — Vil, o) F(v.)gW)((M h)(v') = (M h)(v) )do-dv.dv
R6 SZ
- [, [ B0V v T)M WA - Akl
R6 SZ
= fR i fS ) b(cose)f(v*)[(d)*g)(v)(Mh)(v’) - {M(d>*g)}(v)m]do-dv*dv

+ fR 6 fs _ b(cosd) f(v.){M(@.g)} () (h(v) ~ h(v))derdv.dv
- f f b(cosd) f(v.){®.(M @)}(v)(A(v) - h(Y))derdv.dv
R6 JS§2

= [, [, beoss) ()] @. MR - (M(@.0) G Jdrdvcv

* fR fs b(cosd) f(v.)([M, @.]g)V)(h(v') — h(v))derdv.dv
= I+1171.

The above computation is justified with cfit@pproximation, see the remark given after (2.1.4)
and also [39]. The first termi can be rewritten by using Bobylev formula (see e.g. [6]) as

7= [ [ B )(ME© - MENF @0 e ™ dodv. e,

where

§+I§Icr
& = 2

Notice that in the case of Maxwellian molecule type cross sectionyithD i.e. (v —v,]) = 1,
I7T =0.
SinceM’(|£2) = 2¢ - VM(£)/I£? and|¢*| < €] < 2)¢*), it follows from (2.3.1) and (2.3.2) that

(2.3.5) IM(@#) - ME) < C ’sing i

fsz b(|—§| o) ‘sing

and
2

do < C < +oo.

Thus,
nsc [ oy [ [ b(E 7) S IMENF (@) 7 G)(E)] IA@)Idzdord,
<o [ s [ [ b(E o) SitP JIM(E"VF (.)€ edordv.)
[y s [ [ b -osin? SiR@Pdzdodv)

< Cllfllz, (SUPIM(DY®-(v.) 7 g(Wlz, )il
Vi
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where we have used Plancherel’s equality, the change of variablest* for which d¢ ~ dé*
uniformly with respect tar, the estimat&®.(v,)™"+ < (v)?+. Then by using the expansion formula
of the pseudo-dierential calculus

1
(2.3.6) [M(Dy), ®.(V)]g = Z = 0,)M@(Dy)g + rn, (v, Dy; V.)g,
1<lal<N;

with N; > A, and the condition (2.3.2), we obtain
(2.3.7) SupM(Dy)@.(v.) " gW)ll 2, < C(IIMgllL% + IIQIIHAfwl).

Vs y+
Hence,
(2.3.8) 171 < Cllfls, (IMGlz, +1Gl-xe bl

We now turn to the ternd 7. Firstly, set
F(v,vi) = [M, ®.Jg(v),

and decompose
IT = fR i fS  b(cosd) f(v.){F(V. v.)h(v') = F(v. v.)h(v)|dodv.dv

+ fRe fs; b(cose)f(v*)(F(v, Vi) — F(\/,V*))h(\/)dv*dvdo-
=J1+ .

According to the cancellation lemma [6], we obtain
f f b(cost){F(V', v.)h(v) = F(v, v.)h(v)}derdv = (S « {F(-, v.)h})(v),
R3 J§?
where the convolution product is ine R3, and in this case,
e b ! d
= i SO)| ——— — 1|do
S ZnJ; singb(co )[cos3(9/2) |
is a constant function. Consequently,
J1 :f f(v*)(S*{F(-,v*)h})(v*)dv* = Sf f(v.)F(v, v.)h(v)dvdy..
R3 RS
By (2.3.6) and (2.3.7), we get
(2:3.9) M. f FWIIFC el zdv,
R
<ClIfliz, (IMglicz, + ligll,i-n bl 2
)ﬂr

To estimate the ternd,, we need to consider the following two cases.
Case 1.0 < s< 1/2. Since the mean value theorem yields

F(v,v.)— F(V,v.) = (v-V)- fl Vu(F(V +7(v—V),V,)dr,
0

by noticing that
IV =V =|v—-V.sin@/2) = |V - v.|tan@/2),
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we have

1
3] < fo ( fR sz PCOSIN = MUV + (v - V). v.)ldvdv.de)dr.

<c( f b(cose)Iel(v.)* | (v.)IhW)Pdvdvdar) '
R6xS2

1
x f ( f b(coss)lBI¢v.) (V)|
0 R6xS?
=C J1 X Joo.

By the change of variablas— V' for whichdv ~ dv uniformly inv, € R3, o € S? (see [6]), we
get

2

1/2
dvdwdq) dr
V,

|V - V*|
o (WY + V=V )

(2.3.10) 35, < Clifligy IIhiZ,.
To estimatel,,, we apply the change of variables (2.1.25) and use (2.1.26). Setting
% _ <V - V*>
lﬁ (V) - <V*>7+ s

we get

1
B=c [ ] [, bleosaeiw.y ()] @Rz v.) dzdudodr
0 R21xS2

< Cliflls_suplly* (Y (VuF)(, VoIIE-
V*

On the other hand, it follows from the expansion formula of pseudfergintial operators that,
with @, (v) = (1 + [v - v,|?)”/? we have for anN; € N

(VWE)(V. i) = V[ M, @.]g(v)

1 o
(2311) = Z a {(V(D*(a))M(a)(Dv)g + q)*(a/)M(a)(Dv)va} + er(Va Dv; V*)g

1<]a|<Ny '

=Fny (v Dy; v.)g(V) + Finy (Vi Dy; v.)g(v),

wherery, is a pseudo-dierential operator with symbol belonging$§3\'1 uniformly with respect
tov, € R3 (cf. [41]). Since

(V—V,)

VWY < G

|lﬁ*®*(a)| < Ca
by (2.3.2), we have far # 0 that,

IM@(£) & < CMENE) M < CM(©).
Hence

(2.3.12) 3%, < Clfll (Mg, + ||g||§|:;N1).

Now, it follows from (2.3.9), (2.3.10), and (2.3.12) that
(2.3.13) 1271 < Cllflls, (IMlz, + 1Gl-x: bl

holds when O< s < 1/2.
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Case 2:1/2 < s< 1. We now decomposé, as follows:

1
b = fo ( fR - b(cosh) f (v.)h(V)(v - V) - (VVF)(V + (v — V),v*)dvdmda)dr
= f b(cosd) f(v.)h(V)(v = V) - (VyF)(V, v.)dvdu.do
REx$2

1
+ fo ( fR - b(cosd) f (v.)h(V)
V=V) (VR +1(v= V), %) = (WF)(V, v)} dvdv.do)dr

=20+

The essential feature of this decomposition is tﬂf}lt/anishes by symmetry as in the proof of
Lemma 2.2. Indeed, we have

X = fR _f(v)h(v)

lﬂg—(\/’)_v* .o a(w(f(v’)) _ o .
{ fS Zb(%(\l,)_v*| )| 5 |Wev) - v)d } (VoF)(V.v)dVdv.
:O,

because of the symmetry imy ando; in the sense that,, (V') -V = —(¥4, (V) — V'), cf. Figure
2.
Now, by the change of variable— z = Vv + 7(v - V) defined by (2.1.25), we consider

i) = fR P f(v)h(V)(V = V) - {(VeF)(2 Vi) — (VWF)(V, v.)}dvdv.do-

By recalling the expansion formula (2.3.11) &€)(v, v..), we first consider

J%(T, )
- f b f(V.)h(V)(V = V) - {Du oy M@ Vyg(2) — Doy M@ V,g(v')}dvdvdor
R6xS2
(2.3.14) = f b f(V.)h(V) (@) (2) — Dua)(V)} (V= V') - M@V, g(2)dvdvder
R6xS2
+ f b f(V.)h(V) Doy (V)(V = V) - (MDV,g(2) - M@ V,g(V)}dvduvdo
R6xS2

ZJ;’O(T, )+ Jg(r, Q).

Notice that the case whda| = 1 is the most diicult case in the sense thM(")(D\,) Vyis a
pseudo-dferential operator of ordet with symbol bounded b M(¢) due to the assumption
(2.3.2). By writing (1) instead ofa) whenla| = 1, we have

[(®.1)@) - Puy(V)} V- V]| < Clz- V. )6,
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which gives

1/2
(2.3.15) 192%, (2))] < ( f b6?|(v,. )7+ f(v*)||h(\/)|2do-dvd\4<)
R6xS2

X ( f VRIS TUA]
R6xS2
<Clfliz, IM g2, lIhil.2.

<Z - V*>y

MY Ve

2 1/2
dadvdw)

In order to evaluate the terniw}(r, (1)), we take the same Littlewood-Paley partition of unity
{¥j(€)} as in the proof of Lemma 2.2 and write

3 (1))

= f b f(v.)h(V )P0y (V)(v = V) - (MDVyg(2) - MDV,g(v)}dvdv.der
R6xS2

-y fR DIV 0) V) - (62 - 5v) dvelucl
=0 VR
= Z ‘]N%,j(T),

j=0

whereg;(v) = ¢(Dy)M®(D,)Vyg(v). For eachj we apply the following decomposition by using
Qj introduced in the proof of Lemma 2.2 to have

j%, j (7)

- [([(f DIV )

L (Z=V)Vgj(V + s(z- V))do)dvdv )ds
+ fRG (Jg;? b f(v.)h(V)D.1)(V)(V-V) - (gj(Z) _ gj(\/)) do- | dvdy,

=510 + 50

By setting

Vo=V +8(z- V),

T,
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we have

1
B (], ( A | bl\/—V|2|f(V*)Ilh(V')II(D*(l)(\/)IIng(\/T,s)ldU)dVd\é)dS

1
=C f ( f ( f b(cosa)6*(v — Vi) 2(v.) @7 f(v.))
0 R6 i

>2$+771

X Ih(\/)l

Vg;(V; o)| dor)dvdv.)ds

< )(25+7 1).

< c2el( f ([ blcosa)e?2i@ 29 v — v,y 25y, )27 -Dr f (v. ) Ih(v') Peder)cvel )
R6 Qj

1
% f (( f ( b(cos8)62212-29 (v — v, )22y, )@ -1k £ (v,)|
0 R6 Qj

’<\,'T’S>(25+7—1)+2](25—2+5)ng(V;,S)|2 da)dvdw)l/z)ds
= C21 J57,(7) x 337,().

By using the same change of variables asJgrin the previous case, it follows from (2.1.23) that
L1 2 2
(2.3.16) 95" < Clifllg,_ IIhIE

Similarly, by taking the change of variables- v, ¢ as in the previous case again, (2.1.23) leads
to

(2.3.17) Li2@? <Cllfll, o (M se  + 10, e c.)

(2s+y-1)+ H(25+3,_1)+

where we have used

”2](25—2 S)Vg (V)” (HM g||H2571+; + ||g||2H/t—N1+2sl+e)‘

(2 =1+ (2s+y-1)+ (2s+y-1)+

Hence, it follows from (2.3.16) and (2.3.17) that, fér > 2 + 2s— 1 + &, we have

1,1 £j
(2.3.18) [ @I < C2 il (IM iz, + gl )bl

On the other hand, foiiz(r) note that

L) = fR 6 [ fg DIV =) gi(der vl
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by the symmetry nﬂf We have
1Bimi<C f 6( fg b(cosg)o(v — v, )125(v, ) B De £ (v,)|
R 4
J

(2= v.)*

X|h(\/)| < >(25+7 1), gj

(2)| dor)dvdv,
< 2l f ( f b(cos@)021(1‘25)<v—v*>1‘23(v*>(25+7‘1)+|f(v*)||h(\/)|2dcr)dvd\4)1/2
RS Qc
]
x ( f ([ blcos)e2i29¢y — v, )25y, B Ds | (v,))
RS Q‘J?

. 1/2
|<Z>(25+7—1)+2J(23—1+g)gj(Z)|2 dO‘)dVd\lk) /
—Sj
<C2 il Ihlla(IM Gllggee  + gl ).
because of (2.1.24). This together with (2.3.15) and (2.3.18) yield
1
(2.3.19) 92 (W) < Cllflly,, (Ml + gl Jhile.

Itis easy to see that all other terms coming frbry (v, Dy; v.)g(v) in (2.3.11) have the same bound
estimated above. Moreover, all the terms coming frapdv; Dy; v..)g(v) can be estimated by

ClIf ”L(125+7—1)+ ||9I|H(42—S§771)+ 2.
Therefore, we finally obtain
_ 1l
192l = 1331 < Cllflly, (IMllyzs-zee + Dl )iblle.
In summary, when 2 < s < 1 we obtain instead of (2.3.13) that
(2.3.20) 771 <Clifll, (Ml + sy iRl
By combining (2.3.8), (2.3.13) and (2.3.20), the proof of Proposition 2.1 is completed.

