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We show that many classical decision problems about 1counter ω-languages, context free ω-languages, or infinitary rational relations, are Π 1 2 -complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π 1 2 -complete for context-free ω-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter ω-languages, context free ω-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.

Introduction

Many classical decision problems arise naturally in the fields of Formal Language Theory and of Automata Theory. When languages of finite words are considered it is well known that most problems about regular languages accepted by finite automata are decidable. On the other hand, at the second level of the Chomsky Hierarchy, most problems about context-free languages accepted by pushdown automata or generated by context-free grammars are undecidable. For instance it follows from the undecidability of the Post Correspondence Problem that the universality problem, the inclusion and the equivalence problems for context-free languages are also undecidable. Notice that some few problems about contextfree languages remain decidable like the following ones: "Is a given context-free language L empty ? " "Is a given context-free language L infinite ? " "Does a given word x belong to a given context-free language L ? " Sénizergues proved in [START_REF] Sénizergues | L(A)=L(B)? decidability results from complete formal systems[END_REF] that the difficult problem of the equivalence of two deterministic pushdown automata is decidable. Another problem about finite simple machines is the equivalence problem for deterministic multitape automata. It has been proved to be decidable by Harju and Karhumäki in [START_REF] Harju | The equivalence problem of multitape finite automata[END_REF]. But all known problems about acceptance by Turing machines are undecidable, [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF]. Languages of infinite words accepted by finite automata were first studied by Büchi to prove the decidability of the monadic second order theory of one successor over the integers. Since then regular ω-languages have been much studied and many applications have been found for specification and verification of non-terminating systems, see [START_REF] Thomas | Automata on infinite objects[END_REF][START_REF] Staiger | ω-languages[END_REF][START_REF] Perrin | Infinite words, automata, semigroups, logic and games[END_REF] for many results and references. More powerful machines, like pushdown automata, Turing machines, have also been considered for the reading of infinite words, see Staiger's survey [START_REF] Staiger | ω-languages[END_REF] and the fundamental study [START_REF] Engelfriet | X-automata on ω-words[END_REF] of Engelfriet and Hoogeboom on X-automata, i.e. finite automata equipped with a storage type X. As in the case of finite words, most problems about regular ω-languages have been shown to be decidable. On the other hand most problems about context-free ω-languages are known to be undecidable, [START_REF] Cohen | Theory of ω-languages, parts one and two[END_REF]. Notice that almost all undecidability proofs rely on the undecidability of the Post Correspondence Problem which is complete for the class of recursively enumerable problems, i.e. complete at the first level of the arithmetical hierarchy. Thus undecidability results about context-free ω-languages provided only hardness results for the first level of the arithmetical hierarchy. Castro and Cucker studied decision problems for ω-languages of Turing machines in [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF]. They studied the degrees of many classical decision problems like : "Is the ω-language recognized by a given machine non empty ?", "Is it finite ?" "Do two given machines recognize the same ω-language ?" Their motivation was on one side to classify the problems about Turing machines and on the other side to "give natural complete problems for the lowest levels of the analytical hierarchy which constitute an analog of the classical complete problems given in recursion theory for the arithmetical hierarchy". On the other hand we showed in [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] that context free ω-languages, or even ω-languages accepted by Büchi 1-counter automata, have the same topological complexity as ω-languages accepted by Turing machines with a Büchi acceptance condition. We use in this paper several constructions of [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] to infer some undecidability results from those of [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF]. Notice that one cannot infer directly from topological results of [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] that the degrees of decision problems for ω-languages of Büchi 1-counter automata are the same as the degrees of the corresponding decision problems about Turing machines. For instance the non-emptiness problem and the infiniteness problem are decidable for ω-languages accepted by Büchi 1counter automata or even by Büchi pushdown automata but the non-emptiness problem and the infiniteness problem for ω-languages of Turing machines are both Σ 1 1 -complete, hence highly undecidable, [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF]. However we can show that many other classical decision problems about 1-counter ω-languages or context free ωlanguages, are Π 1 2 -complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π 1 2 -complete for ω-languages of Büchi 1-counter automata. Topological and arithmetical properties of 1-counter ω-languages and of context free ω-languages are also highly undecidable.

In another paper we had also shown that infinitary rational relations accepted by 2-tape Büchi automata have the same topological complexity as ω-languages accepted by Büchi 1-counter automata or by Büchi Turing machines. This very surprising result was obtained by using a simulation of the behaviour of real time 1-counter automata by 2-tape Büchi automata, [START_REF] Finkel | On the accepting power of two-tape Büchi automata[END_REF]. Using some constructions of [START_REF] Finkel | On the accepting power of two-tape Büchi automata[END_REF] we infer from results about degrees of decision problems for Büchi 1-counter automata some very similar results about decision problems for infinitary rational relations accepted by 2-tape Büchi automata. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.

The paper is organized as follows. In Section 2 we recall some notions about arithmetical and analytical hierarchies and also about the Borel hierarchy. We study decision problems for infinite computations of 1-counter automata in Section 3. We infer some corresponding results about infinite computations of 2-tape automata in Section 4. Some concluding remarks are given in Section 5.

Arithmetical and analytical hierarchies

Hierarchies of sets of integers

The set of natural numbers is denoted by N and the set of all total functions from N into N will be denoted by F .

We assume the reader to be familiar with the arithmetical hierarchy on subsets of N. We now recall the notions of analytical hierarchy and of complete sets for classes of this hierarchy which may be found in [START_REF] Rogers | Theory of Recursive Functions and Effective Computability[END_REF]; see also for instance [START_REF] Odifreddi | Classical Recursion Theory[END_REF][START_REF] Odifreddi | Classical Recursion Theory[END_REF] for more recent textbooks on computability theory. Definition 2.1. Let k, l > 0 be some integers. Φ is a partial computable functional of k function variables and l number variables if there exists z ∈ N such that for any (f 1 , . . . , f k , x 1 , . . . , x l ) ∈ F k × N l , we have

Φ(f 1 , . . . , f k , x 1 , . . . , x l ) = τ f1,...,f k z (x 1 , . . . , x l ),
where the right hand side is the output of the Turing machine with index z and oracles f 1 , . . . , f k over the input (x 1 , . . . , x l ). For k > 0 and l = 0, Φ is a partial computable functional if, for some z,

Φ(f 1 , . . . , f k ) = τ f1,...,f k z (0).
The value z is called the Gödel number or index for Φ.

Definition 2.2. Let k, l > 0 be some integers and R ⊆ F k × N l . The relation R is said to be a computable relation of k function variables and l number variables if its characteristic function is computable.

We now define analytical subsets of N l .

Definition 2.3. A subset R of N l is analytical if it is computable or if there exists a computable set S ⊆ F m × N n , with m ≥ 0 and n ≥ l, such that R = {(x 1 , . . . , x l ) | (Q 1 s 1 )(Q 2 s 2 ) . . . (Q m+n-l s m+n-l )S(f 1 , . . . , f m , x 1 , . . . , x n )},
where Q i is either ∀ or ∃ for 1 ≤ i ≤ m + nl, and where s 1 , . . . , s m+n-l are f 1 , . . . , f m , x l+1 , . . . , x n in some order. The expression

(Q 1 s 1 )(Q 2 s 2 ) . . . (Q m+n-l s m+n-l )S(f 1 , . . . , f m , x 1 , . . . , x n ) is called a predicate form for R.
A quantifier applying over a function variable is of type 1, otherwise it is of type 0. In a predicate form the (possibly empty) sequence of quantifiers, indexed by their type, is called the prefix of the form. The reduced prefix is the sequence of quantifiers obtained by suppressing the quantifiers of type 0 from the prefix.

We can now distinguish the levels of the analytical hierarchy by considering the number of alternations in the reduced prefix.

Definition 2.4. For n > 0, a Σ 1 n -prefix is one whose reduced prefix begins with ∃ 1 and has n -1 alternations of quantifiers. A Σ 1 0 -prefix is one whose reduced prefix is empty. For n > 0, a Π 1 n -prefix is one whose reduced prefix begins with ∀ 1 and has n -1 alternations of quantifiers. A Π 1 0 -prefix is one whose reduced prefix is empty.

A predicate form is a Σ 1 n (Π 1 n )-form if it has a Σ 1 n (Π 1 n )-prefix. The class of sets in some N l which can be expressed in Σ 1 n -form (respectively, Π 1 n -form) is denoted by Σ 1 n (respectively, Π 1 n ). The class Σ 1 0 = Π 1 0
is the class of arithmetical sets. We now recall some well known results about the analytical hierarchy.

