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Abstract

Let S =
∑+∞

i=1
λiZi where the Zi’s are i.d.d. positive with E |Z|3 < +∞ and (λi)i∈N

a positive nonincreasing sequence such that
∑
λi < +∞. We study the small ball proba-

bility P (S < ε) when ε ↓ 0. We start from a result by Lifshits (1997) who computed this
probability by means of the Laplace transform of S. We prove that P (S < ·) belongs to
a class of functions introduced by de Haan, well-known in extreme value theory, the class
of Gamma-varying functions, for which an exponential-integral representation is available.
This approach allows to derive bounds for the rate in nonparametric regression for functional
data at a fixed point x0 : E (y|X = x0) where (yi, Xi)1≤i≤n

is a sample in (R,F) and F is
some space of functions. It turns out that, in a general framework, the minimax lower bound
for the risk is of order (logn)

−τ
for some τ > 0 depending on the regularity of the data and

polynomial rates cannot be achieved.

Keywords : Small ball problems, functional data, regular variation, nonparametric regres-
sion, lower bound, Gaussian random elements.

1 Preliminaries

The three following susbections are independent. The first gives some basic material about small
ball probability. The second collects classical results from extreme value theory as well as the
definition of the class Γ0 which is then briefly described. The third introduces the nonparametric
regression model for functional data and simply raises the problems attached to obtaining sharp
bounds for the quadratic risk at a fixed point. The notions encountered in this long introduction
though intially distinct from each other merge in the sequel of this work and give birth to the
main results. Some proofs are given in the last section.

1.1 About non-shifted and shifted small ball problems

Small ball problems could generally be stated the following way : consider a random variable
X with values in a general normed space (E, ‖·‖) (which may not be finite-dimensional) and
estimate P (‖X‖ < ε) for small values of ε. This issue may be viewed as a counterpart of the
large deviations or concentration problems (where P (‖X‖ > M) is studied for large M) and the
terms ”small deviations” or ”lower tail behaviour” are sometimes encountered to name small
ball problems. The core of the literature on small ball problems focuses on Gaussian random
variables. The survey by Li and Shao (2001) is a complete state of the art, introducing the main
concepts and providing numerous references. Another reference is Chapter 18 of Lifshits (1995)
entirely devoted to Gaussian random functions. Much attention has been given to Brownian
motion (when (E, ‖·‖) = (C (0.1) , |·|∞)) or its relatives (fractional Bronwian motion, Bronwian
sheet, etc). The case of stable random elements was also investigated (see for instance Li,
Linde (2004), Aurzada, Lifshits, Linde (2009)). Another issue is related to the norm. Indeed in
infinite dimensional spaces, norms or metrics are not equivalent and this may influence the local
behaviour of P (‖X‖ < ε).
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A more general question could be the shifted small ball probability P (‖X − x0‖ < ε) for a
fixed x0. A stumbling stone arises from the shift x0. It turns out that, in general, computations
cannot be carried out for any x0. Several works focus on expliciting the set of those x0 for which
the shifted small ball probability may be computed from the non-shifted one (when x0 = 0).
We refer to Borell (1976) or Li and Linde (1993) for instance. A classical example stems from
the situation where PX−x0

≪ PX where PX denotes the probability distribution induced by the
random element X. The classical Cameron-Martin’s theorem for Brownian motion illustrates
this case for instance. Absolute regularity yields :

P (‖X − x0‖ < ε) =

∫

B(0,ε)
PX−x0

(dx) =

∫

B(0,ε)
fx0

(x)PX (dx)

where fx0
= dPX−x0

/dPX and B (0, ε) stands for the ball centered at 0 with radius ε. When fx0

is regular enough in a neighborhood of zero :

Fx0
(h) =

∫

B(0,ε)
PX−x0

(dx) =

∫

B(0,ε)
fx0

(x)PX (dx) ∼ fx0
(0)F (h) (1)

About this fact see Proposition 2.1 in de Acosta (1983). In general the sharpness of existing
results may vary, depending on the triplet ((E, ‖·‖) ,PX , x0) under consideration. In fact there
are only few spaces for which the local behaviour of P (‖X − x0‖ < ε) is explicitely described.
Quite often lower and upper bounds are computed so that :

P (‖X − x0‖ < ε) ≍ ϕx0
(ε)

where ϕx0
is known and f ≍ g means here that for some positive constants c− and c+ the

positive functions f and g satisfy :

0 < c− ≤ lim inf
0

f

g
≤ lim sup

0

f

g
≤ c+.

Sometimes only one of these bounds is accessible or needed.
It is worth noting or recalling a few crucial features of small deviations techniques. The

Laplace transform, as well as in large deviations problems, is a major tool when coupled with
the saddlepoint method. Small deviations are intimately connected with the entropy of the
unit ball of the reproducing kernel Hilbert space associated with X, with the l-approximation
numbers of X (i.e. the rate of approximation of X by a finite dimensional random variable,
see Li, Linde (1999)) or to the degree of compactness of linear operators generating X (see Li,
Linde (2004)). All these notions are clearly connected to the regularity of the process X, when
X is a process.

Applications of small ball probabilities are numerous : they appear when studying rates
of convergence in the Law of the Iterated Logarithm (see Talagrand (1992), Kuelbs, Li, Linde
(1994)) or the rate of escape of the Brownian motion (see Erickson (1980)). They even surpris-
ingly provide a sufficient condition for the CLT (see Ledoux, Talagrand (1991), Theorem 10.13
p.289). However small ball problems remained until nowadays a matter essentially reserved to
probability theory. However Van der Vaart and van Zanten (2007 and 2008) found applications
of small ball techniques to Bayesian statistics It turns out that this topic may be also of interest
in another area of statistics : functional data analysis. FDA for short extends classical statistical
models designed for vectors to the situation when the data are functions or curves. One of the
concern may be summarized this way : since Lebesgue’s density of an infinite-dimensional ran-
dom X does not exist, all the inference techniques based on the density cannot hold anymore.
In this framework, the small ball probabilities appear as a natural counterpart and should be
investigated with much care. We illustrate this fact by pointing out an elementary example
-kernel methods- in the next subsection below.
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First let us precise the l2 framework. Consider X a random variable defined the following
way :

X =
(√

λ1x1,
√
λ2x2, ...

)
(2)

where (λi)1≤i≤n is a real positive sequence arranged in a non-decreasing order such that
∑+∞

i=1 λi <
+∞ and (xi)1≤i≤n is sequence of real independent and identically distributed random variables
with null expectation. From Kolmogorov’s 0 − 1 law it is straightforward to see that X exists
as a l2-valued random element. The square norm of X is S =

∑+∞
i=1 λix

2
i .

The small ball problem consists here in estimating for different choices of the sequence (λi)i∈N
and (xi)i∈N the probability P (S < r) when r tends to zero. The latter probability is expected
to depend on the λi’s. About this fact we refer to Dunker, Lifshits, Linde (1998).

The inspection of the case E = l2 is motivated by the application to functional statistics
mentioned in the paragraph above. Indeed random functions are often reconstructed by inter-
polation techniques, like splines or wavelets, in Hilbert spaces such as L2 ([0, T ]) or the Sobolev
space Wm,2 ([0, T ]) , m ∈ N. Then the random element X is valued in a separable Hilbert space
H and all these Hilbert spaces of functions are isometrically isomorphic to l2. In this framework
a useful tool is the so-called Karhunen-Loève decomposition (sometimes refered to as Principal
Orthogonal Decomposition in other area of mathematics such as PDEs). Any centered random
function X will be represented by its coordinates in a basis of eigenvectors of the covariance
operator CX = E [X ⊗X]. When ei’s are the eigenvectors of CX and λi the associated eigenvalues

X =

+∞∑

i=1

√
λixiei (3)

where the xi’s are uncorrelated real random variables. The xi’s are actually always independent
when X is Gaussian and are assumed to be in most settings. The l2 random element defined in
(2) is formally identifiable with this Karhunen-Loève decomposition familiar in Functional Data
Analysis.

Historically the description of the exact behaviour of Gaussian small ball probability in
Hilbert space is due to Sytaya (1974). However we borrow the notations from Lifshits (1997)
who extendend Sytaya’s results in several directions amongts which the non-Gaussian framework.
First in order to alleviate notations set once and for all :

S =
+∞∑

i=1

λiZi (4)

where λi > 0 are arranged in decreasing order with
∑+∞

i=1 λi < +∞ and Zi are positive random
variables (they stand for the x2i ’s above). For the sake of completeness and since the main
theorems of this work heavily rely on his results we recall them. In the previously mentioned
article Lifshits proved that :

P (S < r) ∼
r→0

1√
2π

1

γσ
exp (γr) Λ (γ) (5)

where γ and σ are functions of r defined below and Λ (γ) = E exp (−γS) is the Laplace transform
of S evaluated at γ (r). The definitions of γ and σ are implicit. Let Sγ be the Esscher transform
of S that is the random variable with distribution exp (−γx)PS (dx) /Λ (γ). Then set :

r = E [Sγ ] = −∂ log Λ (γ)

∂γ
, (6)

σ2 = V [Sγ ] =
∂2 log Λ (γ)

∂γ2
. (7)

where V denotes variance. Without further assumption on the λi’s P (S < r) cannot be made
more explicit. This is done for instance in Dunker, Lifshits, Linde (1998) where these author
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considered the case of λi with polynomial and exponential decay. Due to the remark below (3)
we will sometimes refer to P (S < r) as a small ball probability for an l2-valued random element.

The article is organized as follows. The next subsection develops some aspects of mathemat-
ical statistics which motivate this approach on small ball problems. Then a class of functions
which appears in extremes value theory -the class Γ0- is introduced in the next section. Our main
theorem shows that small ball probabilities of l2 random elements (hence of random functions
belonging to a Hilbert space) belong to the class Γ0. We then show how this result may be used
to solving the statistical issues mentioned earlier. In particular we prove the the optimal rate of
convergence in nonparametic regression for functional variables is always slower than any power
of n. The derivations of the main results are collected in the last part of the article.

