MR diffusion-based inference of a fiber bundle model from a population of subjects.
Résumé
This paper proposes a method to infer a high level model of the white matter organization from a population of subjects using MR diffusion imaging. This method takes as input for each subject a set of trajectories stemming from any tracking algorithm. Then the inference results from two nested clustering stages. The first clustering converts each individual set of trajectories into a set of bundles supposed to represent large white matter pathways. The second clustering matches these bundles across subjects in order to provide a list of candidates for the bundle model. The method is applied on a population of eleven subjects and leads to the inference of 17 such candidates.