Proposition 2.5. Let R ⊆ N l for some integer l. Then R is an analytical set iff there is some integer

n ≥ 0 such that R ∈ Σ 1 n or R ∈ Π 1 n . Theorem 2.6. For each integer n ≥ 1, (a) Σ 1 n ∪ Π 1 n Σ 1 n+1 ∩ Π 1 n+1 . (b) A set R ⊆ N l is in the class Σ 1 n iff its complement is in the class Π 1 n . (c) Σ 1 n -Π 1 n = ∅ and Π 1 n -Σ 1 n = ∅.
Transformations of prefixes are often used, following the rules given by the next theorem.

Theorem 2.7. For any predicate form with the given prefix, an equivalent predicate form with the new one can be obtained, following the allowed prefix transformations given below :

(a) . . .

∃ 0 ∃ 0 . . . → . . . ∃ 0 . . . , . . . ∀ 0 ∀ 0 . . . → . . . ∀ 0 . . . ; (b) . . . ∃ 1 ∃ 1 . . . → . . . ∃ 1 . . . , . . . ∀ 1 ∀ 1 . . . → . . . ∀ 1 . . . ; (c) . . . ∃ 0 . . . → . . . ∃ 1 . . . , . . . ∀ 0 . . . → . . . ∀ 1 . . . ; (d) . . . ∃ 0 ∀ 1 . . . → . . . ∀ 1 ∃ 0 . . ., . . . ∀ 0 ∃ 1 . . . → . . . ∃ 1 ∀ 0 . . . ;
We can now define the notion of 1-reduction and of Σ 1 n -complete (respectively, Π 1 n -complete) sets. Notice that we give the definition for subsets of N but this can be easily extended to subsets of N l for some integer l.

Definition 2.8. Given two sets A, B ⊆ N we say A is 1-reducible to B and write A ≤ 1 B if there exists a total computable injective function f from N to N with

A = f -1 [B]. Definition 2.9. A set A ⊆ N is said to be Σ 1 n -complete (respectively, Π 1 n -complete) iff A is a Σ 1 n -set (respectively, Π 1 n -set) and for each Σ 1 n -set (respectively, Π 1 n -set) B ⊆ N it holds that B ≤ 1 A.
For each integer n ≥ 1 there exist some Σ 1 n -complete subset of N. Such sets are precisely defined in [START_REF] Rogers | Theory of Recursive Functions and Effective Computability[END_REF] or [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF].

Notation 2.10. U n denotes a Σ 1 n -complete subset of N. The set

U - n = N-U n ⊆ N is a Π 1 n -complete set.

Hierarchies of sets of infinite words

We assume now the reader to be familiar with the theory of formal (ω)-languages [START_REF] Thomas | Automata on infinite objects[END_REF][START_REF] Staiger | ω-languages[END_REF]. We shall follow usual notations of formal language theory. When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence x = a 1 . . . a k , where a i ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its length is 0. Σ ⋆ is the set of finite words (including the empty word) over Σ. The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a 1 . . . a n . . ., where for all integers i ≥ 1, a i ∈ Σ. When σ is an ω-word over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ. The usual concatenation product of two finite words u and v is denoted u.v (and sometimes just uv). This product is extended to the product of a finite word u and an ω-word v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k -|u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σ ω . An ω-language over an alphabet Σ is a subset of Σ ω . The complement (in Σ ω ) of an ω-language V ⊆ Σ ω is Σ ω -V , denoted V -.

We assume now the reader to be familiar with basic notions of topology which may be found in [Mos80, LT94, Kec95, Sta97, PP04]. There is a natural metric on the set Σ ω of infinite words over a finite alphabet Σ containing at least two letters which is called the prefix metric and defined as follows. For u, v ∈ Σ ω and u = v let δ(u, v) = 2 -l pref (u,v) where l pref(u,v) is the first integer n such that the (n + 1) st letter of u is different from the (n + 1) st letter of v. This metric induces on Σ ω the usual Cantor topology for which open subsets of Σ ω are in the form W.Σ ω , where

W ⊆ Σ ⋆ . A set L ⊆ Σ ω is a closed set iff its complement Σ ω -L is an open set.
Define now the Borel Hierarchy of subsets of Σ ω : Definition 2.11. For a non-null countable ordinal α, the classes Σ 0 α and Π 0 α of the Borel Hierarchy on the topological space Σ ω are defined as follows:

Σ 0 1 is the class of open subsets of Σ ω , Π 0 
1 is the class of closed subsets of Σ ω , and for any countable ordinal α ≥ 2:

Σ 0 α is the class of countable unions of subsets of Σ ω in γ<α Π 0 γ . Π 0 α is the class of countable intersections of subsets of Σ ω in γ<α Σ 0 γ . For a countable ordinal α, a subset of Σ ω is a Borel set of rank α iff it is in Σ 0 α ∪Π 0 α but not in γ<α (Σ 0 γ ∪ Π 0 γ ).
There are also some subsets of Σ ω which are not Borel. In particular the class of Borel subsets of Σ ω is strictly included into the class Σ 1 1 of analytic sets which are obtained by projection of Borel sets. We now define completeness with regard to reduction by continuous functions. For a countable ordinal α ≥ 1, a set F ⊆ Σ ω is said to be a Σ 0 α (respectively, Π 0 α , Σ 1 1 )-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet):

E ∈ Σ 0 α (respectively, E ∈ Π 0 α , E ∈ Σ 1 1 ) iff there exists a continuous function f : Y ω → Σ ω such that E = f -1 (F ). Σ 0
n (respectively Π 0 n )-complete sets, with n an integer ≥ 1, are thoroughly characterized in [START_REF] Staiger | Hierarchies of recursive ω-languages[END_REF].

We recall now the definition of the arithmetical hierarchy of ω-languages which form the effective analogue to the hierarchy of Borel sets of finite ranks. Let X be a finite alphabet. An ω-language L ⊆ X ω belongs to the class Σ n if and only if there exists a recursive relation

R L ⊆ (N) n-1 × X ⋆ such that L = {σ ∈ X ω | ∃a 1 . . . Q n a n (a 1 , . . . , a n-1 , σ[a n + 1]) ∈ R L }
where Q i is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An ω-language L ⊆ X ω belongs to the class Π n if and only if its complement X ω -L belongs to the class Σ n . The inclusion relations that hold between the classes Σ n and Π n are the same as for the corresponding classes of the Borel hierarchy. The classes Σ n and Π n are included in the respective classes Σ 0 n and Π 0 n of the Borel hierarchy, and cardinality arguments suffice to show that these inclusions are strict.

As in the case of the Borel hierarchy, projections of arithmetical sets lead beyond the arithmetical hierarchy, to the analytical hierarchy of ω-languages. The first class of this hierarchy is the (lightface) class Σ 1 1 of effective analytic sets which are obtained by projection of arithmetical sets. In fact an ω-language L ⊆ X ω is in the class Σ 1 1 iff it is the projection of an ω-language over the alphabet X × {0, 1} which is in the class Π 2 . The (lightface) class Π 1 1 of effective co-analytic sets is simply the class of complements of effective analytic sets. We denote as usual ∆

1 1 = Σ 1 1 ∩ Π 1 1 .
The Borel ranks of (lightface) ∆ 1 1 sets are the (recursive) ordinals γ < ω CK 1 , where ω CK 1 is the first non-recursive ordinal, usually called the Church-Kleene ordinal. Moreover, for every non null ordinal α < ω CK 1 , there exist some Σ 0 α -complete and some Π 0 α -complete sets in the class ∆ 1 1 .

Infinite computations of 1-counter automata

Recall the notion of acceptance of infinite words by Turing machines considered by Castro and Cucker in [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF].

Definition 3.1. A non deterministic Turing machine M is a 5-tuple M = (Q, Σ, Γ, δ, q 0 ), where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet satisfying Σ ⊆ Γ, q 0 is the initial state, and δ is a mapping from Q × Γ to subsets of Q × Γ × {L, R, S}. A configuration of M is a triple (q, σ, i), where q ∈ Q, σ ∈ Γ ω and i ∈ N. An infinite sequence of configurations r = (q i , α i , j i ) i≥1 is called a run of M on w ∈ Σ ω iff: (a) (q 1 , α 1 , j 1 ) = (q 0 , w, 1), and (b) for each i ≥ 1, (q i , α i , j i ) ⊢ (q i+1 , α i+1 , j i+1 ), where ⊢ is the transition relation of M defined as usual. The run r is said to be complete if (∀n ≥ 1)(∃k ≥ 1)(j k ≥ n). The run r is said to be oscillating if

(∃k ≥ 1)(∀n ≥ 1)(∃m ≥ n)(j m = k). Definition 3.2. Let M = (Q, Σ, Γ, δ, q 0 )
be a non deterministic Turing machine and F ⊆ Q. The ω-language accepted by (M, F ) is the set of ω-words σ ∈ Σ ω such that there exists a complete non oscillating run r = (q i , α i , j i ) i≥1 of M on σ such that, for all i, q i ∈ F.