1.2 The class Γ0

The theory of extremes is another well-known topic connecting probability theory, mathematical
statistics and real analysis through regular variation and Karamata’s theory. The foundations
of extreme value theory may be illustrated by the famous Fisher-Tippett theorem (see Fisher,
Tippett (1928) and Gnedenko (1943)). This classical result assesses that whenever U1, ..., Un

is an i.id. sample of real random variables, Mn = max {U1, ..., Un} belongs to the domain of
attraction of G, where G has same type as one of the three distributions Gumbel, Frechet
and Weibull. The Gumbel law, also named double exponential distribution, with cumulative
distribution function Λ (x) = exp (− exp (−x)) defines the so-called ”domain of attraction of the
third type”. Laurens de Haan (1971) characterized the (cumulative) distribution functions of U
such that Mn belongs to the domain of attraction of Λ. We give this result below.

Theorem (de Haan, 1971) : If F is the cumulative distribution function of a real random
variable X which belongs to the domain of attraction of the third type (Gumbel) there exists a
measurable function ρ : R → R

+, called the auxiliary function of F , such that :

lim
s↑x+

F (s+ xρ (s))

F (s)
= exp (−x)

where F (s) = 1− F (s) , x+ = sup {x : F (x) < 1}.
This property was intially introduced by de Haan as a ”Form of Regular Variation” (see the

title of his article). This class of distribution function is referred to as de Haan’s Gamma class in
the book by Bingham, Goldie and Teugels (1987) and within this article. In the latter book the
definition is slightly different from the one given above. Gamma-variation is defined at infinity
and for non-decreasing functions which comes down to taking x+ = +∞ and taking exp (x)
instead of exp (−x) in the display above. Surprisingly, in their book as well as in de Haan’s
article no examples of functions belonging to Γ is given. The cumulative distribution function
function of the Gaussian distribution belongs to this class with x+ = +∞ and ρ (s) = 1/s.

Since we focus on the local behaviour at zero of the cumulative distribution function function
of a real valued random variable we have to modifiy again slightly the definitions above. We
introduce the class Γ0 and feature some of its properties below. We borrow most of our notations
from Bingham, Goldie and Teugels (1987) which differ from those of de Haan.

Definition 1 The class Γ0 consists of those functions F : R → R
+ null over (−∞, 0], non

decreasing with F (0) = 0 and right-continuous for which there exists a continuous non decreasing
function ρ : V+ → R

+, defined on some a right-neighborhood of zero V+ such that ρ (0) = 0 and
for all x ∈ R,

lim
s↓0+

F (s+ xρ (s))

F (s)
= exp (x) (8)

The function ρ is called the auxiliary function of F .

The properties of the auxiliary function are crucial.
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Proposition 1 From Definition 1 above we deduce that : ρ (s) /s → 0 as s → 0 and ρ is
self-neglecting which means that :

ρ (s+ xρ (s))

ρ (s)

s→0→ 1

locally uniformly in x ∈ R.

Remark 1 When the property in the proposition above does not hold locally uniformly but only
pointwise the function is called Beurling slowly varying. Assuming that ρ is continuous in
Definition 1 yields local uniformity and enables to consider a self-neglecting ρ.

The class Γ0 is subject to an exponential-integral representation. In fact the following Theo-
rem asserts that the local behaviour at 0 of any F in Γ0 depends only on the auxiliary mapping
ρ.

Theorem 1 Let F belong to Γ0 with self-neglecting auxiliary function ρ then when s→ 0 :

F (s) = exp

{
η (s)−

∫ 1

s

1

ρ (t)
dt

}
(9)

with η (s) → c ∈ R and the auxiliary function ρ is unique up to asymptotic equivalence and may
be taken as

∫ s
0 F (t) dt/F (s) . Besides

F (λs) /F (s) →





∞ (λ > 1)
1 (λ = 1)
0 (λ < 1)

as s→ 0. (10)

Remark 2 The upper bound 1 in the integral in display (9) is unimportant and may be replaced
by any positive number. Then the function η will change as well.

The proof of Proposition 1 as well as Theorem 1 are inspired from the proofs of Lemma
3.10.1, Proposition 3.10.3 and Theorem 3.10.8 in Bingham et al (1987) and will be omitted.
Let us also mention that Gäıffas (2005) proposed to model locally the density of sparse data by
gamma-varying functions. This is another statistical application for Γ0. It is simple to construct
explicit examples of functions in Γ0 by tuning the auxiliary function ρ and taking η (·) = 0 in
(9). For instance taking ρ1 (t) = tm (with m > 1) gives F1 (s) = exp

(
−1/sm−1

)
. Now taking

ρ2 (t) = −t/ log (t) yields F2 (s) = exp
(
− [log (s)]2

)
. Obviously constants may be added in front

of or within the exponential. The next Proposition seems to show a specific feature of the class
Γ0.

Proposition 2 Let F belong to Γ0. Then for all integer p F (p) (0) = 0 where F (p) denotes the
derivative of order p of F .

1.3 The nonparametric regression model for functional data

As a last part of this introduction we shift from small ball problems and extreme theory to
statistics for functional data. This recent domain of statistics has been receiving increasing
interest and was boosted by computational advances. We briefly recall that the main purpose
of functional data analysis (FDA) is to model and study datasets where observations are of
functional nature (usually observed on a grid then smoothed, approximated and reconstructed
by projection on accurate basis ). We refer to the monographs by Ramsay and Silverman (2005)
and Ferraty and Vieu (2006) for an overview of this topic. Along the past decade some authors
turned their attention to the question of modelizing probability distribution for curve-data with
applications in statistics : Dabo-Niang (2002), Hall and Heckman (2002) Delaigle and Hall
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(2010) in a general setting then Dabo-Niang, Ferraty and Vieu (2004 and 2006), Ferraty, Göıa
and Vieu (2007) with applications to classifications through modal curves for instance. Consider
the regression problem with functional data as inputs :

y = r (X) + ε (11)

where y, ε are real with ε centered whose variance is denoted σ2ε , X belongs to the Hilbert
space H and r is a function from H to R. The space H may be chosen to be L2 (T ) where
T is a compact set in the Euclidean space or som Sobolev space H2,m. It is endowed with an
inner product 〈·, ·〉 inducing a norm ‖·‖ . Estimating the regression function at a fixed point x0
namely r (x0) = E (y|X = x0) is possible by a classical Nadarya-Watson approach (see Tsybakov
(2004) for a general presentation in the finite dimensional setting and Ferraty Vieu (2006) for
implementation on functional data). This model was studied for instance in Ferraty, Vieu (2004)
and asymptotic results were derived in Ferraty, Mas, Vieu (2007) like a first upper bound for
the quadratic risk. It seems that an equivalent of projection-based estimate in this model has
not been introduced yet, certainly due to a lack of theoretical results on approximation theory
for functions defined on a Hilbert space. The linear regression model y =

∫
X (s)βs + ε has

been extensively investigated in the last years and several authors proved optimality results like
for instance Hall and Horowitz (2007), Crambes, Kneip, Sarda (2009) or Cardot and Johannes
(2010) (see also references therein these works). It seems that the optimal (in minimax sense)
asymptotic risk has not been obtained yet in the more general model (11). The behaviour of
the small ball probability was a stumbling stone hard to circumvent.

An adapted Nadaraya-Watson estimate reads :

r̂ (x0) =

∑n
i=1 yiK (‖Xi − x0‖ /h)∑n
i=1K (‖Xi − x0‖ /h)

where x0 is a fixed point of the space, K is a kernel, that is a mesurable, unilateral (defined on
R
+) positive function with

∫
K = 1 and h is a nonnegative number tending to 0 (the bandwidth).

Considering the L2-risk at a fixed point x0 leads to a bias-variance decomposition :

Rn (x0) = E

(
r̂ (x0)− r (x0)

2
)
= Bn (x0) + Vn (x0)

with

Bn (x0) =

{
E

∑n
i=1 [r (Xi)− r (x0)]K (‖Xi − x0‖ /h)∑n

i=1K (‖Xi − x0‖ /h)

}2

(12)

Vn (x0) = E

[∑n
i=1 εiK (‖Xi − x0‖ /h)∑n
i=1K (‖Xi − x0‖ /h)

]2
(13)

where εi = yi − r (Xi).

Lemma 1 The following holds for the two components of the risk at a fixed point x0 of the
kernel estimator r̂ (x0) :

Vn (x0) ∼
σ2ε
n

EK2 (‖X − x0‖ /h)
[EK (‖X − x0‖ /h)]2

(14)

Bn (x0) ∼
1

E2K (‖X − x0‖ /h)

(
+∞∑

i=1

biE

[
〈X, ei〉2K (‖X‖ /h)

])2

(15)

where the bi’s are positive and non random constants.
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The sequence (bi)i∈N is not given here because it depends on several parameters which will
be introduced later. The proof of this lemma will not be explicitely carried out. It will be
encapsulated in the proof of Proposition 5 which is more precise about the bounds (14) and
(15). We keep in mind that the bias-variance decomposition of the risk is essentially based

on the computation of two sorts of moments : EK (‖X − x0‖ /h) and E

[
〈X, ei〉2K (‖X‖ /h)

]
.

