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Abstract

In this paper we study the connection between four models describing dislocation dynamics: a

generalized 2D Frenkel-Kontorova model at the atomic level, the Peierls-Nabarro model, the dis-

crete dislocation dynamics and a macroscopic model with dislocation densities. We show how each

model can be deduced from the previous one at a smaller scale.

AMS Classification: 35B27, 35F20, 45K05, 47G20, 49L25.
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1 Introduction

In this paper, we focus on the modelling of dislocation dynamics. We refer the reader to the
book of Hirth and Lothe [16] for a detailed introduction to dislocations. Our study ranges
from atomic models to macroscopic crystal plasticity. At each scale, dislocations can be
described by a suitable model. Our goal is to explain how we can deduce a model at a larger
scale, from the model at a smaller scale.

Even if our derivation will be done on some simplified models (essentially 2D and 1D
models), we hope that our contribution will shed light, even on some well-known models.
More precisely, we will consider the following four models, from the smaller to the larger
scale:
1. Generalized Frenkel-Kontorova model (FK)
2. Peierls-Nabarro model (PN)
3. Dynamics of discrete dislocations (DDD)
4. Dislocation density model (DD)
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The rest of the paper is composed of four sections. Each section presents one model, and
explains how this model can be deduced from the previous model at a smaller scale.

2 Generalised Frenkel-Kontorova model

2.1 Geometrical description

We call (e1, e2, e3) a direct orthonormal basis of the threedimensional space. We consider
a perfect crystal Z

3 where each position with integer coordinates is occupied by one atom.
We want to describe dislocations, which are certain “line defects” in the crystal. To simplify
the presentation, we will assume that the material is invariant by integer translations in the
direction e3. Because of this assumption, we can simply consider the cross section of the
crystal in the plane (e1, e2) where each atom is now assumed to have a position I ∈ Z

2 in
the perfect crystal. We also assume that each atom I can have a displacement UI ∈ R in
the direction e1, such that the effective position of the atom I is I + UIe1.

On Figure 1 below is represented a view of the perfect crystal. On Figure 2 we can see a
schematic view of a edge dislocation in the crystal. On this picture, the upper part {I2 ≥ 0}
of the crystal has been expanded to the right of a vector 1

2
e1, while the lower part {I2 ≤ −1}

of the crystal has been contracted to the left of a vector −1
2
e1. The net difference between

these two vectors is e1 and is called the Burgers vector of this dislocation.

e1

e2

I  =−1
2

2

I  = 0

Figure 1: Perfect crystal

I  =−1
2

2

I  = 0

e1

e2

Figure 2: Schematic view
of a edge dislocation in the crystal

In order to describe a edge dislocation in our formalism, let us make a few assumptions.
We will assume that the dislocation defects are essentially described by the mismatch between
the two planes I2 = 0 and I2 = −1, like on Figure 2. For this reason, and also in order to
simplify the analysis, we assume that the displacement of the crystal satisfies the following
antisymmetry property

(2.1) U(I1,−I2) = −U(I1,I2−1) for all I = (I1, I2) ∈ Z
2.

Let us also define the discrete gradient

(∇dU)I =

(
UI+e1

− UI

UI+e2
− UI

)
.
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Remark that defects in the crystal can be seen as regions where the discrete gradient is not
small.

Formalism for a edge dislocation with Burgers vector e1
In our formalism, a edge dislocation like the one of Figure 2, can be represented by a
displacement UI satisfying





U(I1,0) = −U(I1,−1) → 0 as I1 → −∞

U(I1,0) = −U(I1,−1) →
1

2
as I1 → +∞.

Because we assume that the dislocation core lies in the two planes I2 = 0 and I2 = −1, it
is reasonable to assume that all the components of the discrete gradient are small, except
components UI+e2

− UI for I = (I1, I2) with I2 = −1. More precisely, we assume that there
exists a small δ > 0 such that

(2.2)

{
|UI+e1

− UI | ≤ δ for all I = (I1, I2) ∈ Z
2

|UI+e2
− UI | ≤ δ for all I = (I1, I2) ∈ Z

2 with I2 6= −1.