The above acceptance condition is denoted 1 ′ -acceptance in [START_REF] Cohen | ω-computations on Turing machines[END_REF]. Another usual acceptance condition is the now called Büchi acceptance condition which is also denoted 2-acceptance in [START_REF] Cohen | ω-computations on Turing machines[END_REF]. We just now recall its definition. Definition 3.3. Let M = (Q, Σ, Γ, δ, q 0 ) be a non deterministic Turing machine and F ⊆ Q. The ω-language Büchi accepted by (M, F ) is the set of ω-words σ ∈ Σ ω such that there exists a complete non oscillating run r = (q i , α i , j i ) i≥1 of M on σ and infinitely many integers i such that q i ∈ F.

Recall that Cohen and Gold proved in [START_REF] Cohen | ω-computations on Turing machines[END_REF]Theorem 8.6] that one can effectively construct, from a given non deterministic Turing machine, another equivalent (i.e., accepting the same ω-language) non deterministic Turing machine, equipped with the same kind of acceptance condition, and in which every run is complete non oscillating.

Cohen and Gold proved also in [CG78b, Theorem 8.2] that an ω-language is accepted by a non deterministic Turing machine with 1 ′ -acceptance condition iff it is accepted by a non deterministic Turing machine with Büchi acceptance condition. It is known that ω-languages accepted by non deterministic Turing machines with 1 ′ or Büchi acceptance condition form the (lightface) class Σ 1 1 of effective analytic sets, [START_REF] Staiger | ω-languages[END_REF].

We now recall the definition of k-counter Büchi automata which will be useful in the sequel.

Definition 3.4. Let k be an integer ≥ 1. A k-counter machine (k-CM) is a 4-tuple M=(K, Σ, ∆, q 0 ), where K is a finite set of states, Σ is a finite input alphabet, q 0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪ {λ}) × {0, 1} k × K × {0, 1, -1} k is the transition relation. The k-counter machine M is said to be real time iff: ∆ ⊆ K × Σ × {0, 1} k × K × {0, 1, -1} k , i.e. iff there is no λ-transitions.
If the machine M is in state q and c i ∈ N is the content of the i th counter C i then the configuration (or global state) of M is the (k + 1)-tuple (q, c 1 , . . . , c k ).

For a ∈ Σ ∪ {λ}, q, q ′ ∈ K and (c 1 , . . . , c k ) ∈ N k such that c j = 0 for j ∈ E ⊆ {1, . . . , k} and c j > 0 for j / ∈ E, if (q, a, i 1 , . . . , i k , q ′ , j 1 , . . . , j k ) ∈ ∆ where i j = 0 for j ∈ E and i j = 1 for j / ∈ E, then we write:

a : (q, c 1 , . . . , c k ) → M (q ′ , c 1 + j 1 , . . . , c k + j k )
Thus we see that the transition relation must satisfy: if (q, a, i 1 , . . . , i k , q ′ , j 1 , . . . , j k ) ∈ ∆ and i m = 0 for some m ∈ {1, . . . , k}, then j m = 0 or j m = 1 (but j m may not be equal to -1).

Let σ = a 1 a 2 . . . a n . . . be an ω-word over Σ. An ω-sequence of configurations r = (q i , c i 1 , . . . c i k ) i≥1 is called a run of M on σ, starting in configuration (p, c 1 , . . . , c k ), iff: (1) (q 1 , c 1 1 , . . . c 1 k ) = (p, c 1 , . . . , c k ) (2) for each i ≥ 1, there exists b i ∈ Σ ∪ {λ} such that b i : (q i , c i 1 , . . . c i k ) → M (q i+1 , c i+1 1 , . . . c i+1 k ) and such that either a 1 a 2 . . . a n . . . = b 1 b 2 . . . b n . . . or b 1 b 2 . . . b n . . . is a finite prefix of a 1 a 2 . . . a n . . .
The run r is said to be complete when a 1 a 2 . . . a n . . . = b 1 b 2 . . . b n . . . For every such run, In(r) is the set of all states entered infinitely often during run r.

A complete run r of M on σ, starting in configuration (q 0 , 0, . . . , 0), will be simply called "a run of M on σ". Definition 3.5. A Büchi k-counter automaton is a 5-tuple M=(K, Σ, ∆, q 0 , F ), where M ′ =(K, Σ, ∆, q 0 ) is a k-counter machine and F ⊆ K is the set of accepting states. The ω-language accepted by M is

L(M)= {σ ∈ Σ ω | there exists a run r of M on σ such that In(r) ∩ F = ∅}
The class of ω-languages accepted by Büchi k-counter automata will be denoted BCL(k) ω . The class of ω-languages accepted by real time Büchi k-counter automata will be denoted r-BCL(k) ω .

Remark that 1-counter automata introduced above are equivalent to pushdown automata whose stack alphabet is in the form {Z 0 , A} where Z 0 is the bottom symbol which always remains at the bottom of the stack and appears only there and A is another stack symbol. The class BCL(1) ω is a strict subclass of the class CFL ω of context free ωlanguages accepted by Büchi pushdown automata.

Using a standard construction exposed for instance in [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF] we can construct, from a Büchi Turing machine, an equivalent 2-counter automaton accepting the same ω-language with a Büchi acceptance condition.

Notice that these constructions are effective and that they can be achieved in an injective way. So we can now state the following lemma.

Lemma 3.6. There is an injective computable function H 1 from N into N satisfying the following property. If M z is the non deterministic Turing machine (equipped with a 1 ′ -acceptance condition) of index z, and if A H1(z) is the 2-counter automaton (equipped with a 2-acceptance condition) of index H 1 (z), then these two machines accept the same ω-language, i.e. L(M z ) = L(A H1(z) ).

We are now going to recall some constructions which were used in [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] in the study of topological properties of context-free ω-languages.

Let Σ be an alphabet having at least two letters, E be a new letter not in Σ, S be an integer ≥ 1, and θ S : Σ ω → (Σ ∪ {E}) ω be the function defined, for all x ∈ Σ ω , by: [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] that if L ⊆ Σ ω is an ω-language in the class BCL(2) ω and k = cardinal(Σ) + 2, S = (3k) 3 , then one can construct effectively, from a Büchi 2-counter automaton B accepting L, a real time Büchi 8-counter automaton A such that L(A) = θ S (L), so θ S (L) is in the class r-BCL(8) ω . This construction can be made injective. On the other hand, it is easy to see that θ S (Σ ω ) -= (Σ ∪ {E}) ωθ S (Σ ω ) is accepted by a real time Büchi 1-counter automaton. The class r-BCL(8) ω is closed by finite union in an effective way, so θ S (L) ∪ θ S (Σ ω ) - is accepted by a real time Büchi 8-counter automaton which can be effectively constructed from B. Thus we get the following result: Lemma 3.7. There is an injective computable function H 2 from N into N satisfying the following property. If B z is the Büchi 2-counter automaton (reading words over Σ) of index z, and if

θ S (x) = x(1).E S .x(2).E S 2 .x(3).E S 3 .x(4) . . . x(n).E S n .x(n + 1).E S n+1 . . .

It is proved in

A H2(z) is the real time Büchi 8-counter automaton of index H 2 (z), then L(A H2(z) ) = θ S (L(B z )) ∪ θ S (Σ ω ) -.
Another coding has been used in [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] which we now recall. Let K = 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 = 9699690 be the product of the eight first prime numbers. Then an ω-word x ∈ Γ ω is coded by the ω-word

h K (x) = A.0 K .x(1).B.0 K 2 .A.0 K 2 .x(2).B.0 K 3 .A.0 K 3 .x(3).B . . . B.0 K n .A.0 K n .x(n).B . . .
over the alphabet Γ ∪ {A, B, 0}, where A, B, 0 are new letters not in Γ. It is proved in [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] that, from a real time Büchi 8-counter automaton A accepting L(A) ⊆ Γ ω , one can effectively construct (in an injective manner) a Büchi 1counter automaton accepting the ω-language h K (L(A))∪h K (Γ ω ) -.