Calculation of EK2 (‖X − x0‖ /h) is similar with EK (‖X − x0‖ /h). In a multivariate setting,
when X is an R

d valued random variable, and the density of X fX is smooth enough at x0
computations lead in many situations to :

EK (‖X − x0‖ /h) ∼ cdfX (x0)h
d (16)

where cd denotes the volume of the unit ball in the space Rd. The r.h.s. of the formula above may
vary, depending on the support of the distribution of X. However neither Lebesgue’s measure
or a counterpart to fX may be defined when X is valued in a Hilbert space for instance. The
classical notion of volume of a ball cannot be generalized to such spaces. As a consequence when
X is a process, the density of X at x0 does not make sense anymore. A major issue is then
to compute the preceding expectation without assuming that fX (x0) exists. We consider the
following conditions on the kernel K :

K has compact support (say [0, 1]), is absolutely continuous and bounded above
and below with K (1) > 0

These conditions hold for the naive kernel, K (u) = 1 if and only if u ∈ [0, 1]. We do not seek
minimal conditions on the kernel here and the assumption above could certainly be alleviated
but is sufficient to carry out computations. Applying Fubini’s Theorem is sufficient to get rid
of the density. Denoting P (‖X − x0‖ < h) = Fx0

(h) we obtain :

EK

(‖X − x0‖
h

)
= Fx0

(h)

[
K (1)−

∫ 1

0
K ′ (s)

Fx0
(hs)

Fx0
(h)

ds

]

It is straightforward to see that the same method may yield the value of such integrals as :

E

[
‖X − x0‖pK

(‖X − x0‖
h

)]
= hpFx0

(h)

[
K (1) +

∫ 1

0
K̃p (s)

Fx0
(hs)

Fx0
(h)

ds

]
(17)

with K̃p (s) = −
[
spK ′ (s) + psp−1K (s)

]
and the evaluation of the expectation above essentially

depends again on the small ball probability Fx0
(·). When X is a random function the behaviour

of Fx0
at 0 is crucial and determines the rate of convergence to zero of the above expectation

-what statisticians are truly interested in.
Assume that Fx0

is regularly varying at zero with index d (which is usually true when X
is finite dimensional) then by definition Fx0

(h) = Chdl (h) where C is a constant, l is a slowly
varying function at 0 and Fx0

(hs) /Fx0
(h) → sd when for s > 0 and h → 0 which yields

EK (‖X − x0‖ /h) ∼ cdh
dl (h) where cd depends only on d and K. Unfortunately when X lies

in a function space, the most classical examples of F (h) are not reguarly varying as will be seen
below. But however we notice for further purpose that the theory of regular variation is of some
help in this important special case.

Turning to E

[
〈X, ei〉2K (‖X‖ /h)

]
which appears in the numerator of (15) (note that here

x0 does not appear anymore) is more tricky and will not be done at this stage. This expectation

is bounded above by E

[
‖X‖2K (‖X‖ /h)

]
similar to (17) with p = 2 but this boudn is not sharp

and no other equivalent could be derived from the previous considerations.
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2 Main results

We are ready to give the main results. This section is split in three parts. In the first it is
shown that the function Fx0

(·) which is crucial for evaluating the risk in model (11) belongs
to the class Γ0 of Gamma-varying functions in a quite general framework. In the second we
focus on the case of a Gaussian design. In the third we use the properties of the class Γ0 to
derive upper and lower bounds on the risk for (11) and at a fixed point. A notable fact is that
the lower bound is degenerate : it is slower than any negative power of n. This may be seen as
an ultimate symptom of the curse of dimensionality. If f and g are two positive functions the
notation f �x g means that limu→x f (u) /g (u) ≤ c for some positive constant c.

2.1 Small ball probability of random functions are Gamma-varying

This sub-section connects the two apparently distinct notions of probability seen before : the
class of small ball probabilities in l2 and de Haan’s Gamma class of functions. Both families
of functions are defined by their local behaviour around 0. In what follows, the exponent −1 is
strictly reserved to denoting the generalized inverse of a function f denoted f−1. Consequently
in general f−1 6= 1/f. Let us introduce the function λ (·) which interpolates the λj ’s a smooth
way (which means that λ (j) = λj for all j and λ is C1).

Since our results rely on those of Lisfhits (1997) we recall now the assumptions needed in
this article. Let G denote the (cumulative) distribution function of Z then we assume that there
exists b ∈ (0, 1) , c1 > 1, c2 ∈ (0, 1) and c3 > 0 such that for r < c3 :

A0 :





G (r) ≤ c1G (br)
G (br) ≤ c2G (r)

EZ3 < +∞
(18)

As mentioned in Lifhsits (1997) assumption A0 states that the local behaviour at 0 of G is
polynomial andA0 holds whenever the density g of Z is regularly varying at 0 with index α > −1.
We also note that the assumption above holds for a large class of classical positive distributions
of Z itself (Gamma, Beta...) or when Z = X2 with X Gaussian, X Laplace, Uniform or Student
distributions for instance. These considerations are of interest for the statistician in order not
to limit the approach to Gaussian models. Note that the assumption on the convergence of the
third order moment of Z was alleviated in some recent papers. We keep it here since it is general
enough for our purpose.

When (Zi)i∈N is a sequence of random variables whose cumulative distribution function G is
regularly varying at 0 with strictly positive index, the explicit form of the small ball probability
was derived for explicit sequences of log convex λ (·) by Dunker, Lifshits, Linde (1998). In

particular they show that when λi = i−β (β > 1) , P
(
‖X‖2 < s

)
∼ F1 (s) and that when

λi = exp (−i) P
(
‖X‖2 < s

)
∼ F2 (s) with :

F1 (s) = c1s
[1+β(2+c2)]/(2β−2) exp

(
−c3s−1/(β−1)

)
(19)

F2 (s) ∼ c4

[
s1/3 log (1/s)

]−3/4
exp

(
− [log (s log 1/s)]2 /4 + ψ0 (log (s log 1/s))

)
(20)

where ψ0 is a bounded function. Formula (19) is proved as well at page 269 in Lifshits (1995).
Simple algebra proves that both functions on the right hand side of (19) and (20) have all their
derivatives vanishing at 0. We notice that the r.h.s. of (19) is always flatter than the r.h.s. of
(20) which in turn will always be flatter at 0 than any polynomial function (like cds

d). However
we notice that the degree of flatness is directly connected with the rate of decrease of the λi’s
which quantifies, exactly like the l-numbers, the accuracy of a finite-dimensional approximation
of X. We emphasize the following Proposition, which will not be proved, on purpose.
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Proposition 3 Both functions F1 and F2 defined above at (19) and (20) belong to Γ0 with
respective auxiliary functions ρ1 (s) ∼ sβ/(β−1) and ρ2 (s) ∼ s log (1/s) which both match Propo-
sition 1.

The auxiliary functions ρ1 and ρ2 could be more precisely computed but we only need
equivalencies at this stage.
We are ready to extend this fact to general sequences (λi)i∈N. Remind that the function γ (·)
was defined implicitely at display (6). In words it is, up to sign, the inverse of the first order
derivative of the log-Laplace transform of S =

∑+∞
i=1 λiZi.

Theorem 2 Let S be defined by (4) and set P (S < s) = F (s) the small ball probability of S
then F ∈ Γ0 with auxiliary function :

ρ (s) =
1

γ (s)
(21)

and the representation (5) may be rephrased only in terms of γ (·) :

P (S < r) ∼
r→0

1√
2π

√
−γ′ (r)
γ (r)

exp

[
−
∫ r0

r
γ (s) ds

]
(22)

where r0 = EZ ·∑+∞
j=1 λj.

Obviously the r.h.s. of (22) is mathematically the same object as the r.h.s. of (5). The
”Gamma-varying version” of the r.h.s. is

√
ρ′ (r) /π exp

[
−
∫ r0
r ds/ρ (s)

]
. We believe however

that this new version is slightly more explicit and maybe more suited for statistical purposes.
We can take advantage as well of the properties of the class Γ0 listed earlier.

The Theorem may be intuitively explained in view of Proposition 2. Indeed when X lies in
R
d and in a general context F (s) ∼0 pd (s) = cds

d. The function pd has the following property :

p
(k)
d (0) = 0 whenever k 6= d. Consequently in an infinite dimensional space we can expect that

all the derivatives at 0 should be null and this property is recovered through Proposition 2. A
more geometric way to understand this consists in considering the problem of the concentration
of a probability measure. Let µ be the measure associated with the random variable X. Once
again starting from R

d and letting d increase -even if this approach is not really fair- we see that
µ must allocate a constant mass of 1 to a space whose dimension increases. Then µ gets more
and more diffuse, allowing fewer mass to balls and visiting rarely fixed points such as x0 (and
their neighborhoods), resulting in a very flat small ball probability function.

The following corollary provides some information about the rate of decrease to zero of F (·)
when an additional assumption is made on ρ.

Corollary 1 Assume that ρ (s) = sαl (s) with l (·) slowly varying at 0 (which just means that ρ
is regularly varying at 0 with index α ≥ 1 and set :

RV+ : α > 1 or RV1 : ρ (s) = sl (s) with l (s) � log (1/s) . (23)

If RV+ holds logP (S < r) � cαr
1−α and when RV1 holds logP (S < r) � −ς (r) log (1/r) for

some ς (r) → +∞ when r → 0. In both preceding cases for all integer p limr→0 r
−p

P (S < r) = 0.

This property fo the small ball probability has to be connected with property (10), is referred
to as ”rapid variation” at 0 in the literature on regular variations and may be compared or
opposed with the regularly varying situation discussed below (17). The assumptions RV+ and
RV1 will be encountered again when addressing the case of nonparametric regression. At last,
note that for the auxiliary functions ρ1 and ρ2 appearing at Proposition 3 and arising from
Dunker, Lifshits, Linde (1998) work we get ρ1 ∈ RV+ and ρ2 ∈ RV1.
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Proof of Corollary 1: We focus on the right hand side of (22). First from
√

−γ′ (r)/γ (r) =√
2ρ′ (s) and the properties of the auxiliary function ρ at Proposition 1 we have that ρ′ (s) → 0.

Hence P (S < r) ≤ exp
[
−
∫ r0
r 1/ρ (s) ds

]
for r tending to 0. From the direct part of Karamata’s

theorem’s (see Bingham, Goldie Teugels (1991), p.26)
∫ r0
r 1/ρ (s) ds ∼ cαr

1−α when α > 1 and∫ r0
r 1/ρ (s) ds = ς (r) log (1/r) with ς (r) → +∞ when r → 0 (see display (1.5.8) in Bingham,
Goldie Teugels (1991)). Finally when RV+ or RV1 hold −p log r −

∫ r0
r 1/ρ (s) ds always tend

to −∞ whatever the choice of p.