The rest of this section is devoted to proving (2.1.19) of Lemma 2.2.

Proof of (2.1.19)of Lemma 2.2Form = 2s— 1 + & > 0, we have withA = (1 — A,)Y/?
(WQ(f, @ - Q(f, Wig), h) = ((A™™Q(f, g) — Q(f, A~"g)), WA™h)
+ ((WQ(F, A™Mg) — Q(f, WiA™g)), A™h)
+((QUf, AW g) - AT"Q(f, Wig)), A™h)

+(([A™, WIQ(F, g) — Q(f, [A™™, Wi]g)), A™h)
= (1) + )+ @)+ (4).

It follows from (2.3.4) withM(¢) = A~™ that
1) < Clifll.2 llgll, 2 Ihllm,
(@sy-1F T (2sty-1)t
I3 < ClIfll2 IWigll, 2 lIhllm.
(2s+y-1)* (2s+y-1)*
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By means of (2.1.18), we have
I(2)l < ClIfll. llgll 2 [Nl
I+2s-1+y* I+2s-1+y*
To estimate (4), we first note that

[A™™, W] = 7 (W) (A + Wi_aR(v, Dy),
lal=1

whereRis a pseudo-dierential operator which belongs 8{’{{2. Write

@ =" ([(x"™7A%.9) - QU (A ™)}, (W, A™)

lal=1
+ 7 ({0M) ) QU (A™Pg) = QF, (W) (A™ )}, A™h)
l|=1
+ (R, DYQ(F, 9), Wi-1A™h) + (Q(f, Wi-1R(v, Dy)g), A™)
=(@ + (b) + () + (d).

It follows from (2.1.1) that
@)1 < CIIQLE, Olly-2llhllr, < Cllflly gl Bl
I(d)l < CIQ(f, Wi—1R@)ll 2llNllum < ClIflla gl 2 lIAllym.
(y+29)* I-1+(y+29)*

By exactly the same method as the one for (2.1.18), namely, by replgiby (W)@ which is
bounded byV_i,|, we have

—m\(@
)< Clfl (A gl

I22+

Ihllxm < ClI (2 lgll 2 lIhllpm .
1-2+2s+yt 1+2s-2+y1

The estimation ong) is the same as the argument in Proposition 2.1 by replam(D) by
(A"™)®), except for the corresponding term.fo Notice thatD¢ ((£)™™) := M(®)(¢) is no longer a

function of|¢2. Instead of (2.3.5), we only have
(2.3.21) ||\/|(0f)(é:) _ M(Q)(§+)| <C ‘sing‘ &ty

Thus, we need to use the symmetry property as in the proof of Theorem 2.1. The corresponding

termtof is
I = b(= - o) f(v.
fRe 5 (|§| 7)T(v)

x (M@(@) ~ MO ()T (@.9)(E)e™¢ dodv.ho(@)dé,
wherehg = (W)@ A™h. By letting

PV=VD ) b, = oW

F %) = = )
W) = =0 Vo)

we write

7= f W (v,

£ (M@(&) — M@OH))dv-€"E (e, v.)av-¢h
fR . f b(lfl ) (M@ (&) - ME(EN)) < F(£F, v.)ev-4h(g, v.)dordé v,

- f VY F(v) L(v.)dv.
RS
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Set
Fev.) = &€E(E ), R W) = €4h(e,v),

and write

& a @) [\ \ B (et T YN
£ = [ | [ B - (MO - MO (e v e v e v o

v hesalf Lo

X (VEMO)(E™ + (¢ = £)(E VPR V(e v.)dordedr
=LMv.) + LAV.).

By the same symmetry property as shown in Figure 1 in the proof of Theorem 2.1, we have

f f b( - ) (VeM@)(E) - & (@) (", v)h(E™, v.)dorde = O.
R3 €]
Then it follows from (2.3.21) that

supl£*(v.)| < Cliglz Mol < Cliglz, Il
Vi

and
suplL%(v.)l < Cligll 2, INoll.2 < Cligllz, il
Vi

whence we obtain
7 < ClIfllz gl 2 ||h||H|m-
l+”y+ 7+

In summary, we obtained the desired estimate (2.1.19).

3. REGULARIZING EFFECT

In this section, we will prove the regularizingfect on solutions to the non-cdf@oltzmann
equation starting fronf 7v(|5(]T1, To[ xQ x RY)). Actually this will be proved by using an induc-
tion argument in the following subsections. In the first step, we will show the gain of regularity in
the variablev mainly by using the singularity in the cross-section, that is, the coercivity property
in (3.1.3). In the second step, we will apply the hypo-elliptic estimate obtained by a generalized
version of the uncertainty principle to show the gain of regularityxirt)(variables. Then an in-
duction argument will lead to at least one order higher regularity,it) {ariables. By using the
equation and an induction argument again, at least one order higher regularity can be obtained in
variable. Therefore, the solution is shown to bé{ﬁ(]Tl, T2[ xQ xR3) which by induction leads
to 7‘{|°°(]T1, To[ XQ X R\s;)

Letf € 7’{|5(]T1, To[ xQxRY)), for all| € N, be a (classical) solution of the Boltzmann equation
(1.1). We now want to prove the full regularity @ft)y(x)f for any smooth cuth functions
¢ € Co(IT1, T2, ¢ € C3(Q).
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3.1. Initialization. Here and belowp denotes a cutbfunction satisfyings € C3* and 0< ¢ < 1.
Notationgs cc ¢, stands for two cut functions such thag, = 1 on the support op;.

Take the smooth cufbfunctionse, ¢z, 93 € C3(1T1, T2[) andy, y2,¥3 € C5(Q) such that
¢ CC gp CC pzandy cC Yo C Y. Setfy = p(y(X)f, f2 = pa(y2(X) f and f3 = p3(t)ys(X)f.
Fora € N7, |a| < 5, define

9= 3" (eOY(F) = o (eOU( ) € LER).

Firstly, the translation invariance of the collision operator with respect to the vanidbiplies
that (see [32, 37, 53] ), for the translation operatigtin v by h, we have

ThG(f, g) = Q(7nf, ThQ).

Then the Leibniz formula with respect to thex variables yields the following equation in a weak
sense

(3.1.1) G+V-0g=Q(f2 ) +G, (LxV)eR,
where
(312) G = Z C:g (aal f2’ 9522 fl)

a1+az=a, 1<|aq|

(e () +v - ux(Ne® ) +[07, v - ax(e®u(x)T)
(A +(B) + (C).

+

To prove the regularity aj = 0*(¢(t)y(x) ), the natural idea would be to ugeas a test function
for equation (3.1.1). But at this poirg,only belongs t¢|2(R7) so that it is only a weak solution to
equation (3.1.1). By using the upper bound estimat@owe haveQ(f2,g) € LA(R¢,; H™2(R3)).
Thus, we need to choose the test functions at least in the §B&k&,; H25(RJ)). For this, we will
use a mollification ofy with respect to the variableg,(v) as a test function.

For this purpose, leb € CJ'(R) satisfy 0< S < 1 and
S(r)=1, 111, S(r)=0, |1]=2
Then
SN(DXSN(DY) = S NIDYA)S@NIDu?) ¢ Hi®(R%) — H™(R),
is a regularization operator such that
I(SN(D)SN(DV)f) = flli2mey = 0, @sN — co.
Choose another cufitfunctiony cc ¢, cc ¢, and set
Pn,i = ¢¥1(X)Sn(Dx) Wi Sn(Dy).
Then we can take
§= PR (Pn1 9) € CHR H(R)

as a test function for the equation (3.1.1).
It follows by integration by parts oR’ = R} x R$ x R3 that

([SN(DV), V] - VixSn(Dx)g, ¢a(X)WiPN; g)Lz(Ry) =
(PN,l Q( f27 g)’ PN,I g)LZ(R7) + (G7 g)LZ(R7)7
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which implies that
(3.1.3) ~(Qf2.Pn10). Pn.iQ) ,r = ~(ISN(DW). V] - ViSn(DX)G. ¥1(X)WiPw, g)
+(Pur Qf2, 9) = Q2. Pr1 ), Pt 9), 0 + (G5 8), gy

By using (3.1.3), we can deduce the regularitgdfom the coercivity property of the collision
operator on the left hand side and the upper bound estimate on the right hand side. And the detailed
calculation will be given in the next subsection.

L2(R7)

3.2. Gain of regularity in v. In this subsection, we will prove a partial smoothirfieet of the
cross-section on the weak solutigin the velocity variables .

Proposition 3.1. Assumethad < s< 1, yeR. Let fe 7-{|5(]T1, To[ xQ x R3) be a solution of
the equation (1.1) for all E N. Assume furthermore that

(3.2.2) f(t,x,v) >0 and [If(t, X )l gz > O,

for all (t, x,v) €]T1, To[ xQ x R3. Then one has,

(3.2.2) ASt € HP(R'),

forany le N, where { = p(t)y(X)f with o € C3'(]T1, T2[), ¥ € C*(Q).

Proof : Firstly, the local positive lower bound assumption (3.2.1) implies that
(t,x)esupwxsuppwl 1Talt % lsgegy = G0 > 0.

Thus, the coercivity estimate (2.2.1) in Theorem 2.2 gives that foyanR, 0 < s< 1,

_(Q(fz, Pni @), Py g)LZ(R7) = - L wone j): — (Q(fz, Pnig). Py g)Lz(Rs)dth

= [ t |  (ColVh 2P o6 X
Clfatx e elPuGE X g )dxat

> Coll AMy/2Pr) OliEaery = ClifallLogen ) egyIW g||ﬁ§+/z(R7),

whereCq depends oo, sup || fa(t, X, -)||L1(R§) and sup, |/ fa(t, X, -)|||_|Og L(rY)> S€€ Remark 2.2.
For the terms in (3.1.3), firstly note that
(32.3) Bn(Dy). VI - Vx Sn(Dx) = 2 2M(S)n(Dy) Dy - Vx Sn(Dx) © LARS,) — LA(RS,).
is a uniformly bounded operator so that
|(ISN(DV), V] - Vx SN(DW)G, ¥a()WiPw, g)

Hence, by using (3.1.3), we get, for 3/2 + 2,
(32.4) Ay 2PN Olifaery < CY(L+ 1 Fallyzes e Fallfegery + (c. 6) 2(er

+|(Pas Qf2.9) - Q(f2. Prus 9). Pri)

In the above, constan@ > 0 are independent ¢i.
We complete the proof of Proposition 3.1 by estimating the last two terms in (3.2.4) through
the following three Lemmas.

< ClIfull ey

L2(R7)

L2(R7)
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Lemma3.1. Assumé® < s< 1l yeR. Let fe 7-{|5(]T1, To[ xQxRY), | > 3/2+ 2. Then, for any
a € N7, |a| < 5, we have, for ang > 0,

(3.2.5) |(G Q>L2<R7> < Cs||f3||ﬁ||5+4+m(R7> + el AGW, 2P, g”EZ(RZX_V)'
Proof : Firstly, we prove that
(3.2.6) G € LA(R{, H &1 (RY)),

for anyl € N, where (3- 1+ 6)* = max2s— 1+ 6,0} ands > O satisfying 32— 1+ 6 < s. By
using the decomposition in (3.1.2), it is obvious that

(B) = 0*(ew () f +V - ux(e(t)f) € LART),
and
||(B)|||_|2(R7) < C||f2||H|5+1(R7)-
Since p?, v - d4] is a differential operator of orded|, we have

||(C)|||_I2(R7) < C||f2||H|5(R7))'

For the term A), recall thata1 + a2 = @, |a| < 5 and|a| < 5. In the following, we will apply
Theorem 2.1 withm = 1 — § — 2s. We separate the discussion into two cases.