Consider now the mapping φ K : (Γ ∪ {A, B, 0}) ω → (Γ ∪ {A, B, F, 0}) ω which is simply defined by: for all x ∈ (Γ ∪ {A, B, 0}) ω , φ K (x) = F K-1 .x(1).F K-1 .x(2) . . . F K-1 .x(n).F K-1 .x(n + 1).F K-1 . . .

Then the ω-language φ K (h K (L(A))∪h K (Γ ω ) -) is accepted by a real time Büchi 1-counter automaton which can be effectively constructed from the real time Büchi 8-counter automaton A. On the other hand it is easy to see that the ω-language (Γ ∪ {A, B, F, 0}) ωφ K ((Γ ∪ {A, B, 0}) ω ) is ω-regular and to construct a Büchi automaton accepting it. Then one can effectively construct from A a real time Büchi 1-counter automaton accepting the ω-language φ K (h

K (L(A))∪h K (Γ ω ) -) ∪ φ K ((Γ ∪ {A, B, 0}) ω ) -.
This can be done in an injective manner. So we can state the following lemma.

Lemma 3.8. There is an injective computable function H 3 from N into N satisfying the following property. If A z is the real time Büchi 8-counter automaton (reading words over Γ) of index z, and if A H3(z) is the real time Büchi 1-counter automaton of index H 3 (z) (reading words over Γ ∪ {A, B, F, 0}), then :

L(A H3(z) ) = φ K (h K (L(A z )) ∪ h K (Γ ω ) -) ∪ φ K ((Γ ∪ {A, B, 0}) ω ) -
In the sequel we shall consider, as in [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF], that Σ contains only two letters and we denote these letters by a and b so Σ = {a, b}. Then Γ = Σ ∪ {E} and we set Ω = Γ ∪ {A, B, F, 0} = {a, b, E, A, B, F, 0}.

From now on, we shall denote M z the non deterministic Turing machine of index z, (reading words over Σ), equipped with a 1 ′ -acceptance condition, and C z the real time Büchi 1-counter automaton of index z (reading words over Ω).

We set Notice also that a run r of a real time Büchi 1-counter automaton may be easily coded by an infinite word over the alphabet {0, 1}. We can then identified r with its code r ∈ {0, 1} ω . Then it is easy to see that "r is a run of C z over the ω-word σ ∈ Ω ω " and "r is an accepting run" can be expressed by arithmetical formulas.

H = H 3 • H 2 • H 1 ,
We can now state that the universality problem for ω-languages of real time Büchi 1-counter automata is highly undecidable.

Theorem 3.9. The universality problem for ω-languages of real time Büchi 1-

counter automata is Π 1 2 -complete, i.e. the set {z ∈ N | L(C z ) = Ω ω } is Π 1 2 - complete.
Proof. We prove first that this set is in the class Π 1 2 . It suffices, as in the case of Turing machines, to write that L(C z ) = Ω ω if and only if "∀ σ ∈ Ω ω ∃r ∈ {0, 1} ω (r is an accepting run of C z over σ)". The two quantifiers of type 1 are followed by an arithmetical formula. Thus {z ∈ N | L(C z ) = Ω ω } is in the class Π 1 2 . In order to prove completeness we shall use the corresponding result for Turing machines proved in [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF]: the set {z ∈ N | L(M z ) = Σ ω } is Π 1 2 -complete. Consider now the injective computable function H from N into N defined above. We are going to prove that, for each integer z ∈ N, it holds that

L(M z ) = Σ ω if and only if L(C H(z) ) = Ω ω . By Lemma 3.7, for each integer z ∈ N, if A H2•H1(z) is the real time Büchi 8-counter automaton of index H 2 • H 1 (z), then : L(A H2•H1(z) ) = θ S (L(M z )) ∪ θ S (Σ ω ) -. Thus L(M z ) = Σ ω iff L(A H2•H1(z) ) = (Σ ∪ {E}) ω .
Next applying Lemma 3.8 we see that

L(C H3•H2•H1(z) ) = φ K (h K (L(A H2•H1(z) )) ∪ h K (Γ ω ) -) ∪ φ K ((Γ ∪ {A, B, 0}) ω ) - Thus L(C H3•H2•H1(z) ) = Ω ω ↔ φ K (h K (L(A H2•H1(z) )) ∪ h K (Γ ω ) -) = φ K ((Γ ∪ {A, B, 0}) ω ) ↔ h K (L(A H2•H1(z) )) ∪ h K (Γ ω ) -= (Γ ∪ {A, B, 0}) ω ↔ L(A H2•H1(z) ) = Γ ω ↔ L(M z ) = Σ ω . This shows that {z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) = Ω ω }.
Thus this latter set is Π 1 2 -complete. Remark 3.10. An easy coding can be used to show that the above result still holds if we replace the alphabet Ω by a two letter alphabet (or even by an alphabet containing n letters for an integer n ≥ 2). This will be true for all the results presented in this paper.

Remark 3.11. If we consider context-free languages accepted by Büchi pushdown automata, it is easy to see that the universality problem is still in the class Π 1 2 . Then we can infer from Theorem 3.9 the following corollary.

Corollary 3.12. The universality problem for context-free ω-languages accepted by Büchi pushdown automata is Π 1 2 -complete. Using a similar method as in the proof of Theorem 3.9, we can prove the following result:

Theorem 3.13. The cofiniteness problem for ω-languages of real time Büchi

1-counter automata is Π 1 2 -complete, i.e. the set {z ∈ N | L(C z ) is cofinite } is Π 1 2 -complete. Proof. We first prove that the set {z ∈ N | L(C z ) is cofinite } is in the class Π 1
2 . We can reason as in the corresponding proof for Turing machines in [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF]. Consider a recursive bijection b : (N ⋆ ) 2 → N ⋆ and its inverse b -1 . Now we can consider an infinite word over a finite alphabet Ω as a countably infinite family of infinite words over the same alphabet by considering, for any ω-word σ ∈ Ω ω , the family of ω-words (σ i ) suh that for each i ≥ 1, the ω-word σ i ∈ Ω ω is defined by σ i (j) = σ(b(i, j)) for each j ≥ 1. We can now express that L(C z ) is cofinite by a formula : " ∀ σ ∈ Ω ω ∃r ∈ {0, 1} ω ∃i ≥ 1 [ if (all ω-words σ i , i ≥ 1, are distinct), then (r is an accepting run of C z over σ i ) ]". This is a Π 1 2 -formula because "all ω-words σ i are distinct" can be expressed by the arithmetical formula : (∀j, k ≥ 1)(∃i ≥ 1) σ j (i) = σ k (i).

To prove that the set {z

∈ N | L(C z ) is cofinite } is Π 1 2 -complete, it suffices to remark that L(M z ) is cofinite if and only if L(C H3•H2•H1(z) ) = is cofinite. Thus {z ∈ N | L(M z ) is cofinite } ≤ 1 {z ∈ N | L(C z ) is cofinite } So the completeness follows from the fact, proved in [CC89], that the set {z ∈ N | L(M z ) is cofinite } is Π 1 2 -complete.
As for the universality problem, we obtain the same complexity when considering context-free ω-languages.

Corollary 3.14. The cofiniteness problem for context-free ω-languages accepted by Büchi pushdown automata is Π 1 2 -complete. We now determine the exact complexities of the inclusion and the equivalence problems for ω-languages of real time Büchi 1-counter automata.

Theorem 3.15. The inclusion and the equivalence problems for ω-languages of real time Büchi 1-counter automata are also Π 1 2 -complete, i.e. :

(1) {(y, z) ∈ N 2 | L(C y ) ⊆ L(C z )} is Π 1 2 -complete. (2) {(y, z) ∈ N 2 | L(C y ) = L(C z )} is Π 1 2 -complete. Proof. We first prove that the set {(y, z) ∈ N 2 | L(C y ) ⊆ L(C z )} is a Π 1 2 -set. It suffices to remark that "L(C y ) ⊆ L(C z )" can be expressed by the Π 1 2 -formula : " ∀ σ ∈ Ω ω ∀r ∈ {0, 1} ω ∃r ′ ∈ {0, 1} ω [ if (r is an accepting run of C y over σ), then (r ′ is an accepting run of C z over σ) ]". Then the set {(y, z) ∈ N 2 | L(C y ) = L(C z )} which is the intersection of the two sets {(y, z) ∈ N 2 | L(C y ) ⊆ L(C z )} and {(y, z) ∈ N 2 | L(C z ) ⊆ L(C y )} is also a Π 1
2 -set. To prove completeness we denote n 0 the index of a real time Büchi 1-counter automaton accepting the ω-language Ω ω . Then we consider the function F : N → N 2 defined by F (z) = (n 0 , z). This function is injective and computable and for all

z ∈ N it holds that L(C z ) = Ω ω iff F (z) = (n 0 , z) ∈ {(y, z) ∈ N 2 | L(C y ) ⊆ L(C z )}. Thus Theorem 3.9 implies that {(y, z) ∈ N 2 | L(C y ) ⊆ L(C z )} is Π 1 2 -complete.
In a similar way, we prove that the set {(y, z)

∈ N 2 | L(C y ) = L(C z )} is Π 1 2 - complete.
As for the previous results we easily get the following corollaries.