Remark 3 For the sake of completeness we point out the following fact which may be misleading

: indeed we started from P

(
‖X‖2 < r

)
and the properties of this function may differ from those

of what may be intended as the true small ball probability P

(
‖X‖2 < r2

)
. It is not difficult to

show that if F ∈ Γ0 with auxiliary function ρF then G (r) = F
(
r2
)
belongs to Γ0 as well with

auxiliary function ρG defined by ρG (r) = ρF
(
r2
)
/ (2r) .

2.2 Gaussian framework

Assuming that X is Gaussian, hence that xi are N (0, 1) distributed provides a critical amount
of extra information. Indeed it is then possible to compute in a more explicit form :

r = −∂ log Λ (γ)

∂γ
=
∑

j

λj
1 + 2γλj

(24)

which is the seminal equation linking r and γ. We derive below an explicit link between the λj ’s
and γ (·) or equivalently ρ (·). Under rather general assumptions on the rate of decrease of the
λj’s we obtain as well an upper bound for the small ball probability which will be exploited in
the next subsection when investigating a lower bound for the regression.

Proposition 4 Assume that X is Gaussian, that λ (·) is a convex decreasing function and set
ϕ (t) = tγ (t). We have the following : There exists a fixed constant l ∈

[
2
3 ,

3
2

]
such that for any

ε > 0 and large enough x

λ (x (l + ε)) ≤ 1

γ (ϕ−1 (x))
= ρ

(
ϕ−1x

)
≤ λ (x (l − ε))

Besides when λ (x) ≻∞ exp (−xα) for some α > 0, F (s) ≺0 exp
[
− (log 1/r)1+1/α

]
. When λ (·)

is explicitely known more precise relationships may be derived. For instance when λa (x) =
cx−1−ν with c, ν > 0, γa (s) ∼0 s

−1−1/νc1/ν l1+1/ν and l =
∫ +∞
0 du/

(
2 + u1+ν

)
. When λg (x) =

c exp (−νx) , with again c, ν > 0, γg (s) ∼0 log (1/s) / (νs) .

Remark 4 The auxiliary fucntions ρa = 1/γa and ρg = 1/γg match respectively ρ1 and ρ2.
Besides letting ν go to infinity we see that, in a way ρg may be viewed as a limit of ρa. In fact
1/ log (1/s) echoes the degeneracy of 1/ (β − 1). Proposition 4 modestly rediscover the results
of Dunker, Lifshits, Linde (1998). The upper bound of F (·) is close to the one obtained in
Proposition 1. No asumptions are needed on ρ here but the distribution of X is Gaussian.

Proof of Proposition 4 :
We start from (24) and denote a (·) = 1/λ (·) which may be rewritten :

r =
∑

j≥1

1

a (j) + 2γ

Let us set Jγ = inf {j : a (j) ≥ γ} so that a (Jγ − 1) ≤ γ ≤ a (Jγ)
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Jγ
3γ

+
∑

j≥Jγ+1

1

a (j) + 2γ
≤
∑

j≥1

1

a (j) + 2γ
≤ Jγ

2γ
+

∑

j≥Jγ+1

1

a (j) + 2γ

Jγ
3γ

+
1

3

∑

j≥Jγ

1

a (j)
≤ r ≤ Jγ

2γ
+
∑

j≥Jγ

1

a (j)

2

3
≤ rγ

Jγ
≤
(
0.5 +

(
J−1
γ + 1

))

The convexity of λ, hence of a yields
∑

j≥J 1/a (j) ≤ (Jγ + 1) /a (Jγ) (see Cardot, Mas, Sarda
(2007)) hence for r ↓ 0 that is for large γ (r) :

2

3
≤ rγ

Jγ
≤ 3

2
(25)

Now consider the function (of the variable γ) : d (γ) = γr (γ) /a−1 (γ) is decreasing at least
when γ ↑ +∞ since :

d′ (γ) =

(
r (γ)− γσ2

)

a−1 (γ)
− γr (γ)

[a−1 (γ)]2 · a′ (a−1 (γ))

is negative for r ↓ 0 that is for large γ. Finally we get rγ/a−1 (γ) → l ∈
[
2
3 ,

3
2

]
when γ tends to

+∞. The first statement of the Theorem is a consequence of the latter limit. As a consequence
when λ (x) ≻∞ exp (−xα), a (x) ≺∞ exp (xα) and finally rγ ≻0 (log γ)1/α ≥ (log 1/r)1/α. At

last we get γ (r) ≻0
1
r (log 1/r)

1/α which finally yields for some constant c

exp

[
−
∫ r0

r
γ (s) ds

]
≤ c exp

[∫ r0

r
(log 1/s)1/α d (log 1/s)

]

= c exp
[
− (log 1/r)1+1/α

]

The last sentence of the Theorem , when the function λ is known, is easily derived by noting
that

∑
j≥1 1/ (a (j) + 2γ) ∼γ→+∞

∫ +∞
0

dx
a(x)+2γ .

2.3 Upper and lower bound in regression for functional data

We fix once and for all the assumptions considered in what follows. These assumptions appear
in addition to those considered in the previous sections. Remind that if g is some function
defined on H and with values in R the first order Fréchet-derivative of g at x0 (its infinite-
dimensional gradient) may be identified with an element of H. The second order derivative
g′′ (x0) is identified with a symmetric operator from H to H.

Assumptions on the distribution of X. The random element X is centered and in the
development (3) the xi’s are independent. We have PX−x0

≪ PX with fx0
= dPX−x0

/dPX such
that fx0

(0) > 0, f ′ (x0) ∈ H exists and the second order derivative of fx0
denoted f ′′x0

(x) is for all
x in a neighborhood of x0 a bounded linear operator from H to H. Denote ∂ifx0

= 〈f ′ (x0) , ei〉
where ei is one of the eigenvectors appearing in (3). Besides we assume that for all i the density
of the margins 〈X, ei〉 is symmetric.

Assumptions on the regression function. Assume that r has first and second order
derivative at x0. We denote ∂irx0

= 〈r′ (x0) , ei〉 and ∂2iirx0
= 〈r′ (x0) (ei) , ei〉 and assume as well

that :
+∞∑

i=1

λi∂irx0
∂ifx0

6= 0

At this point a discussion on the assumptions related to the distribution of X is needed.
Take for instance the case of a gaussian X. Chapter 9 and 10 in Lifshits (1995) are clear
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about these issues (see more specifically p.102-107.) It is possible to shift the assumptions
on the regularity of X to conditions on the regularity of x0. First in order to define f ′ (x0)
we need to assume that x0 = (mi)1≤i belongs to the kernel of X that is

∑
m2

i /λi < +∞.

Then for any u = (ui)1≤i in H fx0
(u) = exp

(
−∑i≥1m

2
i /2λi +

∑
i≥1 uimi/2λi

)
and ∂ifx0

=

∂ifx0
(u) = (mi/2λi) fx0

(u). We are interested in th smoothness of these functions at 0. From

|fx0
(u)− fx0

(0)| � ‖u‖
(∑

i≥1m
2
i /λ

2
i

)1/2
. And the finiteness of the latter series is subject to a

condition of decay on the coefficients mi’s.
It turns out that the gaussian framework may be generalized to some other distributions. It

suffices to consider a symmetric random variable U such that EU = 0 and VU = 1 with smooth
density function at 0.Then introduce the scaled Zi = λiU

2 in order to derive a new development
(3). Examples for U are the uniform distribution on [−a, a], a > 0, shifted Beta distributions...

2.3.1 Upper bound

The reader was left with Lemma 1. In view of the results of this section we are in a position
to simplify some computations. Turning to the local moments defined at display (17), from
properties of functions in Γ0 and specifically (10) we get

E [‖X − x0‖p]K
(‖X − x0‖

h

)
∼ K (1) hpFx0

(h) ∼ K (1) hpfx0
(0) 8F (h) (26)

We see again that the representation theorem of the preceding section is of some help to simplify
our calculations. We mention for immediate purpose that the derivation of both fromula above
leads as well to :

EK2

(‖X − x0‖
h

)
∼ K2 (1)Fx0

(h) (27)

Let the local moments of order 1 and 2 of X at x0 be respectively defined by :

MK,1 (x0) = E

[
(X − x0)K

(‖X − x0‖
h

)]
(28)

MK,2 (x0) = E [(X − x0)⊗ (X − x0)]K

(‖X − x0‖
h

)
. (29)

Formula (29) may be explicited. First let u and v be two points in the vector space then u⊗ v
is a linear operator defined by [u⊗ v] (x) = 〈v, x〉 y. Now erasing x0 and K (‖X − x0‖ /h) gives
the usual covariance operator of X for a centered X. The special covariance operator MK,2 (x0)
is obtained by shifting and smoothing X around x0. Note that MK,1 belongs to H and MK,2

is a linear trace-class operator acting from and onto H. We refer to Müller and Yan (2001) for
some statistical results on local moments for finite-dimensional random variables and to Mas
(2008) for some related results dealing with (29) and where random functions and small ball
problems appear.

The next Proposition completes Lemma 1.

Proposition 5 For the variance part of the risk the equivalence holds Vn (x0) ∼ σ2ε/ [fx0
(0)nF (h)].

For the bias part we just provide an approximate rate :

c−ρ6 (h) ≤ Bn (x0) ≤ c+h4

where c+ and c− depend only on fx0
(0) , f ′ (x0) , r

′ (x0) and r
′′ (x0). Whenρ (h) � hm for some

m Bn (x0) decreases to 0 at most and at least at a polynomial rate.

The problem here is to ensure a rough control of Bn (x0). As will be seen soon ρ6 (h) turns
out to be regularly varying in most cases and decays to zero at a polynomial rate. The unusual
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framework (namely with distributions in the class Γ0) motivates to prove the reader that Bn (x0)
does not reach an unusual rate of decreaes to 0 (namely exponential). And the lower bound we
obtain for this specific estimator justifies the conditions under which the minimax lower bound
is going to be derived.