Case 1.f |a1] = 1,2, we have

@ @ 2
j%t R3||Q((9 1f,, 072f))(t, X, ')||H|1-5_25(R§)dth

@1 . 2 @2 . 2 )
le; ‘[1;3(”6 f2(t’ X9 )HLl (25+7)+(R§)||8 fl(t’ Xa )”Hl—b (R\E;)dth

IA

1+ I+(2s+y)*

C“aal f2||im(Rﬁx; L1 (R?/)) th ~[‘R3 ”632 fl(t, X, )|||2_|1 " (Re)d th

1+(2s+y)+ I+(2s+y.
2 2

C||f2” 2+4/2+6 ”fl”Hs

1+3/2+6+(2s+y)

IA

IA

(R7) (2s+y)* (R7) )

I+

Case 2.If |a1] = 3, then|ay| < 2, it follows that

2 2 v 2
th Li ||a( ! f2(t9 X, ')“Ll * (Rs)”a( 2 fl(ta X, ')HHl—J )+(R\3; dth

1+(25+y) 1+(2s+y,
2 @ 2
< IOy s ey [ [ IR, , dxdt
LR H|+(2s+y)+(RV)) Ry JRS o L|+3/2+a+(25+y)+(RV)
2 2
< C||f1|| 2+1-6+4/2+5/2 ||f2|| 5 .
Hi o @) T g 51 sy (B

By combining these two cases, we have proved (3.2.6).
Now if 2s— 1 < 0, then (3.2.6) implies that

|<G’ Q)LZ(R7)

On the other hand, if & 2s— 1 andy < 0 (the case > 0 is easier), then (3.2.6) implies that

|(G’ Q) L2(R7)

<Cl| fsllﬁls4 @) IW-iy1/2Pn1 Gllizes,; vos1eaed)):
+4+y] ’

< Clfall’s

I+4+y+ (

R7)"

< Gllzqe srigzsyo ey Woiy/2Prt Gllages, s mzsoegy)
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because - 1+ ¢ < s. Therefore, the proof of Lemma 3.1 is completed.

We now turn to the estimates of commutators between the mollification operators and the colli-
sion operator, which are given in the following two lemmas.

Lemma 3.2. For anyy € R, we have
(D) If 0 < s< 1/2, then for any suitable functions f and g with the following norms well defined,
one has

(3.2.7) ISn(DV)Q(f, 9) — Q(f, Sn(DV)9)ll 2(rz) < C||f|||_$+(R§)||g||L§+(R§),

for some constant C independent of N.
(2)If 1/2 < s< 1, then for anys > 0 there exists a constant;C 0 such that

(328 ISNDIALY - QA SuPIDlrey <Callfliy ol 63
and
(3.2.9) ISn(DV)Q(f, 9) — Q(f, SN(DV))lIH1-25-5(r3) < Cr5||f|||_(12$+y7l)+(R§)||g||L(225+771)+(]R\3,)-

(3) When s= 1/2, we have the same form of estimate as (3.2.8) (@ y — 1) replaced by
(v + «) for any small > O.

Before giving the proof of this lemma, notice that whea 0 in the Maxwellian molecule case,
the following proof of Lemma 3.2 is similar to Lemma 3.1 in [48] (see also Lemma 5.1 in [8])
by using the Fourier transformation of collision operator. However, here we consider the case for
v €R.

Proof of Lemma 3.2 : The proof is a slight modification of the proof for Proposition 2.1. Set

M(l) = Sn (i) = S72NigP).
ThenSy € Sg,o uniformly. Even though it does not satisfy (2.3.2), we have

107 SN(ID] < CaSnsa(£]) < € >7
with C, independent oN € N. Thus, (2.3.3) implies (3.2.7) and (2.3.4) implies (3.2.8) respec-
tively.
Fgr (3.2.9), note that witm = 2s— 1 + § we have
(SnQ(f, 9) = Q(f, Sng), h) = (A™"Q(f, g) = Q(f, A™"g)), A"Snh)
+ ((SnQ(f, A™™g) — Q(f, A™"Sng)), A™h)
+((Q(f, SNA™™g) — ATMQ(f, Sng)), A™h)
=(12) + (12) + (I3).
By applying (2.3.4) withM (&) = (¢)"™to (I1) and (3), we obtain
(D1 +10) < Cllflle lgllz [l
becaus&Sy e S‘l’0 uniformly. The same bound omyj follows from (3.2.8).

Notice that the case af= 1/2 follows from the case of = 1/2 + « for any positivex because
the main concern here is the upper bound. And this completes the proof of the lemma.

y-1)* |

The following lemma is on the commutator of the collision opertor with mollifier in xhe
variable.
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Lemma 3.3. Let0 < s < 1 andy, m € R. For any suitable functions f and h with the following
norms well defined, one has

(32.10) ISNDIQUE. 1)~ Q(F. SO Wil res, ey
-N
< C20Vx e, 18 wipliMliees, v )

for a constant C independent of N.

Proof : Let us introduceKy(2) = 22NS5(2N2)2Vz Note thatky € L1(R®) uniformly with respect
to N. Then for any smooth functiom, one has

~ 1 ~
((5u0) Q1. 1=t SO P = [ [ [ Rutey
X(QUVkf(t. +7(x—y). -). 2Vh(ty. ), ht.x, ) ., dtdxdydr.

By applying Theorem 2.1 witim — 2s, the right hand side of this equality can be estimated from
above by

L2(R3)

C{ﬁﬂpnvxfa,x,-nuéﬁwAR@}x

< - ) " h : S-m
\[1;1 o (IKnI* [1277N(t, )||H(25+y)+(R§))(X)|Ih(t, X, lyzs-mzydxdt

_N ~
< C20IVi i@z, el v @il e mes),

which completes the proof of the lemma.

We now apply (3.2.10) witth = Sy(Dy)g andm = 1, we get

(3.2.11) ISn(Dx)Q(f, Sn(Dv)g) — Q(f, SN(DX)SN(DV)Q)HLZ(Rﬁx,Hl—ZS(Rg))
< ClIVx Pl 12 @oplOlees, 2 @)

Here, we have used the fact that a mollification oper&tdD,) in thev variable has the property
that

-N
127" Sn(Dy)g(t, x, ‘)||H(128+y)+(R§) < Clig(t, x, ')IIL(225+«/)+(R\3/)’
whereC is a constant independent dh

Now we are ready to complete the proof of Proposition 3.1.

Completion of proof of Proposition 3.1.
We study now the commutator terms in (3.2.4). For this, we have

(3212)  (PnQf2.0) - Qf2. Pr1@). Pnig) ey
(Sn(DY) Q(f2.9) ~ Qlf2. Su(DW) ). SHDIUAIWMPNIG) ,
(Sn(Dx) Q(f2. Sn(Dy) ) — Q(f2, Sn(Dx)SN(Dv) @), ¥1(X)WiPny 0)

(¥1(9W Q(f2, SN(Dx)SN(DV) @) = Q(f2, Pni @), Puig)
(D+(2)+O)

+

L2(R7)

+

L2R7) "
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Note thatA[y1(X), Sn(Dx)]Sn(Dy) is an L? uniformly bounded operator with respect to the
parameteN for 0 < s < 1, and that W, Sn(Dy)] is also a uniformly bounded operator from
L2 to LIZ_1 with respect to the parametdl. The discussion on (3.2.12) can be divided into the
following two cases.

Case 1.0 < s< 1/2. Inthis case, Lemma 3.2 implies that , fas max4, (y + 29)*},
(1) < Cllfalliwgeg,, 11, apll9llizen 9l g oy < Cllfalls o
And Lemma 3.3 implies that
|(2)| < C”VXfZHLM(RéX, Liuzs(R‘%))”g”Lz(Ré L2+(R3))||g||L2 R7) = C”f3”H5(R7)
As for the term (3), we use Lemma 2.2 to have

3
3) < Cllfallees, 2 ., eaplGlz e lIPh Ohager) < Clfalls o

yt+2
Case 2.1/2 < s< 1. By using (3.2.9), we have

|(1)| < C||f2|||_oo(R4 (R3))”g”|_I (R7)”Wy/2PN,| g|||_2(Rﬁx’ H2s-1+5(R3))

+yT+2s-1 yt+2s-

< s||A3wy/2PN,| Oiteen + Collfallfs ey
l+4+y+
We can use (3.2.11) to show that

|(2)| C||fo2|||_oo(fo, L1

IA

Oy, 2, @aplW PN Ol 2, Hes-2)

Ll

IA

Callal ) + AW 2Py Gl ey

Then, (2.1.18) implies that

I3 < Clllele(Rg Lo, E)IVLOISN(DX) SN(DV) Gllary, zsis @3ylIPN1 Gllizer)

INA

C ||f3II

2
H5(R7) + gllAvW)//ZPNJ g”LZ(RZx,v)'

In summary, we have obtained the following estimate for the second term on the right hand side
of (3.2.4)

(P Q(f2,9) - Q2. Pur @), P )
< CollfallZ¥ ) + ellASWy2Py, 1 gI

L2(R7)
H5(R7) L2(®{y)’
Finally, it holds that

(3.2.13) IASW. /zPN|g||L2(R7)scnf3||H5<R7),

where the constants, k, andk’ are independent dfl. Therefore, Proposition 3.1 is proved by
taking the limitN — co.

3.3. Gain of regularity in (t, x). First of all, let us consider a transport equation in the form of
(3.3.1) f + V- Vif = g e D’'(R?™Y),

where , x,v) € R*™" = R2%1 |n [8], by using a generalized uncertainty principle, we proved
the following hypo-elliptic estimate.
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Lemma 3.4. Assume that g H™S (R?™1), for some0 < s < 1. Let f € L2(R?™1) be a weak
solution of the transport equation (3.3.1) such thdtf € L2(R>™1) for some0 < s < 1. Then it
follows that

AFTRVED e 12, @, AP e 2 @,
Cs E

whereA, = (1 + |D.]?)Y2.

As mentioned earlier, this hypo-elliptic estimate together with Proposition 3.1 are used to obtain
the partial regularity in the variablg §). With this partial regularity int( x), by applying a Leibniz
type formula for fractional derivatives, we will show some improved regularity in all variables,
and ¢, xX). Then the hypo-elliptic estimate can be used again to get higher regularity in the variable
(t,x). This procedure can be continued to obtain at least one order higher regularify)in (
variable.

For this, we first recall a Leibniz type formula for fractional derivatives with respect to variable

(t, X).
Lemma 3.5. Let0 < A < 1. Then there exists a positive constant € 0 such that for any
f € S(R"), one has

(3:32) D, f) =7 et e = ¢ [ TP D

|h|ﬂ+/l

Indeed, note that

010 gy [ geps [ 1=
———  ~dh= f(&)eve dhds,
[ o O Jo T A

1-e'h¢ L 1- e
\fRn |h|n+/l dh = |§| fR” |u|n+/l du’

so that (3.3.2) follows from
i
1-¢e''w
————du=#0,
»[R” |u|n+/l #

which is a positive constant depending only.band the dimension, but independent fror.
Using this Lemma, we have the following Leibniz type formula,

f(y)a(y) — f(y+ h)gly + h) dh
|h|n+/l

(f&) - Ty + ey +h) - ob)
|h|n+/l :

We now turn to the analysis of the fractional derivative with respect, g of the nonlinear
collision operator. Denote theftirence with respect ta, ) by

while

(333)  IDA(f(y)aw) = C f

Rn

= o)D) + F)IDyY(Y) + C, fR n

fu(t, X, v) = f(t, x,v) = f((t,x) + h,V), heR{fx.

It follows that for the collision operator (where= 1 + 3),

(3.3.4) IDeX'Q(f, ) = Q(IDixI'f, @)+ Q(f, IDixl'g) +Cy fR ) I~1Q(fn, gn)dh.
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This kind of decomposition will be used extensively below in order to get the partial regularity
with respect to thet(x) variable.

First of all, we have the following proposition on the gain of regularity in the variahbe (
through the uncertainty principle.

Proposition 3.2. Under the hypothesis of Theorem 1.1, one has
(3.3.5) A L e HXR),

foranyle Nand0 < 59 = S((;’ls)).
Proof: In fact, for anyl € N, it follows from Proposition 3.1 that
ASWig € L2(R).
Then the upper bound estimation given by Corollary 2.1 with —simplies that
WQ(f2, g) € LA(R{,; HTS(RS)).
On the other hand, Proposition 3.1 and (3.2.6) give
WG € L2(R{,; H™@1)(R3)).
By using (3.1.1), it follows that
(3.3.6) B(Wig) +V - dx(Wg) = WQ(F2, @) + WG € H™(R).
Finally, by using Lemma 3.4 witlk’ = s, we can conclude (3.3.5) and this completes the proof of
the proposition.
Therefore, under the hypothedise H>(JT1, To[xQ x R3) for all | € N, it follows that for any
| e N we have
(3.3.7) Ale®u()f) e HPR),  AZe®v()f) € HPR).
We now try to improve this partial regularity i, &) variable.

Proposition 3.3. Let0 < 1 < 1. Suppose that € H>(T1, T2[ xQ x R3) is a solution of the
equation (1.1) for all e N. Furthermore, assume that for any cgittunctionsey, ¥,

(3.3.8) Ay f) € HPRY),  Alxle®y(9f) € HRT).
Then, one has
(3.3.9) AAL e (x)F) € HP(R),

for any | € N and any cutgf functionsy, .