Corollary 3.16. The inclusion and the equivalence problems for context-free ωlanguages accepted by Büchi pushdown automata are Π 1 2 -complete. A natural question about 1-counter ω-languages or context-free ω-languages is the following one : "can we decide whether a given 1-counter ω-language (respectively, context-free ω-language) is regular, i.e. accepted by a Büchi automaton ?". We can state the following result.

Theorem 3.17. The regularity problem for ω-languages of real time Büchi 1-

counter automata is Π 1 2 -complete, i.e. : the set {z ∈ N | L(C z ) is regular } is Π 1 2 -complete. Proof. We first prove that the set {z ∈ N | L(C z ) is regular } is in the class Π 1
2 . We denote R C the set of indices of real time Büchi 1-counter automata such that no transition of these automata change the counter value. So the counter value of these automata is always zero and they can be seen simply as Büchi automata. The set R C is obviously recursive and we can express "L(C z ) is regular " by the formula : ∃y[ y ∈ R C and L(C z ) = L(C y ) ]. The existential quantification is of type 0 and we have already seen that L(C z ) = L(C y ) can be expressed by a Π 1 2 -formula. This proves that the set {z ∈

N | L(C z ) is regular } is in the class Π 1 2 .
In order to prove the completeness, we shall use the following result of [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF].

The set

P recursive = {z ∈ N | ∃y L(M z ) -= L(M y )} is Π 1 2 -complete.
In fact Castro and Cucker defined a injective computable function ϕ : N → N such that :

(1) if z ∈ U - 2 then L(M ϕ(z) ) = Σ ω (and so ϕ(z) ∈ P recursive ), and (2) if z ∈ U 2 then ϕ(z) / ∈ P recursive .

Similarly we shall consider the function H •ϕ which is an injective and computable function from N into N. And we are going to show that :

(1) if z ∈ U - 2 then L(C H•ϕ(z) ) = Ω ω , and (2) if z ∈ U 2 then L(C H•ϕ(z)
) is not a regular ω-language.

We consider now two cases.

First case. If z ∈ U - 2 then L(M ϕ(z) ) = Σ ω so L(C H•ϕ(z) ) = Ω ω . Thus in this case L(C H•ϕ(z) ) is a regular ω-language. Second case. If z ∈ U 2 then ϕ(z) / ∈ P recursive , i.e. L(M ϕ(z)
) -is not accepted by any Turing machine with 1 ′ (or Büchi) acceptance condition. It is then easy to see that L(C H•ϕ(z) ) -is not accepted by any Turing machine with 1 ′ (or Büchi) acceptance condition. Indeed if we denote again A H2•H1•ϕ(z) the real time Büchi 8-counter automaton of index

H 2 • H 1 • ϕ(z), then : L(A H2•H1•ϕ(z) ) = θ S (L(M ϕ(z) )) ∪ θ S (Σ ω ) -. Thus L(A H2•H1•ϕ(z) ) -= θ S (Σ ω ) -θ S (L(M ϕ(z) )) = θ S (L(M ϕ(z) ) -)
is not accepted by any Turing machine with 1 ′ (or Büchi) acceptance condition. Next we see that

L(C H•ϕ(z) ) = φ K (h K (L(A H2•H1•ϕ(z) )) ∪ h K (Γ ω ) -) ∪ φ K ((Γ ∪ {A, B, 0}) ω ) - so its complement L(C H•ϕ(z) ) -= φ K (h K (L(A H2•H1•ϕ(z) ) -))
is not accepted by any Turing machine with 1 ′ (or Büchi) acceptance condition. In particular L(C H•ϕ(z) ) is not a regular ω-language because otherwise its complement would be also regular hence accepted by a Turing machine.

Finally, using the reduction H • ϕ, we have proved that :

U - 2 ≤ 1 {z ∈ N | L(C z ) is regular } and this proves that {z ∈ N | L(C z ) is regular } is Π 1 2 -complete.
We have also the following result about context-free ω-languages.

Corollary 3.18. The regularity problem for context-free ω-languages accepted by Büchi pushdown automata is Π 1 2 -complete. We consider now the complementability problem and the determinizability problems. The complementability problem is Π 1 2 -complete for ω-languages of Turing machines, i. e. the set [START_REF] Castro | Nondeterministic ω-computations and the analytical hierarchy[END_REF]. We are going to show that it is also Π 1 2 -complete for ω-languages of real time Büchi 1-counter automata or of Büchi pushdown automata. We show also that the determinizability problems for ω-languages of real time Büchi 1counter automata, or of Büchi pushdown automata, are Π 1 2 -complete. We denote D C the set of indices of deterministic real time Büchi 1-counter automata. We can now state the following result:

P recursive = {z ∈ N | ∃y L(M z ) -= L(M y )} is Π 1 2 - complete,
Theorem 3.19. The complementability problem and the determinizability problem for ω-languages of real time Büchi 1-counter automata are Π 1 2 -complete, i.e. :

(1) {z ∈ N | ∃y L(C z ) -= L(C y )} is Π 1 2 -complete. (2) {z ∈ N | ∃y ∈ D C L(C z ) = L(C y )} is Π 1 2 -complete. Proof.
We first show that all these problems are in the class Π 1 2 . It is easy to see

that {z ∈ N | ∃yL(C z ) -= L(C y )} is in the class Π 1 2 because L(C z ) -= L(C y
) can be expressed by a Π 1 2 -formula and the quantification ∃y is of type 0. On the other hand, it is easy to see that the set D C is recursive. The formula ∃y ∈ D C L(C z ) = L(C y ) can be written : "∃y[y ∈ D C and L(C z ) = L(C y )]" and it can be expressed by a Π 1 2 -formula because the quantification ∃y is of type 0 and

L(C z ) = L(C y ) can be expressed by a Π 1 2 -formula. Thus the set {z ∈ N | ∃y ∈ D C L(C z ) = L(C y )} is in the class Π 1 2 .
Consider now the reduction H •ϕ already considered in the proof of Theorem 3.17. We have seen that there are two cases.

First case. If z ∈ U - 2 then L(M ϕ(z) ) = Σ ω so L(C H•ϕ(z) ) = Ω ω . In this case L(C H•ϕ(z)
) is obviously accepted by a deterministic real time Büchi 1-counter automaton. Moreover its complement is empty therefore it is also accepted by a real time Büchi 1-counter automaton. Second case. If z ∈ U 2 then ϕ(z) / ∈ P recursive , and L(C H•ϕ(z) ) -is not accepted by any Turing machine with 1 ′ (or Büchi) acceptance condition. In particular, L(C H•ϕ(z) ) -is not accepted by any real time Büchi 1-counter automaton. And L(C H•ϕ(z) ) can not be accepted by any deterministic real time Büchi 1-counter automaton because otherwise it would be in the arithmetical class Π 2 (see [START_REF] Staiger | ω-languages[END_REF]) and its complement would be accepted by a Turing machine with 1 ′ (or Büchi) acceptance condition. This proves that :

U - 2 ≤ 1 {z ∈ N | ∃y L(C z ) -= L(C y )} and U - 2 ≤ 1 {z ∈ N | ∃y ∈ D C L(C z ) = L(C y )
} and this ends the proof.

In a similar manner we prove the following result about context-free ω-languages.

Corollary 3.20. The complementability problem and the determinizability problem for context-free ω-languages accepted by Büchi pushdown automata are Π 1 2complete.