Proof of Proposition (5) :
We start with Vn (x0). It is simple to see that Vn (x0) = nσ2εEω

2
1,nwith :

ω1,n =
K (‖X1 − x0‖ /h)∑n
i=1K (‖Xi − x0‖ /h)

Computations like those carried out in Ferraty, Mas, Vieu (2007) show that :

Eω2
1,n ∼ EK2 (‖X − x0‖ /h) / [nEK (‖X − x0‖ /h)]2

hence that (see (26)) Vn (x0) ∼ σ2
ε

n
EK2(‖X−x0‖/h)

[EK(‖X−x0‖/h)]
2 ∼ σ2

ε

nFx0
(h)which yields the desired result by

(1).
We should now deal with Bn (x0) defined at (12). Ferraty, Mas, Vieu (2007 show that Bn (x0)

is well approximated by :

[
E (r (X)− r (x0))K (‖X − x0‖ /h)

EK (‖X1 − x0‖ /h)

]2
(30)

A Taylor development at order 2 shows that :

E (r (X)− r (x0))K (‖X − x0‖ /h) =
〈
r′ (x0) ,MK,1 (x0)

〉
+ tr

[
r′′ (ξ)MK,2 (x0)

]
/2

where r′ and r′′ stands for the first and second order Gâteaux derivative of r at x0 and ξ = θX+
(1− θ)x0 for some random θ ∈ (0, 1) .We first deal with the first order term 〈r′ (x0) ,MK,1 (x0)〉.
From PX−x0

≪ PX we see that :

E

[
(X − x0)K

(‖X − x0‖
h

)]
= E

[
Xfx0

(X)K

(‖X‖
h

)]

= E

[
X [fx0

(X)− fx0
(0)]K

(‖X‖
h

)]
+ fx0

(0)E

[
XK

(‖X‖
h

)]

We assumed that fi the density of xi is symmetric. This yields for all i :

E

[
〈X, ei〉K

(‖X‖
h

)]
= E

[
xiK

(‖X‖
h

)]
=

∫ (∫
tK
(√

t2 + s2/h
)
fi (t) dt

)
gi (s) ds = 0

where gi si the density of
∑+∞

j=1,j 6=i λjx
2
j . Now

E

[
X [fx0

(X)− fx0
(0)]K

(‖X‖
h

)]
= E

[
X
〈
f ′ (x0) ,X

〉
K

(‖X‖
h

)]
+Rn

where Rn involves the second order derivative of fx0
and will be neglected. Then denoting

∂irx0
= 〈r′ (x0) , ei〉

〈
r′ (x0) ,MK,1 (x0)

〉
∼

+∞∑

i=1

∂irx0
E

[
〈X, ei〉

〈
f ′ (x0) ,X

〉
K

(‖X‖
h

)]

=
+∞∑

i=1

∂irx0
E


〈X, ei〉




+∞∑

j=1

∂jfx0
〈X, ej〉


K

(‖X‖
h

)
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Arguments based on the symmetry of the density of the 〈X, ei〉 lead to cancelling E
[
〈X, ei〉 〈X, ej〉K

(
‖X‖
h

)]

for i 6= j and :

〈
r′ (x0) ,MK,1 (x0)

〉
∼

+∞∑

i=1

∂irx0
∂ifx0

E

[
〈X, ei〉2K

(‖X‖
h

)]

Similar calculations show that :

tr
[
r′′ (x0)MK,2 (x0)

]
∼ fx0

(0)

+∞∑

i=1

∂2iirx0
E

[
〈X, ei〉2K

(‖X‖
h

)]

where ∂2iirx0
= 〈r′′ (x0) ei, ei〉 and finally denoting E

[
〈X, ei〉2K (‖X‖ /h)

]
= vi (h)

E (r (X)− r (x0))K (‖X − x0‖ /h) ∼
+∞∑

i=1

(
∂2iirx0

fx0
(0)

2
+ ∂irx0

∂ifx0

)
vi (h)

We can confine now derive an upper bound. Indeed for h ↓ 0,

|E (r (X)− r (x0))K (‖X − x0‖ /h)| ≤ 2 sup
i

{
∂2iirx0

fx0
(0)

2
+ |∂irx0

∂ifx0
|
} +∞∑

i=1

vi (h)

≤ 2 sup
i

{
∂2iirx0

fx0
(0)

2
+ |∂irx0

∂ifx0
|
}
E

[
‖X‖2K (‖X‖ /h)

]

≤ 2K (1) sup
i

{
∂2iirx0

fx0
(0)

2
+ |∂irx0

∂ifx0
|
}
h2F (h)

This together with (30) and (26) leads to the upper bound of the Proposition with c+ =

8
[
supi

{
∂2iirx0

fx0
(0) /2 + |∂irx0

∂ifx0
|
}
/fx0

(0)
]2
.

We turn to the lower bound. Since r′′ (ξ)MK,2 (x0) is a positive operator we may confine
ourselves to the first term. For simplicity we will make calculations with the naive kernel for K

and with a modified norm. In fact we will take ‖X‖ = |〈X, ei〉|+
∣∣∣
∑

j 6=i 〈X, ej〉
∣∣∣ = |〈X, ei〉|+Zi.

Let 0 < c < c be two constants :

E

[
〈X, ei〉2K (‖X‖ /h)

]
≥ λicρ

2 (h)P
(√

λicρ (h) ≤ |〈X, ei〉| ≤
√
λicρ (h) , |〈X, ei〉|+ Zi ≤ h

)

≥ λicρ
2 (h)P

(
|〈X, ei〉| ∈

√
λiρ (h)

[√
c,
√
c
])

P

(
Zi ≤ h−

√
cλiρ (h)

)

≥ λicρ
2 (h)P

(
|〈X, ei〉| ∈

√
λiρ (h)

[√
c,
√
c
])

P

(
‖X‖ ≤ h−

√
cλiρ (h)

)

where the probabilities were split because |〈X, ei〉| and Zi are independent. Consider first
P
(
|〈X, ei〉| /

√
λi ∈ ρ (h)

[√
c,
√
c
])

≥ cρ (h) where c is some constant independent of i if the
distribution of all |〈X, ei〉| /

√
λi is bounded below in a neighborhood of 0 which will be assumed

here (it is true when X is gaussian). Then lastly :

F
(
h−

√
cλiρ (h)

)
≥ F

(
h−

√
cλ1ρ (h)

)

which yields :

E

[
〈X, ei〉2K (‖X‖ /h)

]
≥ λiccρ

3 (h)P
(
‖X‖ ≤ h−

√
cλ1ρ (h)

)
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From F
(
h−

√
cλ1ρ (h)

)
/F (h) → exp

(
−
√
cλ1
)
we get that for a h close enough to 0 E

[
〈X, ei〉2K (‖X‖ /h)

]
≥

λic
′′ρ3 (h)F (h) where c′′ does not depend on n or on i. Finally we get :

[
E (r (X)− r (x0))K (‖X − x0‖ /h)

EK (‖X1 − x0‖ /h)

]2

≥ ρ6 (h)

[
c′′

+∞∑

i=1

λi∂irx0
∂ifx0

/fx0
(0)

]2

= c−ρ6 (h)

since
∑+∞

i=1 λi∂irx0
∂ifx0

6= 0.

2.3.2 Lower Bound

From the preceding subsection the optimal risk for the kernel estimate is obtained by selecting an
h balancing the trade-off between variance and bias. Imagine that we had found in Proposition
5 a result such as Bn (x0) ≍ F κ (h) for some κ > 0. Then the optimal bandwidth would stem
from n−1 ≍ F 1+κ (h) leading to a Rn ≍ n−κ/(1+κ) which would contradict the initial claim of
degenerate rate for the risk. This explains why we spend some energy in delivering the lower
bound on Bn (x0) in Proposition 5. As will be seen now when r belongs to a class large enough
to inherit classical approximation features, Rn cannot decrease at a ploynomial rate. What we
mean by classical approximation features is explicited now.

Let Ep denote any class of R-valued functions defined on H such that :

sup
r∈Ep

Bn (x0) � h2p (31)

For instance Ep may be the class of Hölder functions of order p ∈ ]0, 1[. When Ep is the class of
function which have two derivatives at x0 we see from Proposition 5 that (31) holds for some
p > 0 when ρ (h) ≥ hm m > 1. Optimizing the bias-variance trade-off in the risk leads to
choosing an h such that supr∈Ep Bn (x0) = Vn (x0) . The next Lemma deals with this issue.

Lemma 2 Assume that X is gaussian and λ (x) ≻∞ exp (−xα) for some α > 0. Let c∗ be some
constant and h∗ be the solution of the functional equation :

1

n
= c∗h2pF (h) (32)

then nβ/ (nF (h∗)) → +∞ for any β > 0.When X is non Gaussian but satisfies the assumptions
(18) and (23) the same conclusion holds.

Proof of the Lemma : Only the case 0 < β < 1 has to be investigated. When X is
Gaussian the lemma is easily derived from Proposition 4 since it was proved that F (h) ≺0

exp
[
− (log 1/h)1+1/α

]
holds. When X is not gaussian and RV1 holds the proof of Corollary 1

shows that β log n+ 2p log h∗ > βς (h∗) log (1/h∗)− 2p log h∗where ς (h∗) tends to +∞ when h∗

tends to 0. When RV+ holds the proof is the same with cα (h
∗)1−α instead of ς (h∗) log (1/h∗).

