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Robust empirical constitutive laws for granular materialsin air or in a viscous fluid have been expressed in
terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity
bifurcation or shear localization, observed also in foams,emulsions, and block copolymer cubic phases, seem
to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the
present work, we consider a T1 process as an example of a rearrangement. Using theSoft dynamicssimulation
method introduced in the first paper of this series, we describe theoretically and numerically the motion of four
elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille
squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. The
duration of the simulatedT1 process can vary substantially as a consequence of minute changes in the initial
separations, consistently with predictions. For the first time, a collective behaviour is thus found to depend on
another parameter than the typical volume fraction in particles.

PACS numbers: 02.70.Ns, 82.70.-y, 83.80.Iz

I. INTRODUCTION

Many materials are made of particles in a surrounding fluid.
Among them foams, emulsions, granular matter, colloidal sus-
pensions and micro gels are of daily use. A great deal of
research revealed their complex behaviors including elastic,
plastic and viscous characters [1, 2, 3, 4]. This complexity
results from the wide range of particle properties and parti-
cle interactions involved. Great hints to comprehensive rhe-
ological models were obtained by considering the dynamics
of a single particle. Thus emerged the time

√

m/RP for a
single grain of massm, accelerated by the normal stressP
(force PR2), to move over a distance comparable to its own
sizeR [5, 6, 7], the timeη/P for a grain immersed in a fluid
of viscosity η subjected to the same normal stress [8], and
the relaxation timeη R2/σ for a bubble or a droplet with sur-
face tensionσ in a viscous fluid [9, 10, 11]. The effective
viscosity was expressed as an empirical function of these mi-
croscopic timescales [8], thereby providing robust scaling ex-
pressions for various properties of grains [12, 13, 14] and bub-
bles [15, 16, 17, 18, 19, 20].

Nevertheless, particulate materials exhibit some uncommon
rheological properties which seem to involve other timescales.
Oscillatory shear experiments [4], and more generally the
delayed adaptation of the shear rate to a sudden change in
the applied stress [21, 22, 23, 24, 25, 26, 27] reveal long
internal relaxation processes. Other observations such asa
critical shear rate below which no homogeneous flow ex-
ists [5, 6, 8, 22, 28], or the coexistence of liquid and
solid regions (shear localization, shear banding, cracks)in
emulsions [29, 30], foams [31, 32, 33, 34], wormlike mi-
celles [35, 36] and granular materials [6, 14, 37, 38] also
point to a complex internal dynamics. Usually, this internal
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dynamics is qualitatively understood as the competition be-
tween external solicitations that the particles experience and
their ability to move within their neighborhood [22]. Such a
mechanism is the core of the definition of the jamming tran-
sition in glassy systems, which is a subject of intense de-
bate [39, 40, 41, 42, 43, 44]. Getting new insights into reorga-
nization micro-timescale should therefore clarify the origin of
such properties and should also provide useful hints to refine
and generalize existing models of the material response.

A common reorganization process is the separation of par-
ticles while other particles approach and fill the void. When
they involve four particles, these events, usually referedto as
T1 processes when dealing with foams and emulsions, occur
in deformed regions at a frequency proportional to the defor-
mation rate (see for example [31, 32, 45, 46, 47, 48, 49, 50,
51, 52]). They relax some stress and dissipate some energy.
The relation between the duration of aT1 and the local stress is
thus expected to affect the rheological behaviour of the mate-
rial. For dry foams, theT1 dynamics has been shown to result
from the surface tension and the surface viscosity [53]. The
stretching ability of the interfaces avoids the need to squeeze
violently the fluid between the approaching bubbles, and its
viscous dissipation is thus negligible. By contrast, theT1 dy-
namics is less well described in wet foams or other less con-
centrated systems. A comprehensive description of their dy-
namics requires a careful description of the particle interac-
tion. For instance, visco-elastic and even adhesive properties
of particles were shown to be important [54, 55, 56].