Proof: Set
On = Pnig = ¢a(¥)Sn(Dx) Wi Sn(Dy)d” (e(t)y(X) ),
wherea € N7, |a| < 5 andl € N. Then (3.3.8) yields
IAVONIz(e7y < CHIAGH" (0(D)(X) il 2(e7)-
and
IALxINIlIL27y < CIALD (O%(X) DLz,
where the consta is independent of.
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It follows thatgy, satisfies the equation

(3.3.10) Ot(Ong) +V - Ox (Ong) = Q(F2, o) + Gnys

whereGy is given by

Gni = Y)W [Sn(Dy), V] - VxSn(Dx)g + (Pri Q(fz, 9) - Qf2, Prig))
+((v - Vwa(X))W Sn(Dx)Sn(Dy)g + Pry G,
with G defined in (3.1.2).
We now choos¢Dy x|'v/5(X)|DyxI*gn, as a test function for equation (3.3.10). It follows that
(3.3.11) (V- (0x2)IDext'gn, ¢2(X)|Dt,x|AgN,I)L2(R7)

= (¢2(X)|Dt,x|/l{Q(f2’ any) + Gyl ¢2(X)|Dt,x|/lgN,I)L2(R7)-

It is sufficient to prove that, for anlye N,
(3.3.12) ASAL PNy g€ LARY),

and is uniformly bounded with respecthb In the rest of the proof, we us&to denote a constant
independent oN.

We first consider the linear terms in (3.3.11). On the left hand side of (3.3.11), the hypothesis
(3.3.8) implies that

IV - @aDudon| , o < CllAGI (VI Dz ey

L2(R7)
For the linear terms iy, by using (3.2.3), one has
l2(91Dext (w1 (W [Sn(Dy), V] - VxSN(DRGH|, 2z,
< C|”At,x|ﬁaa(‘ﬁ(t)‘/’(x)f)”le(R7)’
and
[20IDet (v - (Vx 1) (x))Wi Sn(Dx)SN(PV)]| 25
< CllAx 3" (v () Dliz @y-

Similarly, concerning the linear termB)and C) in G, we have

[2(IDex Pri ((B) + (C))]| 2gry < ClllAL'd* (@)W () Dz (e7)-

For the nonlinear terms in (3.3.11), we shall use the formula (3.3.4).First of all, the coercivity
estimate (2.2.1) gives, as in (3.2.3), that

(3.3.13) ~(Qf2, Y209IDAGN), Y29 Dexl'Gn)
> Coll AJWy/2¢/1(9) I Dext* Nl ey

A 2
—CH lelLoo(fo; Lr];1a><y+,2—y+)(R\?/’))”wl(X)|Dt’X| gN,l ||L§+/2(R7)'

L2 (R7)
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On the other hand, the upper estimate of Theorem 2.1with—-sanda = —y/2 > 0 (the case
v > 0 is easier) gives,

’(Q(lDt,xV‘ f2. Yr1(X)gn.), wl(x)|Dt,x|/lgN,l)L2(R7)
ClIDuxI fall s 11 EpVaCOATINIl eI (9IDe AWy 20N lL2e)
yl/2+yT+2s

Xyl 24yt 425

IA

IA

el (IDL AW, 2N oy + Colll D fallfps 11 o IAIATONIIR: o)

X Tlyl/ 24yt +2s Iyl/2+y*+2s

IA

el (1Dt AW, 20N I 2y + ColllDd Foll s 2 (xayIAVAIIE &)

X Tyl /24yt 425143V [yl/2+y* +2s+

For the cross term coming from the decomposition (3.3.4), by using again estimate (2.1.1) with
m= -sanda = |y|/2, we get

[ I (o). w0010 )
< ICAI () IDA AW, 29N, 1l 2(7)

h=4=4(f2)nll, o AS dh.
leé“l | ||( 2)h||L R4, LL (Ré))” v(gN,I)h”L2 R7)

LX° Fly|/ 24yt 425 Iyl/2+y* +2s

L2(IR7)d h|

Furthermore,

[, enlAYOue | endh

LX* Sly| /24yt 428 Iyl/2+y*+2s

IA

]”; . |h|—4—/l||(f2)h|||_oo(R€X’ Lé|/2+y++2s(R§))”AS(gN’l)hHLZ (R7)dh
<

yl/2+yt+2s

+4C I f2ll, 3y lIAY 2
Al 2|||_ (fo’ Lé|/2+y++25(RV))” vgN,|||L|W2+7++ZS(R7)

IA

X0 Ty /24yt +2s Iyl/2+y*+2s

Zf|;1| 1|h|_4_i+l”Vfo2|||_°°(R§‘ Lt &y IAVONI I 2 @ndh
<

+HClfollore, 1t weplATONIIL2

7y
Iyl/2+y*+2s |y\/2+y++ZS(R )

Thus
I I (@ (onidn. 920010 W )

< ellpa (D ATz ey + Cell Ax Fallf a2 eyl AT o

X Tyl 24yt +25+4 Iyl/2+y*+2s

L2(R7)dh|
Hence, the formula (3.3.4) yields
|(|Dt,x|/lQ(f2, Y1(9gN1) = QDX f2, Ya(X)gn), ‘701(X)|Dt,x|/lgN,I)L2(R7)

< el (1D AW, 20N 2y + Coll Akl s 2 IASGIIE &)

3
X7 Tyl 2+t +2s+4(RV)) [yl/2+yt +2s+l

In conclusion, we get from coercivity property (3.3.13) that
(3.3.14) AW, 201 (RIDex OnllE 2y

ClIALxfallf o zs 2 oy Il IDexldll? @ * 1AV )

LX Pyl /24yt +25+4 I+lyl/2+y* +2s I+yl/2+yt +2s

(1D (Prs QE, @) - QAfa, Prrg)), ¥3()IDexl gny)

(IDextPrus (A, 301D G
() + (1) + (1) .

IA

+

L2(R7)

+

L2(R7)
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For the term (1), since|D¢xY, ¥1(X)] is a bounded operator, we can replaeg by Py =
W Sn(Dx)Sn(Dy). Again, the formula (3.3.4) yiedls,

(D' (PriQ(f2, 9) - Q(f2, Prig)), ¢%(X)|Dt,x|ﬂgN,l)L2(R7)
= ((Pn1QUDeA" f2. @) — QUIDeAI" 2, Pri@)). w3(9IDexl" ) e
+(PuiQ(f2. IDtxl"g) — Q(f2. PrilDxl"g). w3(9IDA"ANI) 2er

+C, fR I (PuaQU(f2)n. gh) = Q((f2)n. Pragn). ¥3(9IDexl'oni) ;AR

Similar to (3.2.13), for the case wher2l< s < 1 ( The other case when® s < 1/2 is similar
and easier to handle.), by applying Lemmas 2.2, 3.2 and 3.3, we have

(3.3.15) (PriQUDA 2, @)~ QDL f2. Pruig)), ¥3(X)IDuxl"gn)

< ClIAG fallios, ., L

L2(R7)

))||g||L2(R H25-1+5 (R3))|||Dtx| g||L2(R7)

(21)*

By using (3.2.9) of Lemma 3.2, we can get, f@21+6 < s,

(PruiQUfz. 1Dul'9) = Qf2. PrilDexl'). v309IDeA "G o
A
< C||At,xf2|||_oo(Réx, |_(17+2H)+(R§))|| [Dtxl g|||_2(R4 2(y+2%l)+(R3))
x| Dyl Yaionillzge, WL (@)
< &l AW, 201 (X)|Dex O 2 gy
+ColAL F2IES 1D A% s 2 sy

4 3
LR I+3/2+a+(y+2$1)Jr (&)

and

’f|h|_4_/l((|5N,lQ(f2,h, gh) — Q(f2n, Pnigh)), lﬂ%(x)|Dx|AgN,|)L2(R7)dh’

))||g|||_2(R4 H2s 10 (Rg))|||Dt,x|/lg|||_l2(R7)

< CllAtxAx 2l coqpa -

” EXEX 2||L (Ril L1(+2$1)+(R I+(r+

< Clifally2rar2+ AVl 2 1 1Dexl*dll 27y
H|+3/2++o+(y+2s-1) (R7) Vg L y+25— 1)+(R) X9 LARY)

Thus, we have

) < &Aw /zwl(x)mt XNl 2y
+ Cellfalf oo (I IDul'alls

IerJr +2s+4

+IASgIIZ

I+y +2s

kl+y +ZS(R7) (R7) ) '

We now consider the last term (l1l) of (3.3.14). Recall tha} $tands for the nonlinear terms
from G given in (3.1.2). Precisely

A= > cuQmf, a7f).

a1+az=a @170
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By using (2.1.1) (We consider also only the cage & s < 1.) and formula (3.3.4), we have

(ot (@@ . 0721)). Praw300ID O
|QAIDext™ 5, 07214)

< CIIA™Wy /201 (1D Ol ze)| )
1 2\

+|Q(0™ f2. IDet'972 1)

L2REGHT, (B

+||fh_4_/lQ(aal(f2)he aaz(fl)h)dh

L2(R{; HTL /2(R§))

We divide the discussion into two cases.
Case 1.a;| = 1, 2. Takem = —s. We have

|Q(IDerta 2, 97212) + Qo f2, Dta )|

L2REGHTS, o (B3)

< CIAG™ fllisg s | Gapl SO ke | )

X'yt 425

L2REGH S, o (R)

< C|If AST
<CJ ZHHfff/ﬁﬁi +2S(Rv)ll v 1||H|“:f++28(R7),

and

” Lél h_4_iQ(aal(f2)h’ 8(22(f1)h)dh

L2REGHT S, o (R3)

S
S+ +25(R§)) | | AanZ ( fl) h | | |_|2+er +25(R7) dh

<C [0 (Rl s

< ClO™ falliwes i, ipll A Vextillz e
) + +yT+2s

yt+2s

<C|If AT .
<Cll 2I|H|2++;/22++65+y++28(R7)|| v 1”H|5+7++25(R7)

Case 2.|a1| > 3. By the same argument as above, one has

|Q(ipeton o, a211)| + Q@ 2. IDet 1)

L2REGH S, 2R

LZ(R4 HS (Re)) X7 T+yl/2

Lx "+ y1/2
A qa1 SAAd qaz
<
_C”At’xa 1:2||I‘Z(Rﬁx;I‘Il+«y++25(R‘§))H[\V/\t’xa fl”"w(RéX;lew*'d-Zs(R‘?;»

< CIIAL, Folluys Al 2ea/2eas6 7y
|| tx 2”HI+3/2+6+y++28(R7)|| v 1||Hl:y++;s+ (R7)

When|a1| = 3,4, we have

—4-1 1 2
”th Q" (Tl ()N o e ey

SCf|h|_4_/l||aal(fz)hHLZ(Rﬁx;Ll ZS(R\?))HAsaaz(fl)hHLoo(Rﬁx;LZ (Rg))dh

l+yt+ l+y*T+2s

< ClVed™ fall 2w r | @yl AV Pl | e

l+yt+2s X4y

< Cl|f9||us f 2+4/2+5+6
| 2||H|+3/2+5+7++25(R7)” 1||H|++y+++2:+ (R7)
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while when|ay| = |a| = 5, we have

[ [, h Qo . (fn)an

L2REGHTS,, o (BD)

<C [N 0" (Bl s

< C” " f2|||_2(Rf1X;|_ll+
> Y

S
e @AY fl)h||L°°(Rﬁx:L|2+y++2s(R§))dh

L AVl 2 . @)

+ 4 X0yt 428

< C|f f 1+4/2+5+8
” 2||H|5+3/2+o‘+y++2s(R7)“ 1”H|:yl++2§"(R7)’

Thus, by the Cauchy-Schwarz inequality, we obtain

() seuASWy/zwl(xnDt,xﬂgm||EZ(R7)+Cg(||A£xf3||‘;5| e NI o).
2+yt+7

2+yt+7

Finally, we get from (3.3.14) that

IASW, /241 (X) I Dt Oz < CII AL Fall 2
L2(R7) H

kl+yt+7

4
+IIASTIA,

2+yt+7

(R7) (R7))'

Therefore, we complete the proof for Proposition 3.3.

We are now ready to prove the following regularity result on the solution with respect to the
(t, x) variable.
Proposition 3.4. Under the hypothesis of Theorem 1.1, one has

(3.3.16) ALE (e f) € HIR),

for any e N and some: > 0.

Proof: Fix s = S((Stlﬁ). Then (3.3.7) and Proposition 3.3 with= 59 imply

AAL G € HPR).
It follows that,
(AZ@r +V - 0x(ATQ) = AZQ(f2, 9) + ASG € H (R
By applying Lemma 3.4 witls' = s, we can deduce that
AZ X (w9 ) € HPR),

for anyl € N. If 255 < 1, by using Proposition 3.3 with = 255 and Lemma 3.4 witls' = s, we
have
ASe®P(F), AZR(MU(F) € HPRT) = AZR(eOw()T) € HPR).
Chooséekg € N such that
koso<1l, (k+so=1+e>1

Finally, (3.3.16) follows from (3.3.5) and Proposition 3.3 with= koS by induction. And this
completes the proof of the proposition.