Now our approach to derive lower bounds for the minimax risk follows Tsybakov’s scheme
(see Tsybakov (2004)) : we construct two models r0 and r1 far enough from each other but such
that the Hellinger distance between the two models is bounded. Let pε stand for the density of
ε. Assume that for some constant p∗ and for all y ∈ R,

∫

R

[√
pε (t)−

√
[pε (t+ y)]

]2
dt ≤ p∗y

2 (33)
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This assumption is general and appears in Tsybakov’s book. It holds under smoothness
assumptions on pε. We comment it briefly. If Λ (y) denotes the left hand side in the dis-
play above Λ (y) ≤ 2 for all y and we just need to study Λ on a compact neighborhood
around 0 (up to a rescaling through the constant p∗). We see that Λ (0) = 0 and Λ′ (y) =
−
∫
p′ε (t+ y)

√
pε (t) /pε (t+ y)dt whenever pε is smooth enough hence Λ′ (0) = 0. Under accu-

rate conditions on Λ′′, Λ (y) ≤ p∗y
2 will hold around 0 hence everywhere.

Theorem 3 Part I : Assume that X is Gaussian, λ (·) is a convex decreasing function with
λ (x) ≻∞ exp (−xα) for some α > 0 and that 33 holds. Denote Tn any estimator of the regression
function at a fixed point r (x0) = E (y|X = x0) and Rn the minimax risk over the class Ep defined
in (31) :

Rn = min
Tn

sup
r∈Ep

E [Tn − r (x0)]
2

then Rn ≻ exp
[
−c (log n)1−1/(α+1)

]
which imples nβRn → +∞ for any β > 0 but (log n)β Rn →

0 for any β > 0. Strengthening the assumptions on λ and taking λ (x) ≻∞ x−α for some α > 1

then Rn ≻ (log n)−(α−1).
Part II : Let X be non gaussian but satisfy the conditions (18). Let ρ be the auxiliary function
of the sall ball probability of X. Assume that ρ is regularly varying at 0 with index α ≥ 1 with
either α > 1 or α = 1 and ρ (s) /s � log (1/s) then again nβRn → +∞ for any β > 0.

In Part II we recall for the sake of completeness the conditions RV· introduced sooner. The
theorem above shows that it is not possible to estimate the regression function in a nonparametric
model with functional inputs at a polynomial rate. The rates may be considered as degenerate
even when the functional variable X is very smooth (case λ (x) = exp (−xα) for some α > 0) and
the data concentrated close to a finite-dimensional space. In the classical situations of polynomial
decay, λ (x) ≃ x−α for some α > 1 the situation gets even worse and the optimal rate we may
recover is logarithmic. These negative results are clearly connected with the complexity of the
setting : the general nonparametric model coupled with the sparsity of functional spaces already
mentioned in the paragraph below Proposition 2.

Remark 5 Other classes of regression functions could be considered. Here Ep was considered
because calculations are possible when looking for an upper bound. However the theorem above
holds, up to a change of constants when r blongs to a class Ep for which :

sup
r∈Ep

E (r (X)− r (x0))K (‖X − x0‖ /h) ≍ hpF (h)

Like in a finite-dimensional framework, obtaining large values of p switches the problem to
defining higher order kernels designed for functional data. This issue is out of the scope of this
work. Yet, because of the degeneracy of the convergence rate we are not sure it deserves much
attention in this setting.

Proof of Theorem 3:
The proof comes down to adapting Tsybakov (2004, Chapter 2, p.81) to our framework.

We consider two distant hypotheses : r0 ≡ 0 and r1 (x) = 2 (h∗)pK (‖x− x0‖ /h) with K ∈
Ep and compactly supported. Here h∗ is the solution of the equation (32). It is plain that
|r0 (x0)− r1 (x0)| = 2 (h∗)p. Set z0i =

(
y0i ,Xi

)
and z1i =

(
y1i ,Xi

)
, denote P0 (resp. P1) the

distribution of the vector
(
z01 , ..., z

0
n

)
(resp

(
z11 , ..., z

1
n

)
) when the regression function is r0 (resp.

r1) and P0,i (resp. P1,i) the distribution of the margin z0i (resp. z1i ). We are going to prove that
the Hellinger-distance between P0 and P1 H (P0,P1) is less than a given τ < +∞. Let f stand
for the density of U = ‖X − x0‖ /h. The function f is nothing but the first order derivative of
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the small ball probability F. We first compute the Hellinger distance between the margins of P0

and P1 by conditioning with respect to U . Let θ1 (U) = 2 (h∗)pK (U) :

H2 (P0,i,P1,i) ≡
∫ ∫ [

p1/2ε (t)− p1/2ε (t− θ1 (u))
]2
f (u) dtdu

≤ p∗

∫
θ21 (u) f (u) du = 4p∗ (h

∗)2p EK2 (U)

by Assumption (33). For n large enough and by (27) we deduce that :

H2 (P0,i,P1,i) ≤ 8p∗ (h
∗)2p F (h∗)K2 (1)

≤ c∗/n

where c∗ is some constant and we used (32). The decomposition of Hellinger distance for
product measures (see Tsybakov (2004) p. 69). gives

H2 (P0,P1) = 2

(
1−

(
1− H2 (P0,1,P1,1)

2

)n)

≤ 2

(
1−

(
1− c∗

2n

)n)
≤ 2

(
1− exp

(
c∗

4

))

and H2 (P0,P1) ≤ τ with τ = 2 (1− exp (c∗/4)) which almost finishes the proof of the Theorem.
The last sentence is proved with the same techniques and in view of Proposition 4.

3 Complementary facts

In this short section are collected results of secondary interest. They complete however the
precedings by underlining some facts about the non-unicity and the limits of the representation
obtained above. Indeed the preceding theorems lead to the following question : is it possible
to obtain a one to one representation, in a general framework, of the small ball probabilities of
random elements in l2 -characterized by the sequence (λi)i∈N- by a function in Γ0, depending
solely on its auxiliary function ρ ? The answer is negative for at least two reasons. First it is
plain that two series S and S′ built from different sequences (λi, Zi)i∈N may have equivalent (at
0) small ball probabilities. Second, imagine that we confine to Gaussian small ball probabilities
and consider again the r.h.s. of (22) denoted F ∈ Γ0 with auxiliary function ρ. It is plain to see
that any function φF where φ (x+ tρ (x)) /φ (x) → 1 when x → 0 belongs to Γ0 with exactly
the same auxiliary function ρ. Consequently even fixing the distribution of the sequence Zi is
not sufficient to obtain a one to one mapping between small ball probabilities and the set Γ0.

Indeed, pick a function F0 in the class Γ0. This function is essentially defined by its auxiliary
ρ0 (·) and Theorem 1 is not precise enough for us to identify it with a small ball probability. This
is due to the non-unicity of ρ mentioned just under (9) by the words ”up to asymptotic equiva-
lence”. If ρ1 ∼0 ρ0 lims↓0+ F0 (s+ xρ1 (s)) /F0 (s) = exp (x) as well. But the local behaviour at

0 of F1 (s) = exp
{
η (s)−

∫ 1
s 1/ρ1 (t) dt

}
may differ from F0 (s) and F0 may not be equivalent

with F1. What we show below is that if F0 is accurately scaled we may deduce from F0 a new
function F ∗

0 which has the same auxiliary function as F0 (but which may not be equivalent to
F0) and such that for a well-chosen sequence (λi)i∈N and the Gaussian small ball probability
P (S < r) is such that P (S < r) ∼0 F

∗
0 (r)

We start with a definition which seems to be new.

Definition 2 Let ρ be a self-neglecting function. A function φ is called ρ-self-neglecting if :

φ (x+ tρ (x))

φ (x)
→
x→0

1.
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It is obvious that, if φ is ρ-self-neglecting it is ρ∗-self-neglecting whenever ρ∗ ∼0 ρ. We
propose below in Theorem (5) a representation theorem for ρ-self-neglecting functions.

Definition 3 Pick a ρ0 in the class of self-neglecting functions at 0 such that ρ0 (0) = 0. We
define the equivalence class of a function F0 ∈ Γ0 with auxiliary function ρ0 by the relationship
△ defined for all G in Γ0 by :

F0△G⇔ F0

G
is ρ− self-neglecting for some ρ ∼0 ρ0

Remind that ϕ (t) = tγ (t).

Theorem 4 Let F0 ∈ Γ0 with auxiliary function ρ0 = 1/γ0. Assume that ρ0 is regularly varying
at 0 with index κ > 1 and C1 in a neighborhood of 0. Consider the equivalence class of F0 in
Γ0\△ say F0. Then one may pick F ∗

0 ∈ F0 such that F ∗
0 (·) ∼0 P (S < ·) were S =

∑
λiZi, the

Zi’s follow a χ2 (1) distribution and :

λi =
1

γ (ϕ−1 (i))
= ρ

(
ϕ−1 (i)

)

Remark 6 Once again we encounter a regularly-varying condition on ρ. Here it echoes in
a way the assumption A0 (necessary to derive (5)) which claims that the cdf of Z is itself
regularly varying at 0. An interesting open question would consist in finding examples of auxiliary
functions which are not regularly varying with positive index, whenever it is possible.

For the sake of completeness we obtain a last result, complementing and illustrating Propo-
sition 3. From this Proposition we see that F△G if F = φG where φ is ρ-self-neglecting. The
forthcoming Theorem represents these functions φ.

Theorem 5 Let ρ be self-neglecting at 0 which does not vanish in a neighborhood of 0. A
function φ is ρ-self-neglecting iff :

φ (x) = c (x) exp

(∫ 1

x

ε (u)

ρ (u)
du

)

where c (u) → c ∈ ]0,+∞) and ε (u) → 0 when u→ 0 and ε has the same regularity as ρ.

This theorem generalizes the representation Theorem 2.11.3 for self-neglecting functions
p.121 in Bingham et al. (1987) initially due to Bloom (1976). If one take φ = ρ the representation
above coincides with the one announced in this theorem.

3.1 Conclusion and perspectives

The first main results of this article identifies small ball probabilities in l2 with a class of
rapidly varying functions involved in extreme value theory and whose derivatives at all orders
vanish at zero. This representation was obtained through previous works especially the seminal
and precious formula (5) of Lifshits (1997). We hope that this new formulation will be more
convenient for modelizing the small ball probabilities with some applied -especially statistical-
purposes in mind. However many other questions arise. For instance the generalization to
random elements with values in lp or in more general Banach spaces is certainly an intricate
matter since the starting fomulas (5) and followings seem to be intimately suited to the space
l2.