Moreover, if there is no applied stress on the crystal, then it is reasonable to assume that

dist
(
(∇dU)I ,Z

2
)
→ 0 as |I| → +∞.

2.2 The energy and the dynamics

We assume that the energy of a configuration U = (UI)I∈Z of the crystal can be formally
written as

E(U) =
1

2

∑

I 6=J

W̃ (UI − UJ)

where W̃ : R → R is a potential describing nearest neighbors interactions satisfying
Assumption (Ã1)





i) (Regularity) W̃ ∈ C3(R)

ii) (Periodicity) W̃ (a+ 1) = W̃ (a) for all a ∈ R

iii) (Minimum on Z) W̃ (Z) = 0 < W̃ (a) for all a ∈ R\Z

iv) (Local harmonicity of W̃ ) W̃ (a) = 1
2
a2 for all |a| < δ

where δ > 0 is introduced in (2.2). Remark that the periodicity of the potential W̃ reflects

the periodicity of the crystal, while the mimimum property of W̃ is consistent with the fact
that the perfect crystal Z

2 is assumed to minimize its energy. Assumption iv) will be used
for later simplification.

Then we assume that we are in a regime where the crystal reaches very quickly the
equilibrium in the regions where there is no defects, i.e. satisfies

(2.3) 0 = −∇UI
E(U) for all I = (I1, I2) ∈ Z

2 with I2 6= 0,−1
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while we have the following fully overdamped dynamics in the two planes where the dislo-
cation lives (describing the average friction of the lattice on the effective dissipative motion
of the dislocations):

(2.4)
d

dt
UI = −∇UI

E(U) for all I = (I1, I2) ∈ Z
2 with I2 = 0,−1.

Let us mention that we do not have a fundamental justification of this dynamics, but we
think that one of the main justification of this model is that other known models at larger
scales can be deduced from this particular model. For physical justifications of the dissipative
effects in the motion of dislocations, see [2, 16]. See also [17] for a fundamental justification
of the overdamped dynamics based on explicit computations in a 1D Hamiltonian model.

Taking into account the local harmonic assumption (Ã1) iv), applied where the com-
ponents of the discrete gradient are small (see (2.2)), joint to the antisymmetry property
defined in (2.1), we can rewrite system (2.3)-(2.4) as follows for all t > 0:
(2.5)



0 =
∑

J∈Z2, |J−I|=1

(UJ − UI) for all I = (I1, I2) ∈ Z
2 with I2 ≥ 1

d

dt
UI = −W̃ ′(2UI) +

∑

J∈Z2, |J−I|=1, J2≥0

(UJ − UI) for all I = (I1, I2) ∈ Z
2 with I2 = 0.

We call this model a generalised Frenkel-Kontorova model. Even if this system of equa-
tions is not standard, it is nevertheless possible to define a unique solution under suitable
assumptions, in the framework of viscosity solutions (see [12]). We refer the reader to the
book of Braun, Kivshar, [6] for a detailed presentation of the classical FK model. For ho-
mogenization results of FK models, we refer the reader to [14]. For other 2D FK models,
see [8, 9].

Remark 2.1 It is important to remark that we used condition (2.2) only to derive the model.
We do not know and we do no claim that there exists solutions of system (2.5) satisfying
condition (2.2). From now on, we only consider solutions of system (2.5) without requiring
further assumptions on the solutions.

Remark 2.2 When we freeze the components UI = 0 for I2 ≥ 1, and change the evolu-
tion equation forgetting the index J with J2 = 1, this leads to the following classical fully
overdamped Frenkel-Kontorova model satisfied by Vi := U(i,0)

d

dt
Vi = Vi+1 + Vi−1 − 2Vi − W̃ ′(2Vi).