THE NON CUTOFF BOLTZMANN EQUATION 47

3.4. Proof of Theorem 1.1. In this subsection, we give the proof of Theorem 1.1 with the above
preparations. The proof is also based on the induction argument.

From Propositions 3.1 and 3.4, it follows that for dnyN,

(3.4.1) AS (e (9f).  Vix (e@u(x)f) € HPR).
These will be used to get the high order regularity with respect to the vasiable

Proposition 3.5. Let0 < 4 < 1. Suppose that, for any cytdunctionsy € C3(]T1, T2[), ¥ €
Cy(©) andallle N,

(3.4.2) A (e®v(IT),  Vx(etw()f) € HPRT).
Then, for any cutg function and any E N,
(3.4.3) AFS (ew () f) € HXR).

Proof : Recall thatg = 9*(o(t)y(X) f) with |a| < 5 and
ONI = Pnig = ¢a(X)Sn(Dx) W Sn(Dy)g.
ChooseA?4gy as a test function for equation (3.3.10). Then, one has

(3.4.4) (IAS V1 - Bx Ot AN ey = (AHQUE2: GNI) + Gruil AYONI) oy
Since

[AL, V] - 0y = AAL20y - Oy,
and A{2d, are bounded operators If, for any 0< 1 < 1, we have, by using the hypothesis
(3.4.2) that

(3.4.5) (1A V] - dsan, AYONI) 25| < CIAL lizen)IVx Gz,
andwhen 12 <s< 1.
(3.4.6) |(AGGN,|, A@gNJ)LZ(R?) < C||f2||H§(R7)||Acg“|-|2+7++gs(R7)||Aé+25—1+5gN,|||L2(R7)

< ElAWy 20Nz gy + Coll falfsen)IAY OIIEE oy
By settingM = A{ in Proposition 2.1, we have

(3.4.7) ‘(AGQ(F, any) — Q(f, Algny), A\/}gN,I)

L2(R7)

IA

Cllfallweg oz, ) (IAVON e 2 ety + IOz e AT ONIIE 2 s,

IA

A ~12
Cl| fslng(Rv)IIAv QIIL|2+1(R7),
when 0< s< 1/2. Moreover when 12 < s< 1, we have
(34.8) |(AJQU2, onr) - Qlf2, Adany), Adgn)

L2(R7)
sy + IOzl

< < EllAWY 2AYON Izer) + Cellfallfn) 1AV OIS ooy

IA

A+2s-1+6 2
Av Oyl ||L2(R7)

X =(2s+

Clifall co(ga -1 3 (A/1 :
el i, o, EmUIAONINLE 12

Now the coercivity estimate (2.2.1) gives,

(34.9) ~(Qlf2, AYGNI: AYONI) 2 57y 2 Coll AW 2AON e

A 2
“Clfello@aint, ., EIAONIL, e

vyt 2-yt)
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Thus, Proposition 3.5 is proved by the following estimate

(3.4.10) 1AWy 280N 2gery < C11 el ey + 1147 A% )
whereC is independent oiN.

We can now conclude the following regularity result with respect to the vanable
Proposition 3.6. Under the hypothesis of Theorem 1.1, one has
(3.4.11) AT (v () f) € HPR),
forany le N and some > 0.
Again, this result follows by induction. Indeed, notice that there ekistsN such that
kos<1, (k+1)s=1+&>1
Then we get (3.4.11) from (3.2.2), Proposition 3.5 witk kpsand (3.4.10), by induction.

High order regularity by iterations

From Proposition 3.4 (more precisely (3.3.16)) and Proposition 3.6, we can now deduce that,
for anyl € N, and any cutfi functionse(t) andy(x),

ey () f € HPR).

The proof of Theorem 1.1 is then completed by induction.
Indeed, if f is a solution of Boltzmann equation satisfying the assumptions of Theorem 1.1,
then, whermrm > 5, we have

f e H'(T1, TaAxQ xR3), VIeN = f e H™I(Ty, To[xQ x R3), VI e N.

Thus, the full regularity of Theorem 1.1 is obtained by induction frora 5.

4., EXISTENCE AND UNIQUENESS OF LOCAL SOLUTIONS

The local existence of solutions to the spatially inhomogeneous Boltzmann equation without
angular cutd is so far not well studied. The strategy of proving the existence in this section
is to approximate the non-cufocross-section by a family of approximate cfiitoross-sections
and approximate the Boltzmann equation by a sequence of iterative linear equations. Then by
proving the existence of these approximate linear equations and by obtaining a uniform estimate
on the solutions with respect to the cfitparameter in some suitable weighted Sobolev space, the
compactness will lead to the convergence of the approximate solutions to the desired solution for
the original problem. One of the techniques used here is to introduce a transformation defined by
the time dependent Maxwellian developed in [54]. The purpose of this transformation is to get
an extra gain of one order higher weight in the velocity variable in the expense of the loss of the
decay in the time dependent Maxwellian. Moreover, the uniqueness of the solution is also proved
in some function space.
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4.1. Modified Cauchy Problem. By takingk, p > 0, we set, for ) t < Tp = p/(2«),
() = pt, V) = @ @RI
and
f=u®9  TY9 9 = 1) Qu(t)g, u(t)9).
Then the Cauchy problem (1.9) is reduced to
. 2y — Tt
(4.1.1) Gt +V-Vxg +«(1+M)g=T9.9),
dli=o = Jo-
The existence theorem can be stated as follows.
Theorem 4.1. Assume thad < s < 1/2, y + 2s < 1andx,p > 0. Let ¢ € HX(R®), go > O for

some I> 3and k> 4. Then there exists,T€]0, Tg] such that the Cauchy problem (4.1.1) admits a
unique non-negative solution

ge C[0, T.]; HKR®) () L300, T.[; Hf¢ 4 (R%)).

We prove Theorem 4.1 by cufcapproximations. For simplicity of notations, we will denote
(1) by u(t) without any confusion.

Recall that the cross-section is in the formB(fv — v.|,cosd) = ®(Jv — v.|)b(cossd) which
satisfies (1.5) and (1.6). Forfe < < 1, we approximate (cuff) the cross-section by

_ | b(coss), if 6] > 2e,
bs(cost) ‘{ b(cose), if |0 < 2.

And denote by (g, g) the collision operator corresponding to the dtitwoss-sectiol, = d(v—
V. )b.(cosb).
By using the collisional energy conservation,

2 2 2 2
VL% + IV]° = IVl + M7,

we haveu,(t) = g (1) i (t) i/ (t). Then for some suitable functiohs V, it holds that

MUYV = w ity f fR | BV OV OV~ 1 QU)o

4.1.2) f f BV )0 (UIV = UV)dvdo = To(U, V, u(0)
RV*XSLZT

Q:(u()U, V) + ffR3 - Be(V — Vi, o) (e () — (1)UL V' dv.do-

Then we have the following formula coming from the Leibniz formula in xheariable and the
translation invariance property in thesariable. For anyy, 8 € N3,

LT, V)

CavanprpopaTe(@D Y, I2IPV, FPu(t))

a1+a2=a; B1+B2+P3=p

Qu(u(U, F5V) + f fR o BV Ve ) (0 — L (O)ULGR8V) dv.dlr

D Corwpps 00K, ORIV, OEu()
la2l+(B2l<le+8]-1

A1+A2+A3.

(4.1.3)



50 R. ALEXANDRE & Y. MORIMOTO & S. UKAI & C.-J. XU & T. YANG

Firstly, we give the following upper weighted estimate on the nonlinear collision operator with
cutaf.

Lemma 4.1. Let v € R.Then for any > 0, k > 4, | > 0, there exists C 0 depending oz, k, |
such that for any WV belonging to Iﬁ(RS)

S

Proof. To prove (4.1.4), put
o= 00U, =AY, ps(t) = (),
Ts(gl’ h2’ #3(t)) = 7:: - Te_
Throughout this section, the estimates
p(tV), s = 1Eu( V)| < Co €PV74 te[0,To], veR?,

will be used often.
Firstly, we comput& as follows.

WT| < Cff(lv Vi) |a(t, V*)|(W) (W)'
SC[H '“3“’V*)(vv|);(w._y dv.dor|| f f V' = V)2 (Wig), (Wihy) v dor|

’ 72 1/2
< C.f [[ 10Wheyr 00 (W) Pl

[(Wigp).ll(Wihp)'|dv.do

where we have usgd - v,| = [V - V.| and m~+~ < 1. Since the change of variables

(VV|) (W)’ =
(4.1.5) (V, Vi, o) = (V,V.,0), o’ = (V=V.)/IV— Vi,

has a unit Jacobian, we get
llV\/IT+||L2(R6) fff Wiy G1), (Wi ) [Pdv, dordva
=C fff (Wit - G1) (Why hy)’2dV.do”"dV dx

< Cf||(VVI+7*gl)”Lz(Rs)”(\NHy*h2)||E2(R§)dX
If lag + B1| < k/2, then we have
||VVI7';|||_2(R6) < C||(VV|+),+ gl)|||_oo(R§;|_2(R§))||(VVI+y+ h2)|||_2(]R§N)
< C”U||H|k+y+(R6)||V||H|k+y+(R6),
because of the Sobolev embedding theorem and thekfact 3/2 < k whenk > 4. When
laz + B2| < k/2, the proof is similar. This completes the proof of the lemma.

4.2. Cutoff approximations. We now study the following Cauchy problem for the diitBoltz-
mann equation

. 20 — Tt
(4.2.1) { G+ V- V4G + (v)’g = T4(9. ).
Oli=o = Jo.,
and try to obtain a uniform estimate in the weighted Sobolev space.
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We first prove the existence of weak solutions to this filBoltzmann equation.

Theorem 4.2. Assume thay < 1. Letk> 4,1 > 0, > Oand Dy > 0. Then, there exists
T, €]0, Tp] such that for any non-negative initial datg gatisfying

do € HI(R®), 19ollkzsy < Do
the Cauchy problem (4.2.1) admits a unique non-negative solutibagng the property
9" € C°00, Tl HI®RY),  1Ig°lleqor.: Hiesy < 2Do-
Moreover, this solution enjoys a moment gain in the sense that
(4.2.2) g° € L(J0, Tol; HE 4 (RY)).

Remark 4.1. (1) Notice that we do not assume g Hl"+l(R6) and the gain of the moment will

be essentially used below in the proof of uniform estimates to compensate the singularity in the
cross-section.

(2) The regularity of § with respect to t variable follows directly from the equati@n2.1)

(3) Fix vy, k, I as in the theorem. Then,Ts a function ofs and y. In the following, when we

need to emphasize this dependency, we write

T = T<(Do).

(4) If y <0, we may take = 0. And in this case, we do not have the moment gain (4.2.2) which
is not needed.

Proof of Theorem 4.2. We prove the existence of non-negative solutions by successive ap-
proximation that preserves the non-negativity, which is defined by using the usual splitting of the
collision operator (4.1.2) into the the gain)(and loss (-) terms,

ten= ([, B-v.on@gndvdr
R, xS3
Iy (g, h) = hLe(g),
L@ = [[,  Bv-v. v gdvdo
RE xs2
Evidently, Lemma 4.1 applies d:*, and in view of (1.5), the linear operatby, satisfies
for a constan€ > 0 depending o, becauséu(t, v.)d5(v — v,)?| < C(vy* B,

We now define a sequence of approximate solut{ghigey by

o® = go;

(4.2.4) { 8tgn+l +V- ngn+l + K<|V|>Zgn+l — l—‘tg,+(gn’ gn) _ l—‘tg,—(gn’ gn+1),
9™ =0 = do.

Actually, in view of (4.2.3) we consider the mild form

(4.2.5) g™, x, v) =e V0 (x 1y, v)
t
_ 2(t_q)_\yn
+j; e k(v (t—9)-V(t, S)F§’+(gn, gn)(s, X — (t _ S)V, V)dS

where .
VL, 9 = f L(d")(s X~ (t - 9V, V)ds
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First, we note from Lemma 4.1 that for afiye ]0, To], To = p/(2«), go > 0, and
g"eL™(0,T[; HK®®).,  g">0,
the mild form (4.2.5) determineg*! in the function class
(4.2.6) g™ e L¥(0.T[; HE.(R%),  g™'>0,

and solves (4.2.4). Thug*! exists and is non-negative, but appears to lose weight in the velocity
variable. We shall now show that the texgv)2g™! in (4.2.4) not only recovers this weight loss

but also creates a higher moment. More precisely, we have the following lemma. Introduce the
space and norm by

X =L=(0,T[; HI{®R®) NL>(0,T[; Hf,(R%),

2 _ 2 2
MG = 012, 0, ey + 1920 11 i ey

+

This norm depends dn I, T, k, but we omit this dependence in the notation for simplicity.