A more promising track could be to explore the links between the auxiliary function ρ, which
inherits all the information on the regularity of X, with the metric entropy of the unit ball of
the reproducing kernel Hilbert space of X as explored in Li, Linde (1999) or with the degree
of compactness of the operator v in Li, Linde (2004) for instance, the latter operator v being
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obviously close to the covariance operator of X hence in connection with the ai’s (or λi’s) of
this article.

A surprising fact is the parallel that can be drawn between large deviations on a one hand
and extreme value theory on the other hand. Both were intially introduced to model and explore
large values of sequences of random elements. It turns out that both provide an accurate setting
to study small deviations as well : Laplace transform for the classical approach and methods
around the domain of attraction of the third type (Gamma class, self-negclecting functions...) as
outlined here. However the connections between regular variations and small ball probabilities
have been known since de Bruin in 1959, and his theorem on Laplace transfoms (see Theorem
4.12.9 in Bingham et al. (1987)). This work confirms that both Tauberian and extreme value
theory may provide tools complementing large deviations techniques to derive new results in
this area.

The other result shows, as an application of the previous, that the optimal risk in nonpara-
metric regression for functional data is degenerate in the sense that we cannot expect obtain
polynomial rates in the reasonable setting used in this work. It is obviously interpretable in
terms of curse of dimensionality. A work is in progress to study the additive regression namely
the model :

y =

k∑

i=1

ri (〈X, ei〉) + ε

where the ri are functions defined on R and estimated from one-dimensional projections of
the data X. It is known since Stone(1985) that this model is not subject to the curse of
dimensionality when X is valued in R

d. It would be a possible track to introduce non-linearity
in regression models for functional data and avoiding some redhibitory features of a general
model. The role of the auxiliary function ρ is major. The question of its estimation is quite
simple indeed. From Bingham et al. (1987) Corollary 3.10.5(b) p.177 we know that ρ may be
taken as F/F ′. A natural estimator of ρ̂ may be F̂ /f̂ where f̂ (resp. F̂ ) is a kernel estimator of
the density (resp. of the cumulative distribution function) of ‖X‖ . This is a simple procedure
to check some of the needed properties of ρ such as its rate of decrease to 0.

4 Proofs

Considerations about the smoothness at 0 of F and ρ are not the matter in this work and we
will take it for granted that both functions are smooth enough. Besides along the proofs we may
sometimes consider generalized or local inverses of some fonctions which may not be invertible
or have smooth derivatives everywhere. For example the auxiliary function ρ defined on R

+ for
which we always have ρ′ (0) = 0 has no inverse on [0, c] for c > 0. But we may frequently use
the smoothness of, say, ρ and ρ−1 on sets ]a, b[ for 0 < a < b without always justifying it. We
start with the proof of Proposition 1.

Proof of Proposition 1 :
Suppose that ρ (s) /s does not tend to zero when s does. Then we may pick an ε > 0

such that for infinitely many sk ↓ 0 when k ↑ +∞, ρ (sk) /sk > ε. Now fix x < −ε−1 then
sk + xρ (sk) < 0 and F (sk + xρ (sk)) = 0 for all k and F (sk + xρ (sk)) /F (sk) cannot converge
to exp (x). The second part of the proof, namely ensuring the ρ is self-neglecting, follows the
lines of the proof of Proposition 3.10.6 in Bingham et al. (1987).

Proof of Proposition 2 : Suppose that for some p F (p) (0) 6= 0 and take p∗ = inf
{
p ∈ N : F (p) (0) 6= 0

}
.

It is plain that F (p∗) (0) > 0 since F is positive. Then we should consider two cases. First if
F (p∗) (0) = c < +∞ then F (s) ∼ csp

∗

. Taking :

F (s+ ρ (s))

F (s)
=
F (s+ ρ (s))

(s+ ρ (s))p
∗

sp
∗

F (s)

(s+ ρ (s))p
∗

sp∗
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we see that the left hand side of the display above tends to exp (1) whereas the right hand side
tends to 1.

Second if F (p∗) (0) = +∞ we clearly have F (s) /sp
∗ → +∞ when s → 0. Take ε such that

1/ε > p∗+2. Since ρ′ (0) = 0 and ρ is positive we may pick an s0 such that sup0≤u≤s0 ρ
′ (u) ≤ ε.

From (9) we get :

F (s)

sp
≤ C

spρ2 (s)
exp

{
−
∫ 1

s

1

ρ (t)
dt

}
≤ C

ρ2+p (s)
exp

{
−
∫ 1

s

1

ρ (t)
dt

}

≤ C ′

ρ2+p (s)
exp

{
−
∫ s0

s

1

ρ (t)
dt

}

where we assume that s ≤ s0. Then we have

exp

{
−
∫ s0

s

1

ρ (t)
dt

}
= exp

{
−
∫ s0

s

ρ′ (t)

ρ (t)

1

ρ′ (t)
dt

}
≤ exp

{
−1

ε

∫ s0

s

ρ′ (t)

ρ (t)
dt

}

= exp

{
1

ε
ln ρ (s)− 1

ε
ln ρ (s0)

}
.

At last
F (s)

sp
≤ C ′′ [ρ (s)]

1

ε
−p∗−2

which contradicts the fact that F (s) /sp
∗ → +∞.

We start the proof of Theorem 2
Proof of Theorem 2 :
From Definition 1 and (5) we see that Theorem 2 holds whenever for all x ∈ R :

lim
s→0

γ (s) σ (s)

γ (s+ xρ (s)) σ (s+ xρ (s))
exp ((s+ xρ (s)) γ (s+ xρ (s))− sγ (s))

Λ (γ (s+ xρ (s)))

Λ (γ (s))
= expx.

We will more specifically prove below that when s decays to 0 :

γ (s+ xρ (s)) /γ (s)σ (s+ xρ (s)) /σ (s) → 1

exp ((s+ xρ (s)) γ (s+ xρ (s))− sγ (s)− x)
Λ (γ (s+ xρ (s)))

Λ (γ (s))
→ 1

The two next lemmas are dedicated to showing that, in the above display the fraction as well as
the exponential both tend to 1 when s goes to zero and ρ is chosen as in the Theorem.We just
have to clarifiy formula (22) within the Theorem. This stem directly from (5). Indeed from (6)
and (7) we see that σ2 = −∂r/∂γ and we just have to show that γr + log Λ (γ) =

∫ r
r0
γ (s) ds.

Elementary calculations yield :

∂ (γr + log Λ (γ))

∂r
= γ (r) .

Let r0 = EZ ·∑n
j=1 λj . Applying formula (6) at γ = 0 we notice that γ (r0) = 0 = log Λ (γ (r0))

and we conclude.

Lemma 3 Take ρ (s) = 1/γ (s) , then :

lim
s→0

exp ((s+ xρ (s)) γ (s+ xρ (s))− sγ (s)− x)
Λ (γ (s+ xρ (s)))

Λ (γ (s))
= 1.
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Remark 7 Obviously γ has at least two (we do not need more) continuous derivatives on a
neighborhood of infinity (here ]1,+∞) for instance). It is also strightforward to see that γ, which
is strictly decreasing on ]1,+∞) , is also a C1 diffeomorphism on this set. Clearly lims→0 ρ (s) =
0 but from (??) it is plain that ρ (s) /s also tends to zero when s does which implies that ρ′ (0) = 0.
Indeed proving that ρ (s) /s tends to zero comes down to proving that sγ (s) → +∞.

Proof of Lemma 3 :
Denote I (s) = sγ (s) + log Λ (γ (s)). We should prove that :

lim
s→0

I (s+ xρ (s))− I (s)− x = 0

Taylor’s formula gives :

I (s+ xρ (s))− I (s) = xρ (s) I ′ (s) +
x2

2
ρ2 (s) I ′′ (cs,x) (34)

where cs,x = c lies somewhere in [s, s+ xρ (s)] if x ≥ 0 and in [s+ xρ (s) , x] if x < 0. From (7)
we see that :

I ′ (s) = γ (s) + sγ′ (s) + γ′ (s)
∂ log Λ (γ (s))

∂γ

= γ (s)

Hence (34) may be rewritten :

I (s+ xρ (s))− I (s) = x+
x2

2
ρ2 (s) γ′ (cs,x)

= x+
x2

2

γ′ (cs,x)

γ2 (s)
= x− x2

2

d (1/γ)

ds
(cs,x) ·

γ2 (cs,x)

γ2 (s)

We first show that γ2 (cs,x) /γ
2 (s) = ρ2 (s) /ρ2 (cs,x) is bounded above. We may always write

cs,x = s+ tx (s) ρ (s) where −x ≤ tx (s) ≤ x for all s. Taylor’s formula yields

ρ (s+ tx (s) ρ (s)) = ρ (s) + tx (s) ρ (s) ρ
′ (d) = ρ (s)

(
1 + tx (s) ρ

′ (d)
)

where d lies between s and s+ tx (s) ρ (s). Hence :

ρ (s)

ρ (cs,x)
=

1

1 + tx (s) ρ′ (d)
≤ 1

1− |x| ρ′ (d)

The continuity of ρ′ at 0 and its nullity at 0 (see Remark 7) implies on a one hand that the
display above is bounded above for fixed x and s (hence d) going to zero and also that :

d (1/γ)

ds
(cs,x) = ρ′ (cs,x) → 0.

At last, I (s+ xρ (s))− I (s) → x which finishes the proof of the Lemma. .