2.3 The asymptotic stress created by a single dislocation

In this subsection, we will compute the asymptotic stress created by a single dislocation. To
this end, we first compute the effective Hook’s law of the lattice.
Computation of the Hook’s law
Let us consider an affine displacement

UI = a · I + C with a = (a1, a2) ∈ R
2
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where C ∈ R is a constant. Then the energy by unit cell is

E = W̃ (UI+e1
− UI)) + W̃ (UI+e2

− UI)) =
1

2
(a2

1 + a2
2)

for |a| < δ. Reminding the fact that U is the displacement in the e1 direction, we get that
the strain e (i.e. the symmetric part of the gradient of the displacement) is given by

e =

(
e11 e12
e21 e22

)
=

1

2
(∇U ⊗ e1 + e1 ⊗∇U) =

(
a1 a2/2
a2/2 0

)
.

Therefore

E(e) =
1

2
e211 + 2e212.

Recalling that the stress is given by σ =
∂E

∂e
, we get the Hook’s law:

σ =

(
e11 2e12
2e21 0

)
.

Computation of the stress created by a single dislocation
Remark that when there is no dislocations, the energy associated to a continuous displace-
ment U(X) for X = (X1, X2) is formally

E =

∫

R2

1

2
|∇U |2.

Therefore the Euler-Lagrange equation (which is the corresponding equation of elasticity for
this model) is

(2.6) ∆U = 0.

Let us now consider the following function

U0(X) =
1

2π
arctan

(
X1

X2

)
+

1

4
sgn (X2)

where sgn is the sign function. This function satisfies





U0(X1, X2) = −U0(X1,−X2)

U0(X1, 0
+) = −U0(X1, 0

−) → 0 as X1 → −∞

U0(X1, 0
+) = −U0(X1, 0

−) →
1

2
as X1 → +∞.

Moreover we can easily check that

div (∇U0 −H(X1)δ0(X2)e2) = 0 in D′(R2)

where H is the Heavyside function and δ0 is the Dirac mass. This equation is the analogue
of equation (2.6) when there is a dislocation. This shows that in a continuum mechanics
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framework associated to the particular lattice that we consider, the function U0 is the dis-
placement corresponding to a dislocation with Burgers vector e1. In particular, the stress
created by this dislocation is then given by

σ =
1

2π




X2

X2
1 +X2

2

−
X1

X2
1 +X2

2

−
X1

X2
1 +X2

2

0




and then

(2.7) σ12(X1, 0) = −
1

2πX1

which is the asymptotic shear stress at the point (X1, 0) ∈ R
2 created by a single dislocation

positioned at the origin, and with Burgers vector e1.

2.4 Rescaling of the generalised FK model

Introducing a small parameter ε > 0, we are interested in the case of asymptotically small
potential W̃ for which we expect an asymptotically large dislocation core. This means that
in this limit, we expect to be able to describe the discrete displacement UI by a continuous
function.

More precisely, we first define the rescaled integer coordinates:

Ωε = (εZ) × ε (N\ {0}) , ∂Ωε = (εZ) × {0} .

Then we write the potential as

W̃ =
ε

2
W ε

and define the rescaled function

uε(X, t) = 2UX

ε

(
t

ε

)
for X = (X1, X2) ∈ Ω

ε
, t ∈ [0,+∞).

Remark that the factor 2 in the definition of uε permits to interprete uε as the jump of the
displacement in the direction e1, when we pass from hyperplane X2 = −ε to the hyperplane
X2 = 0.

We can easily check that uε solves the following system of equations (with the particular
value τ = 0)

(2.8)





0 =
1

ε2

∑

J∈Z2, |J |=1

(uε(X + εJ, t) − uε(X, t)) for all (X, t) ∈ Ωε × (0,+∞)

uε
t(X, t) = 2τ − (W ε)′(uε(X, t)) + Iε[uε](X, t) for all (X, t) ∈ ∂Ωε × (0,+∞)

with Iε[uε](X, t) =
1

ε

∑

J∈Z2, |J |=1, J2≥0

(uε(X + εJ, t) − uε(X, t)).
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Here the constant quantity τ ∈ R has been introduced to take into account the possible
external applied shear stress on the material. We will also assume that the initial data
satisfies

(2.9) uε(X, 0) = u0(X) for all X ∈ ∂Ωε

where u0 is a given function independent on ε and smooth enough.
In order to identify a limit model as ε goes to zero, we also make the following assumption

(2.10) ||W ε −W ||C1(R) → 0 as ε→ 0

for some new potential W satisfying the following assumption:
Assumption (A1)

{
The potential W satisfies (Ã1) i), ii), iii)
iv) (Non degenerate minima): α := W ′′(0) > 0.