We investigate now the unambiguity problem for ω-languages accepted by real time Büchi 1-counter automata or by Büchi pushdown automata. Recall that a real time Büchi 1-counter automaton A, accepting infinite words over an alphabet Ω, is said to be non ambiguous iff for every ω-word x ∈ Ω ω there is at most one accepting run of A on x. An ω-language L(A), accepted by a real time Büchi 1-counter automaton A, is said to be non ambiguous iff there exists a non ambiguous real time Büchi 1-counter automaton B such that L(B) = L(A); in the other case ω-language L(A) is said to be inherently ambiguous (notice that the notion of ambiguity refer here to acceptance by real time Büchi 1-counter automata). The definition is similar for ω-languages accepted by Büchi pushdown automata. A context-free ω-language L is said to be non ambiguous iff there exists a non ambiguous Büchi pushdown automaton accepting L. It has been proved in [START_REF] Finkel | Ambiguity in omega context free languages[END_REF] that one cannot decide whether a given context-free ω-language L is non ambiguous. We now state the following result.

Theorem 3.21. The unambiguity problem for ω-languages of real time Büchi 1-counter automata is Π 1 2 -complete, i.e. :

The

set {z ∈ N | L(C z ) is non ambiguous } is Π 1 2 -complete.
Proof. We can first express "C z is non ambiguous" by : "∀σ ∈ Ω ω ∀r, r ′ ∈ {0, 1} ω [(r and r ′ are accepting runs of C z on σ) → r = r ′ ]" which is a Π 1 1 -formula. Then " L(C z ) is non ambiguous" can be expressed by the following formula: "∃y[L(C z ) = L(C y ) and C y is non ambiguous]". This is a Π 1 2 -formula because L(C z ) = L(C y ) can be expressed by a Π 1 2 -formula, and the quantification ∃y is of type 0. Thus the set {z ∈

N | L(C z ) is non ambiguous } is a Π 1 2 -set.
To prove completeness we shall use the following result proved in [START_REF] Finkel | Topology and ambiguity in omega context free languages[END_REF]. Let L(A) be a context-free ω-language accepted by a Büchi pushdown automaton A such that L(A) is an analytic but non Borel set. Then the set of ω-words, which have 2 ℵ0 accepting runs by A, has cardinality 2 ℵ0 . In particular L(A) has the maximum degree of ambiguity; it is said to be inherently ambiguous of degree 2 ℵ0 in [START_REF] Finkel | Ambiguity in omega context free languages[END_REF].

We define the following simple operations over ω-languages. For two ω-words x, x ′ ∈ Σ ω the ω-word x⊗x ′ is defined by : for every integer

n ≥ 1 (x⊗x ′ )(2n-1) = x(n) and (x ⊗ x ′ )(2n) = x ′ (n). For two ω-languages L, L ′ ⊆ Σ ω , the ω-language L ⊗ L ′ is defined by L ⊗ L ′ = {x ⊗ x ′ | x ∈ L and x ′ ∈ L ′ }.
We shall in the sequel use the following construction. We know that there is a simple example of Σ 1 1 -complete set L ⊆ Σ ω accepted by a 1-counter automaton, hence by a Turing machine with 1 ′ acceptance condition, see [START_REF] Finkel | Borel hierarchy and omega context free languages[END_REF]. Then it is easy to define an injective computable function θ from N into N such that, for every integer z ∈ N, it holds that

L(M θ(z) ) = (L ⊗ Σ ω ) ∪ (Σ ω ⊗ L(M z )).
We are going to use now the reduction H already considered above to show that the universality problem for ω-languages of real time Büchi 1-counter automata is Π 1 2 -complete. We have seen that

L(M z ) = Σ ω if and only if L(C H(z) ) = Ω ω
and we can easily see that

L(M θ(z) ) = Σ ω if and only if L(M z ) = Σ ω because L = Σ ω .
The reduction H • θ is an injective computable function from N into N.

We consider now two cases.

First case. L(M z ) = Σ ω . Then L(M θ(z) ) = Σ ω and L(C H•θ(z) ) = Ω ω . In particular L(C H•θ(z)
) is accepted by a non ambiguous real time Büchi 1-counter automaton.

Second case. L(M z ) = Σ ω . Then there is an ω-word x ∈ Σ ω such that x / ∈ L(M z ). But L(M θ(z) ) = (L ⊗ Σ ω ) ∪ (Σ ω ⊗ L(M z )) thus {σ ∈ Σ ω | σ ⊗ x ∈ L(M θ(z) )} = L is a Σ 1 1 -complete set. This implies that L(M θ(z)
) is not a Borel set because otherwise its section {σ ∈ Σ ω | σ ⊗ x ∈ L(M θ(z) )} would be also Borel, [START_REF] Kechris | Classical descriptive set theory[END_REF].

Recall that H = H 3 • H 2 • H 1 , where H 1 , H 2 , and H 3 are the computable functions from N into N defined above. If A H2•H1•θ(z) is the real time Büchi 8-counter automaton of index

H 2 • H 1 • θ(z), then it is easy to see that L(A H2•H1•θ(z) ) = θ S (L(M θ(z)
)) ∪ θ S (Σ ω ) -is not Borel. Next, considering the mappings h K and φ K , we can easily successively see that

h K (L(A H2•H1•θ(z) )) ∪ h K (Γ ω ) -is not a Borel set, φ K (h K (L(A H2•H1•θ(z) )) ∪ h K (Γ ω ) -) is not a Borel set, L(C H3•H2•H1•θ(z) ) = φ K (h K (L(A H2•H1•θ(z) )) ∪ h K (Γ ω ) -) ∪ φ K ((Γ ∪ {A, B, 0}) ω ) - is not a Borel set, i.e. the ω-language L(C H•θ(z) ) is not a Borel set.
Thus in that case the ω-language L(C H•θ(z) ) is inherently ambiguous (and it is even inherently ambiguous of degree 2 ℵ0 ) , [START_REF] Finkel | Ambiguity in omega context free languages[END_REF].

Finally, using the reduction H • θ, we have proved that :

{z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is non ambiguous } Thus this latter set is Π 1 2 -complete.
In a similar manner we prove the following result about context-free ω-languages.

Corollary 3.22. The unambiguity problem for context-free ω-languages accepted by Büchi pushdown automata is Π 1 2 -complete. A fundamental result due to Landweber is that one can determine in an effective manner the topological complexity of regular ω-languages: one can decide whether a given regular ω-language is in a given Borel class (recall that all regular ωlanguages belong to the class ∆ 0 3 ), [START_REF] Landweber | Decision problems for ω-automata[END_REF]. The question naturally arises of a similar problem for other classes of languages, like ω-languages of real time Büchi 1-counter automata. It is proved in [START_REF] Finkel | Borel ranks and Wadge degrees of omega context free languages[END_REF] that ω-languages of real time Büchi 1-counter automata have the same topological complexity as ω-languages of Turing machines. From the above proof we can now infer that the topological complexity of ω-languages of real time Büchi 1-counter automata is highly undecidable.

Theorem 3.23. Let α be a countable ordinal. Then

(1)

{z ∈ N | L(C z ) is in the Borel class Σ 0 α } is Π 1 2 -hard. (2) {z ∈ N | L(C z ) is in the Borel class Π 0 α } is Π 1 2 -hard. (3) {z ∈ N | L(C z ) is a Borel set } is Π 1 2 -hard. Proof.
We can use the same reduction H • θ as in the proof of Theorem 3.21. We have seen that there are two cases.

First case. L(M z ) = Σ ω . Then L(M θ(z) ) = Σ ω and L(C H•θ(z) ) = Ω ω . In particular L(C H•θ(z)
) is an open and closed subset of Ω ω and it belongs to all Borel classes Σ 0 α and Π 0 α . Second case. L(M z ) = Σ ω . Then we have seen that the ω-language L(C H•θ(z) ) is not a Borel set.

Finally, using the reduction H • θ, we have proved that :

{z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is in the Borel class Σ 0 α } {z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is in the Borel class Π 0 α } {z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is a Borel set } And this ends the proof since {z ∈ N | L(M z ) = Σ ω } is Π 1 2 -complete.
In the case of context-free ω-languages accepted by Büchi pushdown automata the corresponding problems have been shown to be undecidable, using the undecidability of the Post correspondence problem [START_REF] Finkel | Topological properties of omega context free languages[END_REF][START_REF] Finkel | Borel hierarchy and omega context free languages[END_REF]. We can prove as above that they are in fact highly undecidable.

Corollary 3.24. Let α be a countable ordinal. The following problems are Π 1 2hard.

(1) "Determine whether a given context-free ω-language is in the Borel class Σ 0 α (respectively, Π 0 α )". (2) "Determine whether a given context-free ω-language is a Borel set".