Lemma 4 We have :

lim
s→0

γ (s+ xρ (s)) σ (s+ xρ (s))

γ (s)σ (s)
= 1
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Proof :
Once again Taylor’s formula leads to :

γ (s+ xρ (s)) σ (s+ xρ (s))− γ (s)σ (s)

γ (s)σ (s)
=

xρ (s)

γ (s)σ (s)

[
γ′ (c) σ (c) + γ (c) σ′ (c)

]
(35)

where c ∈ (s, s± xρ (s)). We will prove that [γ′ (c) σ (c) + γ (c) σ′ (c)] /γ2 (s)σ (s) tends to
zero. We cut the latter into two terms. First consider

ρ (s)

γ (s) σ (s)
γ′ (c) σ (c) =

γ′ (c)

γ2 (c)

γ2 (c)

γ2 (s)

σ (c)

σ (s)

We proved above within the proof of the previous Lemma (3) that γ2 (c) /γ2 (s) is bounded
above. We proved as well that γ′ (c) /γ2 (c) tends to zero when c does. Finally we should just
control σ (c) /σ (s) . We have σ (c) = σ (s) + (c− s)σ′ (ξ) where ξ ∈ [s, c] hence

0 ≤ σ (c)

σ (s)
= 1 +

c− s

σ (s)
σ′ (ξ) ≤ 1 +

x

γ (s)σ (s)
σ′ (ξ) .

We see in Lifshits (1997, Lemma 2 p.431) that lims→0 γ (s)σ (s) = +∞ and that σ (s) ≤ sc−1
13

where c13 is some constant from which it is plain that supξ∈V0
|σ′ (ξ)| < +∞ where V0 is any

neighborhood of 0. We deduce that σ′ (ξ) /γ (s)σ (s) tends to zero which finally yields

ρ (s)

γ (s)σ (s)
γ′ (c) σ (c) → 0.

We turn to the second term in (35) : ρ (s) γ (c) σ′ (c) /γ (s)σ (s) . We rewrite it :

γ (c)σ′ (c)

γ2 (s)σ (s)
=

1

γ (s)σ (s)

γ (c)

γ (s)
σ′ (c)

As shown above from Lisfhits’ work : γσ → +∞, supc∈V0
|σ′ (c)| < +∞ and γ (c) /γ (s) is

bounded above and this second term also decays to zero. This finishes the proof of Lemma
4.Now we turn to the proof of the converse part, Theorem 4. It takes two steps.

First we should make sure that when λi = ρ
(
ϕ−1 (i)

)
,
∑
λi < +∞ which will ensure that

the random element defined by S =
∑
λiZi is well-defined.

Lemma 5 When λi = ρ
(
ϕ−1 (i)

)
,
∑
λi < +∞.

Proof : It is easily seen that ϕ−1 is non decreasing in a neighborhood of +∞. Indeed it
suffices to prove that ϕ is, which may be deduced from its definition by studying its derivative.
By the way one may also see that ϕ is concave. Now since ϕ−1 is non decreasing it is enough to
prove that : ∫ +∞

ρ
(
ϕ−1 (x)

)
dx < +∞

where the notation above means ”the improper integral converges at infinity”. Set u = ϕ−1 (x)
above then we should examine : ∫

0
ρ (u)ϕ′ (u) du.

Integrating by part this comes down to ensuring first that ρ (u)ϕ (u) = u tends to a finite limit
as u tends to 0 which is plain and that

∫

0
ρ′ (u)ϕ (u) du =

∫

0
u
ρ′ (u)

ρ (u)
du < +∞
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Now we are in a position to apply Karamata’s theorem to ρ′ : since ρ is regularly varying at
0 with index d ≥ 1 (since ρ′ (0) = 0), and monotone in a right neighborhood of zero, ρ′ is also
regularly varying with index ≥ 0 (see Theorem 1.732.b p.39 in Bingham et al.(1987)). Then we
can apply the direct part of Karamata’s Theorem to ρ′ (see ibid. Theorem 1.5.11 (i) p.28 where
the limit should be taken here at zero) and

lim
t→0

tρ′ (t)

ρ (t)
< +∞

which ensures that the integral above converges and finally that
∑
λi < +∞. this completes

the proof of Lemma 5.
Proof of Theorem 4 :
Pick an F0 in Γ0 with auxiliary function ρ0 and consider the function F ∗

0 (r) =
√
ρ′0 (r) /π exp

[
−
∫ r0
r ds/ρ0 (s

with r0 =
∑

i ρ
(
ϕ−1 (i)

)
. Note that

√
ρ′ (·) hence ρ′ (·) are ρ-self-neglecting because :

ρ′ (r + xρ (r))

ρ′ (r)
→r→0 1

Indeed ρ′ (r + xρ (r)) = ρ′ (r (1 + xρ (r) /r)), ρ′ is regularly varying with positive index since ρ
is itself regularly varying with index κ > 1, and ρ (r) /r → 0 lead to

lim
r→0

ρ′ (r (1 + xρ (r) /r)) /ρ′ (r) = lim (1 + xρ (r) /r)κ−1 = 1

This proves that F ∗
0 △ F0. It remains to show that F ∗

0 ∼0 P (S < ·). Like above γ0 = 1/ρ0.
Start from (24) that is r =

∑
j λj/ (1 + 2γ0λj) . Now, following the proof of Proposition 4 we

set J (r) = r/ρ0 (r) (we just make use of display (25), fix J (r) ρ0 (r) /r = 1 instead of bounding
it above and below) and take a (·) = J−1 (·) then finally S =

∑+∞
i=1 Zi/a (i). By construction

P (S < ·) ∼ F ∗
0 .

Finally we turn to the proof of Theorem 5 and start with a Lemma. This Lemma, its proof
and the subsequent proof of the theorem adapt the derivation of Lemma 2.11.2 and Theorem
2.11.3 of Bingham et al. (1987).

Lemma 6 Let ρ be self-neglecting at 0. For x0 > 0 sufficiently small the sequence xn = xn−1 −
ρ (xn−1) tends to 0.

Proof : First note that the sequence xn is decreasing since ρ ≥ 0 and notice from the
properties of self-neglecting functions (namely ρ (s) /s → 0 when s → 0) that for a sufficently
small x0 > 0, xn ≥ 0 for all n. The limit of xn exists, is denoted l. Suppose that l > 0. Then
ρ (l) > 0 and since ρ is a non decreasing function ρ (xk) ≥ ρ (l) for all k. At last

xn = xn−1 − ρ (xn−1) = x0 −
n−1∑

k=0

ρ (xk)

≤ x0 − nρ (l) .

Letting n go to infinity xn goes to −∞ which contradicts xn ≥ 0 hence the Lemma.

Proof of Theorem 5:
Let xn be as in the preceding Lemma. Let p be a C∞ probability density on [0, 1] and set

for xn+1 ≤ u ≤ xn

ε (u) =
lnφ (xn+1)− lnφ (xn)

xn − xn+1
p

(
xn − u

xn − xn+1

)
ρ (u) .

The proof takes three steps.
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We prove first that for all xn, φ (xn) = exp
(∫ 1

xn

ε(u)
ρ(u)du

)
. In fact we may always define ε (u),

x0 ≤ u ≤ 1 such that φ (x0) = exp
(∫ 1

x0

ε(u)
ρ(u)du

)
. Then assume that φ (xk) = exp

(∫ 1
xk

ε(u)
ρ(u)du

)

for k = 0, 1, .., n. We have :

∫ 1

xn+1

ε (u)

ρ (u)
du =

∫ xn

xn+1

ε (u)

ρ (u)
du+

∫ 1

xn

ε (u)

ρ (u)
du

= lnφ (xn) +
lnφ (xn+1)− lnφ (xn)

xn − xn+1

∫ xn

xn+1

p

(
xn − u

xn − xn+1

)
du

= lnφ (xn)− (lnφ (xn+1)− lnφ (xn))

∫ 0

1
p (t) dt

= lnφ (xn+1)

Second we prove that for xn+1 ≤ x ≤ xn limx→0 φ (x) /φ (xn) = 1. We note that x =
xn − λxρ (xn) where λx ∈ [0, 1] hence

lim
x→0

φ (xn − λxρ (xn))

φ (xn)
= 1

uniformly with respect to λx ∈ [0, 1].
The third and last step is devoted to proving that |ε (u)| → 0 when u → 0. Indeed for all

xn+1 ≤ u ≤ xn,

|ε (u)| ≤ |p|∞
∣∣∣∣
lnφ (xn+1)− lnφ (xn)

xn − xn+1

∣∣∣∣ ρ (u)

We focus on
∣∣∣∣
lnφ (xn+1)− lnφ (xn)

xn − xn+1

∣∣∣∣ ρ (u) =
ρ (u)

ρ (xn)
ln

φ (xn)

φ (xn+1)

=
ρ (xn − λuρ (xn))

ρ (xn)
ln

φ (xn)

φ (xn − ρ (xn))

Just like above ρ (xn − λuρ (xn)) /ρ (xn) → 1 since ρ is self-neglecting. Finally by the definition
of φ we get

ln
φ (xn)

φ (xn − ρ (xn))
→ 0

which finishes the proof of the Theorem.

References

[1] de Acosta A. (1983) : Small deviations in the functional central limit theorem with
applications to functional laws of the iterated logarithm, Ann. Probab., 11, 78-101.

[2] Aurzada F., Lifshits, M., Linde W. (2009) : Small deviations of stable processes and
entropy of associated random opeartors, Bernoulli, 15, 1305-1334.

[3] Berlinet A., Elamine A., Mas A. (2011) : Local linear regression for functional data,
to appear in AISM.

[4] Bingham N.H., Goldie C.M. and Teugels J.L. (1987) : Regular Variations. Encyclopedia
of Mathematics and Its Applications, Cambridge University Press.

[5] Bloom S. (1976) : A characterization of B-slowly varying functions, Proc. Amer. Math.
Soc., 54, 243-250.

24



[6] Borell C. (1976) : Gaussian Radon measures on locally convex spaces, Math. Scand., 38,
265-285.

[7] Cardot H., Johannes J. (2010) : Thresholding projection estimators in functional linear
models, J. Multivariate Anal.,.101, 395-408.

[8] Crambes C., Kneip A., Sarda P. (2009) : Smoothing splines estimators for functional
linear regression, Ann. Statist., 37, 35-72.

[9] Dabo-Niang S. (2002) : Estimation de la densité dans un espac ed dimension infinie:
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