In (2.10), we use the C1 norm, because this is the first derivative of the potential that
appears in the equations. Remark that condition (2.10) can be fulfilled, if we assume for

instance that W̃ satisfies assumption (Ã1) with δ = δε << ε.

3 The Peierls-Nabarro model

3.1 Description of the PN model

In this section we introduce the Peierls-Nabarro model, which is a phase field model (see [16]
for a presentation of this model). In this model, phase transitions describe the dislocation
cores. We set

Ω =
{
X = (X1, X2) ∈ R

2, X2 > 0
}
.

A function u0(X, t) is said to be a solution of the PN model, if it satisfies the following
system

(3.11)





0 = ∆u0 on Ω × (0,+∞)

u0
t = 2τ −W ′(u0) +

∂u0

∂X2
on ∂Ω × (0,+∞)

with initial data

(3.12) u0(X, 0) = u0(X) for all X ∈ ∂Ω.

The stationary version of this model has been originally introduced in order to propose a
method to compute at the equilibrium a finite stress created by a dislocation. In this model,
u0 is the phase transition. For instance, for a edge dislocation with Burgers vector e1 as
presented in Section 2, u0 is a transition between the value 0 on the left to the value 1 on
the right (see Figure 3). In the special case u0

t = 0 = τ and for sinusoidal potentials W , the
stationary solution u0 is known explicitely (see for instance [7]), which makes the PN model
very attractive.

7



u

1

0

0
x1

Figure 3: Phase transition for a edge dislocation with Burgers vector e1 for X2 = 0

Remark 3.1 Remark that when we consider system (3.11)-(3.12) in the framework of vis-
cosity solutions, the evolution equation on the boundary ∂Ω appears to be a boundary con-
dition of the system. For this reason, as it is usual for viscosity solutions (see for instance
[3, 4]), this boundary condition has to be understood technically in the sense that on ∂Ω the
function u0 solves pointwisely either 0 = ∆u0 or the evolution equation.

3.2 Convergence of the generalised FK model to the PN model

We have the following result

Theorem 3.2 (Formal convergence of FK to PN)
Let ε > 0. For the initial data u0 ∈ W 2,∞(Ω) which is assumed harmonic on Ω, and under

assumption (Ã1) on εW ε, there exists a unique viscosity solution uε of system (2.8)-(2.9).
Moreover assuming (2.10) with the potential W satisfying assumption (A1), then, as ε goes
to zero, the solution uε formally converges to a viscosity solution of system (3.11)-(3.12).

The proof of Theorem 3.2 is done in full details in [12].

Sketch of the proof of Theorem 3.2
One way to guess the limit model (3.11)-(3.12) is to pass to the limit formally in system
(2.8)-(2.9) assuming that the solution uε (and its derivatives) converges to a limit u0. The
convergence in the system is then obtained using a simple Taylor expansion. The existence
of a solution uε to system (2.8)-(2.9) is technically delicate and is based on the proof of a
suitable comparison principle for this system.

3.3 Reformulation of the PN model

We recall that it is well known that for bounded smooth functions u0 defined on Ω which
are harmonic on Ω, we can write

∂u0

∂X2

(X1, 0) = L(u0(·, 0))(X1) for all (X1, 0) ∈ ∂Ω

where for a general bounded smooth function w, the linear operator L is given by the Levy-
Khintchine formula (see Theorem 1 in [10]):

(3.13) (Lw)(x) =
1

π

∫

R

dz

z2

(
w(x+ z) − w(x) − zw′(x)1{|z|≤1}

)
.
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Then for smooth solutions u0, system (3.11) can be rewritten for V (x, t) = u0(x, 0, t)
with x = X1 ∈ R as

(3.14) Vt = 2τ(x, t) −W ′(V ) + LV on R

in the special case of constant stress τ . More generally, we can still consider equation (3.14)
for variable stress field τ(x, t).