Lemma 4.2. Assume thay < 1and let k> 4,1 > 0, > 0. Then, there exist positive numbers
C1,Cy such thatifo > 0, k > O and if

(4.2.7) o € HI(R%, ¢"eL™(0,T[; HIR?),

with some T< Ty, the function §+* given by(4.2.5)enjoys the properties
gn+1 e X

(4.2.8) nlp2 < oCiknT 2 Co (1114
g™ HIZ < €T (1012, )+ SO 11 sy

where K, is a positive constant depending W”Lw(]o:[; HK(RS) andx.
Proof. Put
h" = h) = 9*g".
Differentiation of equation (4.2.4) yields
At + v v i 4 (vy2h™! = GF - G + G + Gg,

Gi =T o). G =oTi (@ g™,

GZ — _[aw, V- Vx]gn+l,

Ga=—k Y Cpohwy?a CAgmL,

BI=1.2
Letyj € C3(R3), j e N, be the cuté function

oL M<],
XJ(V)_{O, M>j+1.

We remark that (4.2.6) does not necessarily imply1h™(t) € L2(R®), but y;Wi.1h™(t) €
L2(R®) for all j € N. Hence, we can ua(,ijVVIZSﬁ,(DX)h”*l as a test function to get
1d

(4.2.9) >

”SN(DX)XjVVIhn+1||2 +K”SN(DX)XjVVI+1hn+1”2
= (GI — GI + GZ + G3’ SN(DX)ZXJ'Z\MZhn+1),
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Here and in what follows, the norlfrj| and inner product,() are those of_z(Riv) unless otherwise
stated. We shall evaluate the inner products on the right hand side. Observe that Lemma 4.1 gives,
fort [0, T],
(G3, ST AWEH™Y)| = |(Swx ) W1GY, SwyjWhs1h™D)| < CIMG-1GF 1 Sy Whs 1™
< cnr“(g”, 9k ey 1SN WEeah™ |

“g ”HK(RG) ||SNXjVV|+1hn+l”2.

On the other hand, Lemma 4.1 is not enough to evalGatbecauses; containsg™?! which is
not known, at this moment, to have moments required by Lemma 4.1. However, this obstacle is
only superficial. Observe that

Gi= D Cupan(079™) LG GY).
(@1,81)+a2=a
Define,

Hii(@) = D IlriWid“gl?,

lar|<k

and WriteH?’I = HEI(t) = Hj(gn(t)). By recalling (4.2.3), we get

(Gl , 2W2hn+1) <

D Corpralle i PIW 1072 105 0" IShx W™

((ll,ﬁ1)+(22=(1/

< cng”nHk(Rs)n (HYHY2 ISy jWheh™ |

Hr_1+1 1hn+l”2

”g ”Hk(RG) ”SNX] 1+

HereC, C’ are positive constants independenkof
The estimate on the remaining two inner products are more straightforward and can be given as
follows.

(G2 + Ga, S AW < CllxWi1(Go + Ga)ll IS W 1™
1/2 , (K + 1Y K
< Clk+ D(HN) " ISy W™ < C %HETI + ZlISn W ah™ 2,

The constant€, C"” are independent af andk.
Putting together all the estimates obtained above in (4.2.9) yields

C
n+1(2 n+1(2 7 n+1 n; 4
ZdtnsNx, WP + ZISWheat™ 2 < C {K+ ~(1+1g" ||HK(R6))}H,-,. + 10" ey

Summing up estimates fof** = h*! over|e| < k then yields,

Hii(Sng™™) + kHjis1(Sng™™) < C1KnHji(@™ ) +2 ||g IIHk(Re),

where

Khn=«+ +1),

(”g ||Loo(]0 T[ Hk(RG))
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andC; > 0 is a constant independentaik while C, is independent ot but depends oa. By
integrating the above estimate overtJtand taking the limitN — oo, we get

HIFA() + « f H L (D)dr

< ngl(o) + ClKnL H”*l('r)dT + —f lig" (T)”Hk(Re)dT te[0,T],
which gives a Gronwall type inequality

(4.2.10) Hn+l(t) + Kf gCrKn(t= T)Hn+l . (r)dr
0

C2 T
eclK"tHErl(O)’L TL Crkn(t- )|Ig (T)”Hk(RG) te[0,T],

for all j € N. Since
HI(0) < lIgollfy

and 1< €C1Kn(t-1) < gCiknt (4.2 10) gives

HIFH O+« f HiT(x)dr < e Yiigollfy + == f 19" @y dr)  te[0.T].

Since the right hand side is independent,afie see thally j0g™} jew, lel < kis weakly* compact
in L*(]0, T[; L(R®)) and weakly compact ib%(]0, T[; L2 ,(R®)). Take a convergent subsequence.
Apparently, its limit ish™2(t). This is true for alla| < k so that we can now conclude that

g™ e X = L0, T[; HI(R®) N L2010, T[; HiS 1 (R%)).
and by Fatou’s theorem,

12 1 P 1
g™ 11? < iminf |IH} ||Lm(]o,n> +xliminf IH 4 lgo.r

< €7 (Igoly. + ||g [e—

Now the proof of Lemma 4.2 is completed.

We are now in the position to prove the convergenc&bf.ci. Fix « > 0, let Do, go be as in
Theorem 4.2 and introduce an induction hypothesis

(4.2.11) 19l go.11; Hieey < 2Do.

for someT €]0, Tg]. (Notice that the factor 2 can be any numbet.)
(4.2.11) is true fom = 0 due to (4.2.7). Suppose that this is true for same 0. We shall
determin€eTl independent ofi. A choice is
2 C2 2D0 +1

(4.2.12) kol =2 —2TD3=1  where Kgo=«+ ,
K

or

. | log2 K
T =min , ————¢.
{ClKO 24CZDS}
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In fact, (4.2.8) and (4.2.11) yield thgt*! € X and

g™ 117 < €4 (g0l e, + KTng I go 1 Hiey)

< e9KT(DF + C—Tz“Dg) < 4D2.
K
That is, the induction hypothesis (4.2.11) is fulfilled for 1, and hence holds for ail
For the convergence, sef = g"(t) — g"(t), for which (4.2.4) leads to

W™ + v V™4 k2wt = THE W, g") + TE (g wh),
T~ (W, g™ — I (g™, w,
W0 =0

By the same computation as used for (4.2.9), but more straightforward since we can now use a test
functions a§N(DX)2W28" w*l we get

|”an+1”|2 ClKOT {||gn+l”Ew(]O T[ Hk(RG)) + ||gn”2w(]o T[' Hk(RG))
n-1
+ “g ||Loo(]0T[ HK(RG))}H\Nn”LW(]OT[ Hk(Rﬁ))’

with the same constan®;, C, andKg as above. Then, (4.2.11) and (4.2.12) give

n+1

g™ = "I < 2°CoDgk M TIG" = 0™ I g0 1, ey
Finally, choosel smaller if necessary so that
_ 1
2°CoD3 T <7
Then, we have proved that for any> 1,
(4.2.13) g™ - gl < 5 2 lig” - g™l

Consequentlyg"} is a convergence sequenceXnand the limit
g°eX
is therefore a non-negative solution of the Cauchy problem (4.2.1). The estimate (4.2.13) deduces
also the uniqueness of solutions.
By means of the mild form (4.2.5), it can be proved also that for @ach
g" € C([0, T]; HK(R®)

and hence so is the lim§. The non-negativity off follows becausg" > 0. Now the proof of
Theorem 4.2 is completed.

4.3. Uniform estimate. We prove now the existence of solutions for the Cauchy problem (4.1.1)
by the convergence of approximation sequeigéease — 0. The first step is to prove the uniform
boundedness of this approximation sequence. In what follows, the co@stamiarious constants
independent of > 0.

Theorem 4.3. Assume thaD < s < 1/2, y +2s < 1. Let ¢y € HX(R®),go > O for some
k > 4, | > 3. Then there exists,T€]0, Tg] depending only onngollHlk and independent af such

that if forsomed < T < Ty ,
(4.3.1) g° € C°(J0, T]; H{(RS) N L2(J0, T[; H{,(RY)),
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is a non-negative solution of the Cauchy problem (4.2.1), then it holds that
(4.3.2) 19°llLqo.1..; Hieey) < 2lIGolizs),

for T.. = min{T, T.}.

In the following,p > O, x > O are fixed. Furthermore, recdlb = p/(2«). We start with a
solutiong® subject to (4.3.1) for som€& €]0, To]. Fora € N8, || < k, the diferentiation of the
equation (4.2.1) deduces

(4.3.3) 3(399°) +V - Vx(3°Q°) + k(W)2(3°Q°) = 0°TL(Q?, g°) — [0%, V- Vxg® — k[0%, (W?]cF.
Sinced?g® only belongs td_2, now as in Section 3, we take,
Pﬁ, | IDN, | (aa/gs)

as a test function in (4.3.3), whelre 3 andPy| = Sn(Dx)Sn(Dy) W (we do not need the cufio
functionsg, y here). Then we have

1d
(4.34)  SIPNI@ )z + KWL PN T)OlfE2(eey
+ k([SN(D), (WIW (0°9F). Sn(Dx)P.I(0°9))
= (A1 + A+ Ag+ Ag+ As, P PN,l(aags))

whereA;, Ay, Az are defined in (4.1.3) withh =V = gand

L2 (RG)

L2(RS) ’

A4 = —[00’, V- Vx]ga, A5 = —K Z Cﬁa€<v>28a_(o’ﬁ)gs,

BI=1.2

We have firstly,
(4.3.5) |(Aas PRAPNIG"S)) e, < Cllg" Ol gy
and

@& NE 2 2 Ko 2
(4.3.6) |(A5, PRIPNIE"T) suey| < CHlIG Oesy + 719 O oy
We also have
(43.7) (1SN, W @), SNDIPNIOS)) e

E K €
< GOy + FIT O ey

We study now the term; by using the non-negativity @ and the coercivity of collision opera-
tors.

Proposition 4.1. Assume tha < s< 1/2, ¥ € R. There exists G 0 independent of such that
foranya e N, |a| <k, k>4, 1> 3,

(4.3.8) (As. PRIPNIE'S)) ey < ClIE O I Ol ey

forany0O<t<T < To.
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Proof : By settingh = *g?, we have,

(Al, PNJPN,lh)LZ(RG) = (PN,IQs(#Q'g, h), (PN,Ih))

= (Qu(u®F’, (PR (PrID) ;e

+(Prn1Qe(u(®)d®, 1) — Qe(u(®g’, (Pn.ih)), (Pnih))
= Bl + Bz.

L2 (RG)

L2(R®)

Sinceu(t) g°(t, x, v) > 0, we have, in the same way as Theorem 2.2 with the cancellation lemma,

- 3 [[[[ Bo(v— Ve, @) (u(®) &). (Prih)’ = (Prih)’ dv.dorcvlx
2 RIXRIXRE, xS2

1 N2
+§ fff*[&%XReXRixsg Be(V — Vi, o) (u(t) 9°)- {((PN,Ih) ) - (PN,|h)2} dv.dodvdx

< = ffﬂ B (V_ Vi, ()') {“(t) 98)* {((PNJh),)Z _ (PN,Ih)z} dV* vdx
R>3<><R§><R§* xS2 do-dvd
REXR%XR\:’,'
<

Cl |,UW«y+ gg(t)|||_m(R§;|_l(R§))||VVI h(t)|||_2(fo3, v)||VVI +y* h(t)|||_2(Rg )
< C||g8(t)||H3/2+§(R§ V)”gg(t)”Hlk(Rg V)”gg(t)”Hlk L(RS,) te[0, T],
: : L (B

where we used the fact thiat(cosd) < b(coso).
By puttingSy = Sn(Dx) Sy = Sn(Dy), we decompose

B2 = (SnSn{WIQ:(u(g’. h) ~ Qe(u(®e’. Wih)}. (Pr.1h)
+ (SN[ SNQu(u(®F’, (WiN)) ~ Qu(u()g”, SNMM. (PIN) .
+ (SnQuu()gf, (SnWIN)) — Qu(u(®)g, Sn(SNWIR)), (Pnih))

L2(RS)
= sz_ + Bzz + Bzg.
By Lemma 2.2, we get
Bl = |({WiQe(u()g®, h) - Qeluu(t)g®, (WiH))), (SNSNPNIN) e

< C“N(t)gg(t)lll_w(R%Ll (R3) f ||VV|+7+ h|||_2(R\?;)||PN,Ih|||_2(R§)dX
l+y* R)3(
< C||g€(t)|||_«>°(R§;|_2(R§))||g€(t)||Hlk(RG)||g€(t)|||-1lk+y+ (RS)>
& 2 &
< ClG OIS Ol ey 1< [0, T].
It follows from Lemma 3.2 that
1/2
B2al < (ﬁ{s ISNQe(u(t)g”, (Wih)) — Qe(u(t)g”, Sn(W h))”iz(Rs)dX) [IPN, 1l 2(ge)
< C||Il(t)gg(t)”|_oo(]R§;|_i+ (]Rg))||VVI+«y+ h|||_2(R§)||gg(t)||Hlk(R6)
& 2

< ClIg O I Ol sy e [0, T
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Lemma 3.3 withm = 2syields
|Bzg| < ClISNQu(®)Y’, (SnWih)) — Qu(t)g’, Sn (SNWIN) )l e, L2y 1PN, 1hllL2(zs)
< C”ﬂ(t)vxg‘g”Lw(Rg, |_(125+y)+ (Rg))”(Z_NéN (VVI h)|||_2(R§, |-|(22$S+y)+ (Rg))”PN,Ih”LZ(RG)
£ 2 £
< C“g (t)”HIk(RG)”g (t)||H|ﬁ7+(R6)7 te [Oa T]

Combining the above estimates proves Proposition 4.1.