First case. L(M z ) = Σ ω . Then L(M θ(z) ) = Σ ω and L(C H•θ(z) ) = Ω ω . In particular, for every integer n ≥ 1, the ω-language L(C H•θ(z) ) is in the arithmetical classes Σ n and Π n . Second case. L(M z ) = Σ ω . Then we have seen that the ω-language L(C H•θ(z) ) is not a Borel set. Thus it is not a (lightface) ∆ 1 1 -set and it is not in any arithmetical class Σ n or Π n .

Finally, using the reduction H • θ, we have proved that :

{z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is in the arithmetical class Σ n } {z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is in the arithmetical class Π n } {z ∈ N | L(M z ) = Σ ω } ≤ 1 {z ∈ N | L(C z ) is a ∆ 1 1 -set } And this ends the proof since {z ∈ N | L(M z ) = Σ ω } is Π 1 2 -complete.
In a similar way, we can prove the following result for context-free ω-languages accepted by Büchi pushdown automata. Notice that the decision problems cited in the following corollary were shown to be undecidable in [START_REF] Finkel | Topological properties of omega context free languages[END_REF][START_REF] Finkel | Borel hierarchy and omega context free languages[END_REF] but their exact (high) complexity was unexpected.

Corollary 3.27. Let n ≥ 1 be an integer. The following decision problems are Π 1 2 -complete.

(1) "Determine whether a given context-free ω-language is in the arithmetical class Σ n (respectively, Π n )" (2) "Determine whether a given context-free ω-language is a ∆ 1 1 -set".

Infinite computations of 2-tape automata

We are going to study now decision problems about the infinite behaviour of 2tape Büchi automata accepting infinitary rational relations. We first recall the definition of 2-tape Büchi automata and of infinitary rational relations.

Definition 4.1. A 2-tape Büchi automaton is a sextuple T = (K, Σ 1 , Σ 2 , ∆, q 0 , F ), where K is a finite set of states, Σ 1 and Σ 2 are finite alphabets, ∆ is a finite subset of K × Σ ⋆ 1 × Σ ⋆ 2 × K called the set of transitions, q 0 is the initial state, and F ⊆ K is the set of accepting states. A computation C of the 2-tape Büchi automaton T is an infinite sequence of transitions (q 0 , u 1 , v 1 , q 1 ), (q 1 , u 2 , v 2 , q 2 ), . . . (q i-1 , u i , v i , q i ), (q i , u i+1 , v i+1 , q i+1 ), . . . The computation is said to be successful iff there exists a final state q f ∈ F and infinitely many integers i ≥ 0 such that q i = q f . The input word of the computation is u = u 1 .u 2 .u 3 . . .

The output word of the computation is

v = v 1 .v 2 .v 3 . . .
Then the input and the output words may be finite or infinite. The infinitary rational relation R(T ) ⊆ Σ ω 1 × Σ ω 2 accepted by the 2-tape Büchi automaton T is the set of couples (u, v) ∈ Σ ω 1 × Σ ω 2 such that u and v are the input and the output words of some successful computation C of T . The set of infinitary rational relations will be denoted RAT ω .

In order to prove that some decision problems about the infinite behaviour of 2-tape Büchi automata are highly undecidable, we shall use the results of the preceding section and a coding used in a previous paper on the topological complexity of infinitary rational relations. We proved in [START_REF] Finkel | On the accepting power of two-tape Büchi automata[END_REF] that infinitary rational relations have the same topological complexity as ω-languages accepted by Büchi Turing machines. This very surprising result was obtained by using a simulation of the behaviour of real time 1-counter automata by 2-tape Büchi automata. We recall now a coding which was used in [START_REF] Finkel | On the accepting power of two-tape Büchi automata[END_REF].

We now first define a coding of an ω-word over the finite alphabet Ω = {a, b, E, A, B, F, 0} by an ω-word over the alphabet Ω ′ = Ω ∪ {C}, where C is an additionnal letter not in Ω.

For x ∈ Ω ω the ω-word h(x) is defined by :

h(x) = C.0.x(1).C.0 2 .x(2).C.0 3 .x(3).C . . . C.0 n .x(n).C.0 n+1 .x(n + 1).C . . .
Then it is easy to see that the mapping h from Ω ω into (Ω ∪ {C}) ω is continuous and injective.

Let now α be the ω-word over the alphabet Ω ′ which is simply defined by: Lemma 4.2. Let Ω be a finite alphabet such that 0 ∈ Ω, α be the ω-word over Ω ∪ {C} defined as above, and L ⊆ Ω ω be in r-BCL(1) ω . Then there exists an infinitary rational relation R

1 ⊆ (Ω ∪ {C}) ω × (Ω ∪ {C}) ω such that: ∀x ∈ Ω ω (x ∈ L) iff ((h(x), α) ∈ R 1 ) Lemma 4.3. The set R 2 = (Ω ∪ {C}) ω × (Ω ∪ {C}) ω -(h(Ω ω ) × {α}) is an infinitary rational relation.
Considering the union R 1 ∪ R 2 of the two infinitary rational relations obtained in the two above lemmas we get the following result.

Proposition 4.4. Let L ⊆ Ω ω be in r-BCL(1) ω and L = h(L) ∪ (h(Ω ω )) -. Then R = L × {α} (Ω ′ ) ω × ((Ω ′ ) ω -{α})
is an infinitary rational relation. rational relation. These relations have been studied by Frougny and Sakarovitch in [START_REF] Frougny | Synchronized rational relations of finite and infinite words[END_REF] where they proved that one cannot decide whether a given infinitary rational relation is synchronized. We shall prove that actually this problem is also Π 1 2 -complete. This is also the case for the complementability problem, the determinizability problem, and the unambiguity problem for infinitary rational relations. We denote below T D the (recursive) set of indices of deterministic 2tape Büchi automata.

Theorem 4.7. The "regularity problem", the complementability problem, the determinizability problem, and the unambiguity problem for infinitary rational relations are Π 1 2 -complete, i.e. :

(1) {z ∈ N | R(T z ) is a synchronized rational relation } is Π 1 2 -complete. (2) {z ∈ N | R(T z ) -is an infinitary rational relation } is Π 1 2 -complete. (3) {z ∈ N | ∃y ∈ T D R(T z ) = R(T y )} is Π 1 2 -complete. (4) {z ∈ N | R(T z ) is a non ambiguous rational relation } is Π 1 2 -complete. Proof.
We can reason as in the case of ω-languages of real time Büchi 1-counter automata to prove that these problems are in the class Π 1 2 .

To prove completeness we consider the reduction H • θ already used in the proof of Theorem 3.21. And we shall use now the reduction H ′ • H • θ, where H ′ is defined above in this section. The reduction

H ′ • H • θ is an injective computable function from N into N.
Returning to the proof of Theorem 3.21, we can see that there are now two cases.

First case. L(M z ) = Σ ω . Then L(M θ(z) ) = Σ ω and L(C H•θ(z) ) = Ω ω and R(T H ′ •H•θ(z) ) = Ω ′ω × Ω ′ω . Thus in that case R(T H ′ •H•θ(z)
) is a synchronized rational relation accepted by a deterministic, hence also non ambiguous, 2-tape Büchi automaton. And its complement is empty so it is also an infinitary rational relation.

Second case. L(M z ) = Σ ω . Then we have seen that in that case the ω-language L(C H•θ(z) ) is not a Borel set. It is easy to see that the infinitary rational relation

R(T H ′ •H•θ(z)
) is also a non Borel set. Thus in that case R(T H ′ •H•θ(z) ) is not a synchronized rational relation because otherwise it would be a ∆ 0 3 -set. The relation R(T H ′ •H•θ(z) ) can not be accepted by any deterministic 2-tape Büchi automaton because otherwise it would be a Π 0 2set. The relation R(T H ′ •H•θ(z) ) is inherently ambiguous (and it is even inherently ambiguous of degree 2 ℵ0 , see [START_REF] Finkel | Ambiguity in omega context free languages[END_REF][START_REF] Finkel | Topology and ambiguity in omega context free languages[END_REF]). And the complement Ω ′ω × Ω ′ω -R(T H ′ •H•θ(z) ) is not an analytic set (because otherwise R(T H ′ •H•θ(z) ) would be analytic and coanalytic hence Borel). Thus the complement of R(T H ′ •H•θ(z) ) is not an infinitary rational relation.

Finally, using the reduction H ′ •H•θ, we have proved that : {z ∈ N | L(M z ) = Σ ω } is reduced to the four problems we consider here. Thus these problems are Π 1 2complete.