We also recall (see [7]) that there exists a unique function φ solution of

(3.15)





0 = Lφ−W ′(φ) on R

φ′ > 0 and φ(−∞) = 0, φ(0) =
1

2
, φ(+∞) = 1.

The function φ is called the layer solution and is pictured on Figure 3.

3.4 Rescaling of the PN model

We now consider the following rescaling

τ(x, t) = εσ

(
x

ε
,
t

ε2

)
, vε(x, t) = V

(
x

ε
,
t

ε2

)
.

Then system (3.14) can be rewritten as

(3.16) vε
t =

1

ε

{
Lvε −

1

ε
W ′(vε) + 2σ(x, t)

}
on R

with initial condition

(3.17) vε(x, 0) = vε
0(x) for x ∈ R.

Again, a good notion of solution for system (3.16)-(3.17) is the notion of viscosity solution
for non local equations (see for instance [5]).

Here we will choose carefully the initial condition vε
0 as follows

Assumption (A2)





x0
1 < x0

2 < ... < x0
N

vε
0(x) =

ε

α
· 2σ(x, 0) +

N∑

i=1

φ

(
x− x0

i

ε

)

where we recall that α = W ′′(0) > 0 and φ is defined in (3.15).

4 Dynamics of discrete dislocations

4.1 Description of the DDD model

In this section we assume that the phase transition reduces to a sharp interface where the
transition is localized at the position x = x0

1 ∈ R. For a dislocation associated to a Burgers

9



1

0

0
x

v

x
1
0

Figure 4: Sharp interface describing a discrete dislocation at x = x0
1

vector e1, the sharp interface is associated to a non-decreasing step function like the one of
Figure 4.

More generally, we can consider the case of N dislocations (or particules) of positions
(xi(t))i=1,...,N solving the following system

(4.18)
dxi

dt
= −γ

(
σ(xi, t) +

∑

j 6=i

V ′(xi − xj)

)
on (0,+∞) for i = 1, ..., N

with the two-body interaction potential

V (x) = −
1

2π
ln |x|

with initial data

(4.19) xi(0) = x0
i for i = 1, ..., N.

Here the constant γ > 0 is the inverse of the damping factor. It is related to the layer
solution φ defined in (3.15) and is given by

γ = 2

(∫

R

(φ′)2

)−1

.

The function σ is the applied shear stress and V ′(x − xj) is the (singular) shear stress
created at the point x by the dislocation xj . This corresponds exactly to the shear stress

already computed in (2.7). The total stress σ(xi, t) +
∑

j 6=i

V ′(xi − xj) is called the resolved

Peach-Koehler force acting on the dislocation xi.
We will also make the following assumption on the stress:

Assumption (A3)
We assume that there exists a constant C > 0 such that

|σ| + |σt| + |σx| + |σxx| ≤ C for all (x, t) ∈ R × [0,+∞).

4.2 Convergence of the PN model to the DDD model

We have

10



Theorem 4.1 (Convergence of PN to DDD)
Let ε > 0. Under assumptions (A1)-(A2)-(A3), there exists a unique viscosity solution vε of
(3.16)-(3.17). Moreover there exists a unique solution of (4.18)-(4.19), and we define

v0(x, t) =
∑

i=1,...,N

H(x− xi(t))

where H is the Heavyside function. Then as ε goes to zero, the function vε converges to v0

in the following sense
lim sup

(x′,t′)→(x,t), ε→0

vε(x′, t′) ≤ (v0)∗(x, t)

and
lim inf

(x′,t′)→(x,t), ε→0
vε(x′, t′) ≥ (v0)∗(x, t).

The proof of this result is done in full details in [15].