For the termA, andAg, we prove the following proposition.

Proposition 4.2. Assume thad < s < 1/2, y + 2s < 1. Then, for any > 0, there exists C> 0
independent ofs > 0 such that for anyr € N®, |a| < k, k>4, | > 3,

* & ~E £ 2 £
(4.3.9) (Po+ As, PR PNI@D)) ey < ClIT Dl 19 Ol . =9
forte [0, T].
Proof. By puttingh = 6°g® andh = WPy, Py ,1(6°¢%) , we get

) Ufff Bo(V = Vs, o) (u(t) - ﬂl(t))(gg)lh'(V\ﬁzﬁ)dv*do-dvd%
R3XRIXRE, xS2
= f f f fRﬁstst* o2 BV = V., o)l (1) — £ (O1(G°):1 I(WED)" (Wih)ld v, dordvd x

+ f f f fRﬁstst*xg;, BV - Vi, 0)I(.(0) = 1O (G

=11+ 1o

‘(Az’ leﬁ) L2(R6)

W — W/ [ (Wih)dv. dodvd

To estimatd 1, we notice that
(4.3.10) |u(t, V) — u(t, V)l < Cv. — VL[' < CO'v - vt < COV - ViI', 1 €0,1], te [0, Tol,

which is elementary for = 0,1 and is obtained for general € (0, 1) by interpolation. Since
v+ 2s < 1is assumed in the proposition, theretis (0,1) such thatt > 2s,y + 1 < 1. By the
manipulation on the primed and non-primed variables ( see (4.1.5) ) we have

h=C ffff (V =)0 27257 (Y | |(Wih)'| |(WiR)|dv.dordvdx
RIXRIXRE, xS2

<C f f f 67225 (W, A)+98)*|{ f (Wi (2.2 )W F])’|dv}dv*do-dx
RIXRE, xS2 RS
< C||g€(t)||Lm(Rﬁ;L(lwnm(Rg))||g€(t)”HIK(RG)||gg(t)||H|k+(y+})+ (RS)
2
< CIF Ol Ol ey

forl > (y + )" + 3/2. In the third inequality we have used again the fact that the Jacobian of
changing of variable — V' is bounded.
Using (2.1.14) gives

e<c [[[[ = VY000, (1) + (O (WW )N (W) . dorclvlx
RIXRIXRE, xS2 ’
—C(J1+ J).
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By the Sobolev inclusion and the Schwarz inequality with the change of variableg’, we have

Jp < Cffff -1-2s ('[)|(V\/|+y+g£) (V\/|+7+h) (W h)|dV*dO'dVdX
RIXRIXRE, ><S(2r

<Ok gl [[[, 0 Z0.0] [ 6y IR0 doax
IXRS, x

< C||g‘€||Hk . @9l L1z Whsy hll 2re) WA llcz(es)
< C”g || (Re)“g ”HK(RG)’

where we have used crucially that fact thatthe fagidt) for 0 <t < T satisfies

f f . 67125, (t)dv,do < C.
Ry, XS5

On the other hand, again by the manipulation on the primed and non-primed variables,

Jh<C f f f f 0125 ((t) Wi, G°), (Wi, ) (W)l d v dordvd x
RIXRIXRE, xS2

Scf f f f O PO o) f Wi+ I(WiR)'[dvjdv. dodx
RIXRE, xS2 R3

< Clle(t) Wiy + gslle(R§;L1(R§))IIV\/I +y+hl| L2rs) IV ﬁ| |L2(rs)
< ClIg W19 ey

Here, we have used.,u*/2(t) < C.
We consider now the teriys. For anya € NS, |a| <k k >4, | > 3, denote

hy = 0"g°, hy = 0%¢f,
where
a1tazx<a, az2<c.

We shall compute

(e, e, . WER) , o f f f fR N Be (1. (1) — 12, (t))(hy),(WR2R)dv, dordvd x

ffff B. (jihy), (Wh — W) h(Wih)dv.dordvdx
RIXRIXRE, xS2
(Qs(,uhl, (Wih2) ), W h)LZ(]RG) '
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For the last term, by Theorem 2.1 with= 2s < 1, there exist€ > 0 independent of such that
for |ag| < lal — 1 ands > 0,

|@mm4wmmmm<cfnmmx R

STOT Mwmmw

Cllhl(t)||H3/2+o(R3 LZ(RS))”(W h2)(t)||L2(R3 H(,/+2s)+ (RB)) bl
C”hl(t)”Lz(RS LZ(RS))”(W hZ)(t)”H3/2+o(R3 HZS 29 (RB)) |a,1| > 2,

I(Wh)(E, %, -IIZ dx

3 2 3
(7+ S (R ) H()/S+25)+ (R\/)
, a1] < 2,
SO |

(%, Hmw (=3)

| < 2,

3/2+(y+25)++r5(
3/2+(y+29) T +6

A

S CIFORolFOF o k24>3+25 1> (+297+3/2
+(y+29)*

The estimation on the first term is similar tAQ(VVIZF])Lz(Re) by taking account of the same manip-
ulation concerningr,. The estimation for the second term is also similar to the gadf I, as
above. Hence, we have obtained

(4.3.11) |(A3, WeR)

L2(R6) < C“g (t)HHk(RG)||gg(t)”H|k+y+25(R6)

This completes the proof of Proposition 4.2.
If (4.3. 5) (4.3.6), (4.3.7), (4.3.8) and (4.3.9) are combined, then it follows from (4.3.4) that
2dt”PN 10”9 8)(t)|lL2(R6) + k[IW1 PN 1 (079 8)(t)||L2(Re) ||g (t)”Hk L(E9)

<dmwwm+qmwmmmmm(mﬂﬂ

Take the sum ovelr| < kK, integrate from O td € [0, T] and makeN — co. Then there exists
C1,C, > 0 independent of > 0 such that , for any > 0 andt € [0, T],

m31a|mamm®%+5[ngumm(w)

<m©mm+QthmW@+Qfm%mwmhm

Remark 4.2. We give here some technical reason about the choice of the time dependent dis-
tribution u(t) as moment control in the equation (4.1.1). If we take 0 in the definition of
Maxwellian distributionu(t), the above computation gives also (4.3.12) without the second term
on the left hand side becausge- 0. But the upper bounded estimate, by using Theorem 2.1, always
gives the last term in (4.3.12) with the facttgg(t)lth ®9)- If ¥ +2s <0, there is no loss of

(y+29)t+6

moment, we can get (4.3.13) wikh= 0. If 0 < y + 2s < 1, we choos® such thaty + 2s+6 < 1
so the second term on left hand side absorbs the last term in (4.3.12) because

IIga(t)IIHIk( e @) S < Ig° Ol -
+(y+2s+
In conclusion, the choice @ft) is mainly for the hard potential.

Completion of proof of Theorem 4.3. SetX(t) = ||g° (t)”Hk(RG) andF(t) = fot X(r)(1 + X(1))dr.
Sincey + 2s< 1, by (4.3.12) there exists@> 0 mdependent af > 0 such that

t
(4.3.13) XM+ 5 fo 9@y eeydir < X(0) + CFO).

o2 6)+(R6)dT.
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Noting thatF’(t) < (X(0) + CF(t))(1 + X(0) + CF(t)), we have

, 1901y &
19" Ok ey < , forte€lo,T].
(R9)) _ (Lt _ 2
M1 - (€ = D)lgol
We choosd',. > 0 small enough such that
CT.
=4
_ (eCT. _ 2
1= (& = Dol s,
Then
1 3
c L+ 4190l e

is independent of > 0, but depends ollrgollHlk(Re) and the constar@ which depends op, x, k and
I. LetT.. = min (T, T,). Then we have (4.3.2).
From (4.3.2) and (4.3.13), we get also, kar 0,

(4.3.14) Mg 20 7. e ey < 21000y (1 + 20Tl + 200l sy

We have proved Theorem 4.3.

4.4. Convergence and uniquenessThe second step is to prove that, for anyk0e < 1, we
can extend the approximation solutigh, obtained by Theorem 4.2.1, to a fixed intervalT(
with T, > 0 determined in Theorem 4.3 which is independenton 0. Then this sequence is
convergent.

Theorem 4.4, Assume thad < s< 1/2, y+2s< 1,00 >0, 0o € HI"(RG) forsome k>4, | > 3.
Let T. > O be given in Theorem 4.3. Then the Cauchy problem (4.2.1) admits a unique non-
negative solution up to,Tsatisfying

o° € L¥(0, T.[; HXR®) N L2310, T.[; HE,(R®)).

Proof: We recall the notatio = T.(Dg) from Remark 4.1. Then Theorem 4.2 assures that the
Cauchy problem (4.2.1) with initial datiy admits a unique non-negative solution

1
oi € CO0. 2To.l; HI®®) N L200. 2Tl HIGR).  Toe = STellGolles)-
If To. > T., then the proof is completed. Th . < T., then Theorem 4.3 implies

||gi(T1,a)||H|k(R6) < 2||go||H|k(R6)-

We now consider the Cauchy problem (4.2.1) with initial 3@ 1 .). Again Theorem 4.2 assures
that there exists

1
Toe = §T8(2||90||H|'<(R6))’
such that the Cauchy problem (4.2.1) admits a unique non-negative solution
05 € Co[Tre, Toe+2Ta.]s HIRE) (| L2(T1e, Tae + 2Tael; HE4(RY)).
By uniqueness of solution, we obtain a non-negative solution of the Cauchy problem (4.2.1),

g° € C[0, Tue+2To.l; HER®) (L2010, Tae + 2Tae[; HE4(RS)).
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If T1e + 2T2, > T., we finish the proof. IfT1. + 2T, < T., we consider again the Cauchy
problem (4.2.1) with initial datg®(T1 . + T2.). Since Theorem 4.3 gives again

19" (Tae + To.)leey < 2lG0llsecy,

the interval of the existence of solution is the same, thaflis, 2so that we can extend the solution
to

g° € L°(10, Te+3Tae[; HKR®) () L2(10, Toe + 3Tocl; HEL(RY).
By iteration, there exists € N such that
Tl’g + mTz,g < T*, Tl,g + (m+ 1)T2’8 > T*,
and we extend the solution up to
g° € CO0, Tie+(Mm+ DT, HI(R®) ﬂ L2(0, Toe + (M+ 1)T2.[ HE L (RY)).

We have proved Theorem 4.4.

Theorem 4.4 assures the existence of an approximation solution sequence

for],., < CO10, T.J; HEES)()L200, T HiE, (R9)),
and
19°NlLqo.7.; Hiszey) < 21IGollkrs)-
This implies that it is a weakly* compact setbf(]0, T.[; H:‘(RG)). Let
geL™(0. T.[; HI®®),

be a limit of a subsequence @}, ,.
On the other hand, by using the equation (4.2.1) and Theorem 2.1, we obtain

IA

2
C(HggHLm(]O,T*[; Hlk(RG)) + ||gg||Loo(]0,T*[; HIK(RB)))
2C (1 + 210l eey) 9ol

10t L= qo.1.; HiL(ze)

IA

Thus,{g?} .., IS a compact subset in

C¥(0, T.[; HF°(@xRY)),

for any compact bounded open getc R3 and for anys > 0. For the variable/, we have the
weightW_; with | — 1 > 3/2. Then, we can take the limit in the equation (4.2.1) and also in the
mild form (4.2.5). Therg is a solution of the Cauchy problem (4.1.1). The limibelongs to
L2(J0, T.[; HK,(R)) deduced from (4.3.14). Now @ > 0, Theorem 4.2 implies thaf > 0, so

that the limitg is also non-negative on JU.[. We have completed the proof for the local existence
of solutions stated in Theorem 4.1.