Topological and arithmetical properties of infinitary rational relations have been shown to be undecidable in [START_REF] Finkel | Undecidability of topological and arithmetical properties of infinitary rational relations[END_REF]. The proofs used the undecidability of Post correspondence problem and the existence of an analytic but non Borel set proved in [START_REF] Finkel | On the topological complexity of infinitary rational relations[END_REF]. So classical decision problems were only proved to be hard for the first level of the arithmetical hierarchy.

We can now infer from the proof of the preceding theorem, reasoning as in the case of ω-languages of real time Büchi 1-counter automata, that topological and arithmetical properties of infinitary rational relations are actually highly undecidable.

Theorem 4.8. Let α be a non null countable ordinal. Then

(1) {z ∈ N | R(T z ) is in the Borel class Σ 0 α } is Π 1 2 -hard. (2) {z ∈ N | R(T z ) is in the Borel class Π 0 α } is Π 1 2 -hard. (3) {z ∈ N | R(T z ) is a Borel set } is Π 1 2 -hard.
Theorem 4.9. Let n ≥ 1 be an integer. Then

(1) {z ∈ N | R(T z ) is in the arithmetical class Σ n } is Π 1 2 -complete. (2) {z ∈ N | R(T z ) is in the arithmetical class Π n } is Π 1 2 -complete. (3) {z ∈ N | R(T z ) is a ∆ 1 1 -set } is Π 1 2 -complete.

Concluding remarks and further work

We have got very surprising results which show that many decision problems about ω-languages of real time Büchi 1-counter automata and infinitary rational relations exhibit actually a great complexity, despite the simplicity of the definition of 1counter automata or 2-tape automata. May be one of the most surprising results in this paper is that the universality problem for infinitary rational relations accepted by 2-tape Büchi automata is Π 1 2 -complete. This result may be compared to the complexity of the universality problem for timed Büchi automata. Alur and Dill proved in [START_REF] Alur | A theory of timed automata[END_REF] that the universality problem for timed Büchi automata is Π 1 1 -hard. On the other hand this problem is known to be in the class Π 1 2 but its exact complexity is still unknown. Notice that using the Π 1 1 -hardness of the universality problem for timed Büchi automata some other decision problems for timed Büchi automata have been shown to be Π 1 1 -hard, [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Finkel | Undecidable problems about timed automata[END_REF].

Recognizable languages of infinite bidimensional words (infinite pictures) have been recently studied in [START_REF] Altenbernd | Tiling systems over infinite pictures and their acceptance conditions[END_REF][START_REF] Finkel | On recognizable languages of infinite pictures[END_REF]. Using partly similar reasoning as in this paper we have proved that some decision problems for recognizable languages of infinite pictures have the same degrees as the corresponding problems about ωlanguages of real time 1-counter automata, [START_REF] Finkel | Highly undecidable problems about recognizability by tiling systems[END_REF]. Notice that some problems, like the non-emptiness problem and the infiniteness problem, are Σ 1 1 -complete for recognizable languages of infinite pictures but are decidable for ω-languages of real time 1-counter automata or 2-tape automata. Some problems studied in [START_REF] Finkel | Highly undecidable problems about recognizability by tiling systems[END_REF] are specific to languages of infinite pictures. In particular, it is Π 1 2 -complete to determine whether a given Büchi recognizable language of infinite pictures can be accepted row by row using an automaton model over ordinal words of length ω 2 .

α

  = C.0.C.0 2 .C.0 3 .C.0 4 .C . . . C.0 n .C.0 n+1 .C . . .The following results were proved in[START_REF] Finkel | On the accepting power of two-tape Büchi automata[END_REF].

  Recall that, by Remark 3.25, if α is an ordinal smaller than the Church-Kleene ordinal ω CK 1 , then {z ∈ N | L(C z ) is in the Borel class Σ 0 α } and {z ∈ N | L(C z ) is in the Borel class Π 0 α } are Σ 1 3 -sets. Moreover they are Π 1 2 -hard by Theorem 3.23. However the exact complexity of being in the Borel class Σ 0 α (respectively, Π 0 α ), for a countable ordinal α, remains an open problem for ω-languages of real time 1-counter automata (respectively, pushdown automata, 2-tape automata).

  where H 1 , H 2 , and H 3 are the computable functions from N into N described above, the functions H 1 , H 2 and H 3 being given by Lemmas 3.6, 3.7, and 3.8. Thus H is an injective computable function from N into N and if z is the index of a non deterministic Turing machine reading words over Σ and equipped with a 1 ′ -acceptance condition, then H(z) is the index of a non deterministic real time Büchi 1-counter automaton reading words over the alphabet Ω = {a, b, E, A, B, F, 0}.
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Remark 3.25. If α is an ordinal smaller than the Church-Kleene ordinal ω CK 1 , i.e. is a recursive ordinal, then there exists a universal set for Σ 0 α -subsets of X ω which is in the class ∆ 1 1 . This is a known fact of Effective Descriptive Set Theory which is proved in detail in [START_REF] Finkel | Classical and effective descriptive complexities of omegapowers[END_REF]. This means that there exists a ∆ 1 1 -set U α ⊆ 2 ω × X ω such that for every set L ⊆ X ω , L is in the class Σ 0 α iff there is an ω-word x ∈ 2 ω such that [∀y ∈ X ω y ∈ L ↔ (x, y) ∈ U α ], i.e. such that L is the section of U α in x.

Similar results hold for context-free ω-languages accepted by Büchi pushdown automata.

We consider now the arithmetical complexity of ω-languages of real time Büchi 1-counter automata. Here we get the exact complexity of highly undecidable problems.

Theorem 3.26. Let n ≥ 1 be an integer. Then

(1)

We are going to use the existence of a universal set U Σn ⊆ N × Ω ω for the class of Σ n -subsets of Ω ω , [Mos80, p. 172]. The set U Σn is a Σ n -subset of N×Ω ω (i.e. (n, x) ∈ U Σn can be expressed by a Σ 0 n -formula) and for any

Then we can express "L(C z ) is in the arithmetical class Σ n " by the formula "∃n ∈

2 -formula and the first quantifier ∃ is of type 0. Therefore "L(C z ) is in the arithmetical class Σ n " can be expressed by a Π 1 2 -formula. The case of the arithmetical class Π n is very similar since there exists also a universal set

We have already seen that the set

. On the other hand, an ω-language L ⊆ X ω is in the class Σ 1 1 iff it is accepted by a non deterministic Turing machine with a 1 ′ or Büchi acceptance condition, [START_REF] Staiger | ω-languages[END_REF].

and it is easily seen to be in the class Π 1 2 .

We now prove completeness for the three problems. We can again use the same reduction H • θ as in the proof of Theorem 3.21. We have seen that there are two cases.

Moreover it is proved in [START_REF] Finkel | On the accepting power of two-tape Büchi automata[END_REF] that one can construct effectively, from a real time 1-counter Büchi automaton A accepting L, a 2-tape Büchi automaton B accepting the infinitary relation R = L × {α} (Ω ′ ) ω × ((Ω ′ ) ω -{α}). This can be done in an injective way, so we get the following result.

Notice that from now on we shall denote T z the 2-tape Büchi automaton of index z.

Lemma 4.5. There is an injective computable function H ′ from N into N satisfying the following property. If C z is the real time Büchi 1-counter automaton (reading words over Ω) of index z, and if

We can now state our first results about 2-tape Büchi automata. Notice that the four decision problems considered here were known to be undecidable. But the proof used the undecidability of Post correspondence problem, as in the case of finitary rational relations stated in [START_REF] Berstel | Transductions and context free languages[END_REF], in such a way that these decision problems were only proved to be hard for the first level of the arithmetical hierarchy.

We obtain here the exact complexity of these problems which is surprisingly high.

Theorem 4.6. The universality problem, the cofiniteness problem, the equivalence problem, and the inclusion problem for infinitary rational relations are Π 1 2complete, i.e. :

(1)

In order to prove that these problems are in the class Π 1 2 , we can reason as in the case of ω-languages of real time Büchi 1-counter automata.

To prove completeness, we use the reduction H ′ defined above and the following properties which can be easily checked. For each integer z,

(1)

). Then the completeness results follow easily from the corresponding results about ωlanguages of real time Büchi 1-counter automata, proved in the preceding section.

We consider now the "regularity problem" for infinitary rational relation. An infinitary rational relation R ⊆ Σ ω 1 × Σ ω 2 may be seen as an ω-language over the product alphabet Σ 1 × Σ 2 . Then a relation R ⊆ Σ ω 1 × Σ ω 2 is accepted by a Büchi automaton iff it is accepted by a 2-tape Büchi automaton with two reading heads which move synchronously. The relation R is then called a synchronized infinitary