Remark 4.2 We recall that the semi-continuous envelopes of a function v are defined as

v∗(x, t) = lim sup
(x′,t′)→(x,t)

v(x′, t′) and v∗(x, t) = lim inf
(x′,t′)→(x,t)

v(x′, t′).

Sketch of the proof of convergence
The existence of a solution for all time of the ODE system (4.18)-(4.19) comes from the fact
that V (x) is a convex potential outside the origin. This property allows to show that the
minimal distance between particles

d(t) = inf
i6=j

|xi(t) − xj(t)|

satisfies

(4.20) d(t) ≥ d(0)e−Cγt

which prevents the meeting of the particles at any finite time.
Then the main idea to prove the convergence is to approximate the solution vε by the
following ansatz

ṽε(x, t) =
ε

α
· 2σ(x, t) +

N∑

i=1

{
φ

(
x− x0

i

ε

)
− εẋi(t)ψ

(
x− x0

i

ε

)}
with ẋi(t) =

dxi

dt
(t)

where α = W ′′(0) and the corrector ψ solves the following equation

Lψ −W ′′(φ)ψ = φ′ + η (W ′′(φ) −W ′′(0)) with η =
1

W ′′(0)

∫

R

(φ′)2.

The stress created in x by a dislocation positioned at the origin, comes from the following
property

φ(x) −H(x) ∼ −
1

απx
as |x| → +∞.

The rest of the proof of convergence of vε is done by construction of sub and super solutions
based on the ansatz ṽε.
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4.3 Rescaling of the DDD model

We consider a given initial data w0 which satisfies
Assumption (A4)

{
w0 ∈W 2,∞(R),
w′

0 > 0, w0(−∞) = 0.

Given a new small parameter ε > 0, we introduce the integer Nε and the position of the
dislocations x0

1 < ... < x0
Nε

such that

∑

i=1,...,Nε

H(x− x0
i ) =

⌊w0(εx)

ε

⌋

where ⌊·⌋ denotes the floor function. To simplify, we consider a stress σ that is independent
on the time t and satisfies the
Assumption (A3’)

σ ∈ C2(R) and σ(x+ 1) = σ(x) for all x ∈ R.

This assumption allows to study the collective behaviour of dislocations in a periodic land-
scape, and to get the effective macroscopic model by a periodic homogenization approach.

Then we consider the solution (xi(t))i=1,...,Nε
of the system (4.18)-(4.19) with N = Nε

and define the function
v0(x, t) =

∑

i=1,...,Nε

H(x− xi(t))

and the rescaling

(4.21) wε(x, t) = εv0

(
x

ε
,
t

ε

)
.

5 Dislocation density model

5.1 Description of the DD model

We first introduce a function g : (0,+∞) × R → R which satisfies
Assumption (A5) 




g ∈ C0((0,+∞) × R),

l 7→ g(ρ, l) is nondecreasing.

Then we consider a function w0(x, t) which is a solution of

(5.22) w0
t = g(w0

x, Lw
0) on R × (0,+∞)

where the operator L is defined in (3.13), and with initial data

(5.23) w0(x, 0) = w0(x) for all x ∈ R.

Here the function w0 is such that its derivative w0
x represents the macroscopic dislocation

density. Moreover w0 can be seen as the plastic strain localized in plane x2 = 0 and
1

2
Lw0

can be identified to the stress created by the dislocation density w0
x. Equation (5.22) can

be interpreted as the plastic flow rule in a model for macroscopic crystal plasticity. In this
model, the plastic strain velocity w0

t is prescribed by the function g.

12



5.2 Convergence of the DDD model to the DD model

We have the following result

Theorem 5.1 (Convergence of DDD to DD)
Let us assume (A3’)-(A4). Then there exists a function g satisfying assumption (A5). More-
over the function wε defined in (4.21) converges to the unique solution w0 of (5.22)-(5.23),
locally uniformly on R × [0,+∞).