It remains to prove the uniqueness of solutions in Theorem 4.1. We state it more precisely as
follows.

&0

Proposition 4.3. Assume thab < s< 1/2, y+25s<1,0<T <Tg,m>3andg >0, g €
Hg“(Rﬁ). Suppose that the Cauchy probléfnl.1)admits two (non-negative) solutions

g1, 92 € C°([0, T]; H(RO)).
Theng = go.
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Setf = g1 — g2, by using (4.1.1), we have

) 2yf — 1t t
(4.4.1) { v Vuf 4l M =T 1) 4THE 0.
t=0 = U.

We can now tak&\z f as a test function to get

1d
(442) S IWs (O 2e) + KIWaT Oz ey = (Wal (@1 ) + WaT'(F, 02) Waf) ,

Recall that

I'(g, h) = Q(u(t)g, h) + fR - B(u(t). — pu(t),)g.h dv.do.
Vi X
We estimate the last two terms of (4.4.2) in the following lemma.

Lemma 4.3. Assume that g > 0. Then for anye > O, there exist constants,C> 0 and
K(S’ “gZHLM(]o’T[;HT(RG))) > 0 such that

(4.4.3)  (Wal'(gr. ). Waf) , o < ellWaf OlF2gue) + CollgnlfEe o, 1 ey IWs Oz es):

(4.4.4) |(War(f, go), Waf)

Lo < EIVA T OEags) + K& 192l o, 7 mpceen) IWa (O Ez g

Notice that by using the above lemma with= «/4 and (4.4.2), we get
d
GiWa T OlF2es) < (ClIGUIE o 1 ey * K (e 182l o, Timpon) JIWa T Oz es)-
Then|Ws f(0)ll_2re) = O implies||W5f (t)ll 2re) = O for all 0 < t < T which gives Proposition 4.3.
Proof of Lemma4.3. As for (4.4.3), we have

(Wal'(gu, 1), Waf) , ®9)

(WeQUuon, ). Waf) ., + f f f f B (u(t). — p(t),)d, " W2f dv.dodvdx
(QUu(hgr. Waf). W) , o +(WaQUu(ar. f) - Qu(t)gr. Waf) . Waf)

N f f f f B (u(t). — u(t).)d,, (Waf)'Ws fdv.dodvdx

+ ffff B (u(t)« — u(t),)97, (Ws — W5) f"Wa f dv,do-dvdx
= D1+ D+ D3+ Dg.
For the termD4, it is the same aB; in the proof of Proposition 4.1. By usingt)g; > 0, we have
D; < C||gl(t)||H3/2+6(R§VV)|| f(t)”Lg(Ri\,)”f(t)”L;W ®S,)
for some smalb > 0. The termD5 is similar toB, and we can obtain
Dol < C”gl(t)||H3/2+5(R§V)”f(t)”Lg(RQV)”f(t)”LiW(RQV)-
The termdD3, D4 are similar toly, I in the proof of Proposition 4.2. Namely
IDsl +Dal < Clgz®llysz=s s I Ollizeg I FOl2

L2(RS)

6 \.
4 (y+25+6) T (R’Q V)

Thus, forany <t < T andm > 3, we have
(Wal'(gr. ). Waf) o) < ClIgLllgo s ) IWs f Ol zgeg o WA f Ol zgeg -
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which implies (4.4.3). The left hand side of (4.4.4) can be written as

(WaT'(f, g2), W5 f)Lz(Re)
(W3Q(ﬂ(t)f, o7) ’st)LZ(RG) + ffffB (u(t). — p(2),) f/goW3 f dv.dodvdx
(WsQUuu(D)f. G2) . Waf) , o + f f f f B ((t): — u(t),) f/(Wagp)' Ws fdv,dordvdx

+ f f f f B (u(t). — u(t).) f/(Ws — W5)g,Ws f dv.dodvdx
= El + E2 + E3.

Using Corollary 2.1 withm = 0,| = 3 gives

|E4l Sf IW3Q(u(t) . G2)ll 2(r3)IWa Fll 2(r3)d X
RS

<C fR , ”#(t)f|IL%+(7+25)+(Re)l|92”H§f(y+zs)+ (&3 IWa | 2gz3,dx

<C o 3. 142
||92|||_ (10, T[xRS; H3f(y+2$+6

" (R3)) (Ol L2(RS) IW5 f (t)|||_2(R6)
i 2
< C||92|||_m(]0’T[; Hgﬁ;fztiaﬁ (Rg))HWS f (t)”LZ(RG)-
The termE; is similar toD3, and we have
|Eo| < C||f(t)|||_2(R§; |_(1 2 6)+(Rg))”gZ”Loo(]o,T[Xﬂ@; L2 +(R?,))HVVSf('[)|||_2(R6)
Y+2S+ +y
< C” f (t)l|L§/2+§+(y+25+§)+ (RS)) | |92”|_oo (0,T[; Hif;f(Re)) | |W3 f (t)“LZ(RG)
< ClIGall w go,7; 2oy IWa f (D1 2 g
For the termEz, we can use (2.1.15) with= 3. Then

Eal < [[[[ breos) - v, - ueini
C f f f f sin(g)b(cos@) (Wa £).11(Was,e Go) | W | dv, derdvx

C f f f f sin3(g)b(cose) L O1(Was - FY.1IOW, - G2)'| W F| dv. dordivx
C f f f f sin3(g)b(cose)) 1 (O (Was- £).1 O, G| W | v dordvelx

= E3,1 + Eg’z + E3,3.

Ws — W[ |05l [Ws f| dv.dodvdx

IA

+

+

Since O< 2s < 1 is assumed, for any > 0 there exist€, > 0 such that

|E3al < CfRB I % Mz g 1920t X Nlizeg 1T X iz dX

< ClITOllzeg; 1 @y 192llsgorpes e 1T Ollzes,)

< C” f (t)||L2 +(R§,v) ||92|||_m(]0,T[; HE/ZM(RQV)) || f (t)HLg(Rgv)

3/2+6+1+y

< (6l (O, + CoMET O 121 o 7, 1z2we5, -
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Similarly
|Ezp| < Cf llee(®) (T, X, ')|||_l ®3) lloa(t, X, ‘)|||_2 (R3) IIf(t, x, ')|||_2(R3)dx
RE Tyt Y PN il

< CHgZ”Loo (0,T[; Hi/ZM(Rg,v))” f (t)”LZ(RSV)”W3 f (t)|||_2(R§V) .
Since 32+ (3+ y*) > 4, we can not estimat€s ;3 in the same way as fdfs . Instead, we have

Easl < CIWyGallogorpeas,) f f f f 630(COS8) 1. (1)|(Wayy+ )] | W | dvidordvx

1
2
< Cligallwgo.1; Hevo (x5, fR . ( ff f 6*b(cost) u*(t)|W3f|2|dv*do-dv)

x( f f f 0°b(COSH) 11, (D)W F)L[% | dv*dvdv) dx.

We now take the singular change of variablés— v. The Jacobian is computed in (2.1.21)
which is of the order 06~2. Then this singular change of variables yields

f f f 65b(C0S6) 11, (OI(Way,- .2 | dv.dordv
< © [ Dawrv) 1 O)Warys 1P 1A

with Dy(v,. v2) = [o, 65 2b(cose)dor < C [7°(5 - 4) 2% 2dy < C. Hence

f f f 6°b(cosb) w.()[(Wayy+ F).1? | dv.dodv

< Cl@®liLselWaey T8 X liEgs)-
Therefore,
|E3,3| < Cllgzlle(]o,T[; Hj’*ﬁ(RE,\,))”W3f”LZ(REN)”W3+7+ f”LZ(RQ,V)’
By combining the estimates dfy, Ep, E3, we have proved (4.4.4). Now the proof of Lemma 4.3
is complete.

4.5. Proof of Theorem 1.2. Assume thatfy € 850(R5). Then there existpy > 0 such that

e0? fy ¢ HY(R). Choose O< p < pg andx > 0 small enough. By settingy, = e*’ fo, then
go € H*(RS) for all | € N. Theorem 4.1 assures that the Cauchy problem (4.1.1) with the initial
datumggy admits a non-negative local solution

g€ Co[0, T.J; HO(R®) (| L200, T.L HG(RY),  V1eN,
with T, €]0, To] (To = %). Then
f(t, x, V) = & W g(t, x,v) € CO(0, T.]; HIO(RS)) ﬂ L2(0, T.[ H°®S), VIeN,
is a non-negative solution of the Cauchy problem (1.9). Since fot & T, < Ty,
(4.5.1) ez £ e CO([0, T.]; HY(R®)),
we can concludé e ([0, T,] x Riv), which leads to the local existence stated in Theorem 1.2.

Suppose now for somé& € &F(R?), the Cauchy problem (1.9) admits two solutiofis
EX[0, T1] x RE,) and f, € E4([0, T2] x RS,). This implies that there exigh, p1, 02 > 0 such that

eV’ fy € HA(RO),
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and
1’ £ e CO[0, T1]; HARS)), 2V, e CO[0, T2l; HARY)).
Take 0< p < min{po, p1, p2} andk > 0 suficiently small such thaf: > T... = min{Ty, T2}. Then
we have
do = €V o € HIRY),
for anyl e N, and

gl — e(p—Kth)Z f]_ c CO([O, T**], H|4(R6)), gz — e(p—Kt)<V>2 f2 c CO([O’ T**], H|4(R6)),

are two solutions of the Cauchy problem (4.1.1) with the common initial dagurithen Propo-
sition 4.3 give); = @, so thatf; = f, fort € [0, T...]. Now the uniqueness of solutions stated in
Theorem 1.2 is obvious sindg = T, = T..

On the other hand, in view of (4.5.1)f(t, x, -)|l.z is continuous fort;x) € [0, T.] x R3.
Therefore, if for a compadf c R3, we have

inf [Ifo(X, -)llLx = Co > 0,

xeK
then there exist & Ty < T, and a closed neighborhood ksfdenoted by in R such that

inf I %l > 2.
(t.9)€[0,To] xVo 2
Now Theorem 1.1 implies that
f e () H(0, To[xVo x RY) € C(10, To[xVo; S(RY)).
leN

It remains to prove the uniqueness of solutions of Theorem 1.2 in the soft potential ga&e
In this case, the uniqueness of solution can be proved in a larger function space. We state it as
follow.

Proposition 4.4. Assume thad < s<1/2, y<0,0< T < +c0cand m> 2s+ 3/2, | > 2s+ 3/2.
Let o > 0O, fg € HITZS(RG). Suppose that the Cauchy probl€in9) admits two non-negative
solutions

fi, f2€ L=(0, T[; H{T,o(R).
Then § = fo.

Proof: The proof is similar to the one for Proposition 4.3. et f; — f,, by using (1.9), we have

(4.5.2) { Etlt:o\/; g'xF = Q(fy, F) + Q(F, o),

We can now tak&V|F as a test function to have

1d

2dt L2(RS)’

Sincef; > 0 andy < 0, similar to the analysis 0B; in the proof of Proposition 4.1, we have
(QUf1 WIF), WiF) ;o) < CllTLOllqe LaeaplIF Oz e

Using (2.1.17) withy* = 0 gives

(WIQ(t, F) - Q(fz, WIF) . WF)

(45.3) IFOIZ 56 = (W Q(F1, F) + W Q(F, f2), WF)

LARS) —

2

and
(WQ(F, f2) - QF, Wif,) , WiF)

L2(26) < C||F(t)|||_|2(R§,V)|| fz(t)|||_oo(R§; le(R\?))”F(t)”le(Riv)-
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Finally, forl > 3/2 + 2s, we have

(Q(F. W), WiF)

L@s)| = ClIQ(F, Wi f2)lli2(re)lIF (Ol 2(zs)

1/2
2 2

< ClIF O 20yl 2Ol iz )

Thus, we have, forany @t < T andé > 0 small enough,

d 2 2
aHF(t)”LF(RG) <C (”fllle(]o’T[; H|3/2+5(R§<,v)) + ”f2”|_oo(]0,T[; Hli/g;ré*ZS(Rgv))) ||F(t)”|_|2(RG)'
Therefore]lF(O)llle(Rs) =0 impIies||F(t)||le(Rs) =O0forallte [0, TJ.
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