The proof of this result is done in full details in [13].
Remark that Theorem 5.1 is an homogenization result in the periodic setting. In the

particular case where the periodic stress σ is equal to zero, we get

g(ρ, l) =
γ

2
ρl.

The presence of a non-zero 1-periodic stress with zero mean value, creates a threshold phe-
nomenon where for a fixed dislocation density ρ, the quantity g(ρ, l) can be equal to zero if
|l| is small enough (see for instance the numerical simulations in [11]).

Sketch of the proof of Theorem 5.1
Step 1 : Formal determination of the function g
To determine the function g, we can look formally for xi(t) defined for all i ∈ Z, which are

particular solutions of the ODE system (4.18) with σ replaced by
l

2
+ σ, such that

xi(t) = h(vt+ i/ρ) with h(a+ 1) = 1 + h(a) for all a ∈ R

where such a function h is called a hull function. Both h and the constant v have to be
determined. It can be shown that v is unique. Then we set

g(ρ, l) = −vρ

which is known in physics as the Orowan’s law.
Step 2: Regularization at short distances

To avoid the singularity of the potential V (x) = −
1

2π
ln |x|, we can first approximate it by

the following symmetric and continuous potential

Vδ(x) =

{
V (x) if |x| ≥ δ
linear if x ∈ (−δ, δ)\ {0} .

We consider the function v0(x, t) =
∑

i=1,...,Nε
H(x−xi(t)) associated to the dynamics (4.18)

where the potential V is replaced by Vδ. Then it is possible to show that v0 satisfies the
following equation with l = 0

(5.24) v0
t = |v0

x|γ

{
σ(x) +

l

2
+Mδ[v

0(·, t)](x)

}

where for a general function w(x), we can define the non local operator

Mδ[w](x) =

∫

|z|>δ

dz V ′′
δ (z)E (w(x+ z) − w(x)) with E(a) =

1

2
+k if k ≤ a < k+1, k ∈ Z
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where E is a odd integer part function. This is possible to introduce a suitable good notion of
viscosity solution for equation (5.24) (see [13]). In particular, we can show that if v0(x, 0) =
ρx, then v0(x, t)/t → gδ(ρ, l) as t → +∞. Moreover it is possible to show the following
estimate

(5.25) |gδ(ρ, l) − g(ρ, l)| ≤
C(ρ)

| ln δ|
.

Step 3: Sketch of the proof of convergence in the regularized case
After a rescaling of the solution v0 of (5.24) with l = 0, we see that wε(x, t) = εv0(x/ε, t/ε)
solves an equation

wε
t = |wε

x|γ {σ(x/ε) +Mε
δ [wε(·, t)](x)}

for some rescaled non local operator Mε
δ . More generally, any continuous solution wε of the

previous equation, can be formally written as

wε(x, t) ≃ w0(x, t) + εr(x/ε)

where r is a suitable corrector. One fundamental remark is that as ε goes to zero, we can
asymptotically split the non local term

Mε
δ [w0(·, t) + εr(·/ε)](x) ≃

1

2
(Lw0)(x) + S[r, w0

x(x)](x/ε)

into its long range contribution 1
2
Lw0 and a short range contribution S involving the corrector

r. Remark that this long range contribution 1
2
Lw0 = l/2 is related to the introduction of

the constant l/2 into equation (5.24) used in the definition of gδ(ρ, l). Taking into account
this asymptotical splitting, it is then possible to show the convergence of wε to the solution
of (5.22)-(5.23) with g replaced by gδ. The proof can be done in the framework of viscosity
solutions, adapting the Evans’ perturbed test function method.
Step 4: Sketch of the proof of convergence in the singular case
The singular case can be reached using an approximation argument. On the one hand,
estimate (4.20) insures that the dynamics (4.18) on the time interval (0, T/ε) is equivalent
to the same dynamics with V replaced by Vδ for δ ≤ δε = d(0)e−γCT/ε. On the other hand,
estimate (5.25) is independent on ε. Then choosing δ = δε, the convergence of the solution
wε on the time interval (0, T ) can then be obtained by an adaptation of the arguments in
the regularized case.
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