In this paper, we show that squeezing the liquid between
close particles (here in three dimensions) can give rise to long
relaxation times. To this aim, we do not focus on a specific
material which would include the interaction between solid
grains, bubbles, droplets or colloidal particles. Rather,we
address the ubiquitous situation of elastic-like particles in a
Newtonian fluid. We consider a simple system of in-plane
spheres undergoing aT1 process, as depicted on Fig. 1. We
discuss under which circumstances aT1 process should in-
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deed occur and (if itdoesoccur) the relative contribution to
the dynamic of the normal approach and separationversusthe
tangential sliding of particles [63]. In three dimensions,for a
dry foam or a concentrated emulsion, such aT1 process with
four topologically active particles can in fact be decomposed
into two topologically simpler processes involving five parti-
cles. However, whatever the exact process, the dynamics will
still involve normal motions and tangential sliding (as well as
rotation in general). Because normal motions are stronger,as
we show below, we believe that no essential new phenomenon
will emerge from other reorganization processes as compared
to the time scale evidenced in the present work.

This paper is the second of a series which presents the
physics of materials made of close-packed elastic-like parti-
cles immersed in a viscous fluid. In the first paper [57], we
focused on the normal separation of two particles, and we
showed that the flow between their close surfaces interplays
with the particle deformation in a non-trivial manner. As this
feature was ignored so far in existing discrete element sim-
ulations such as Molecular Dynamics [58] (for elastic grains
without a surrounding fluid) for Stokesian Dynamics [59] (for
non-deformable grains in a viscous fluid), we are introducing
a new simulation method, namedSoft-Dynamics, to account
for it. In this paper, we include the tangential interaction,
and we provide the main steps of the implementation of the
Soft Dynamicsmethod for the present context. This will serve
as an introduction to the principle of larger scale simulations
with this new method, which will include both particle ro-
tation and boundary conditions, and which should constitute
a promising tool for investigating the collective behaviors of
many complex materials.

As we shall see, the geometry addressed in the present pa-
per, although rather symmetric (the centers of the three di-
mensional particles are arranged within a plane, at the vertices
of a losange), proves sufficiently rich to reveal how minute
changes in the system configuration have an essential influ-
ence upon its dynamics.

(a) (b) (c)

θ θ ≃ π/6θ ≃ π/3

FIG. 1: Schematic representation of aT1 process with four in-plane
spheres. Due to the applied forces, the group of four particles swap
neighbours. Two particles separate while two other particles estab-
lish contact. Meanwhile, the other particle pairs reorient, as shown
by the evolution of angleθ from aboutπ

3 to aboutπ
6 .

II. MODELLING PARTICLE INTERACTIONS

When addressing the question of aT1 process between elas-
tic spheres in a viscous fluid, see Fig. 1, most of the interac-
tions have already been described in the first paper [57]. The
only new feature is particle sliding and, correspondingly,tan-
gential forces. Hence, quantities such as viscous frictionco-
efficients or spring constants are now tensorial. We express
these interactions in the present section. Let us recall that we
deal with three dimensional particles.

A. Pairwise interactions

As discussed in detail in the first paper [57], because we
consider rather dense systems where each particle is close to
several other particles (surface-to-surface gap much smaller
than the particle size), we simply discard long-range, many-
body interactions [64]. Furthermore, under such thin gap
conditions, the interacting region between particles is much
smaller than the particle size and the interactions betweena
particle and its neighbours are mostly independent from each
other and can therefore be treated as a sum of pairwise inter-
actions.

Particlei is subjected to some force
−→
F i j by its neighbour-

ing particles j, which can be decomposted into(i) the local
pressure field in the fluid that results from a viscous lubrica-
tion interaction and(ii) a remote interaction (such as a damped
electrostatic interaction, steric repulsion, van der Waals inter-
actions, disjoining pressure, etc):

−→
F i j =

−→
F vis

i j +
−→
F rem

i j (1)

B. Particle surface deflection

A fraction of the above force
−→
F i j exerted by particlej tran-

sits through a small portion of the surface of particlei and
deflects it elastically.

In practice, the viscous component
−→
F vis of the force is en-

tirely transmitted by the surface of particlei. The effect of the
remote component

−→
F rem is more subtle. Electrostatic forces

between surface charges act upon the surface and contribute
entirely to the elastic deflection. By contrast, Van der Waals
interactions also act directly within particlei. However, most
of such interactions occur within a depth comparable with
the inter-particle gap, which is always much smaller than the
depth of the region that is deformed elastically (see paragraph
II F below).

Hence, for simplicity, it is reasonable to assume that the
total force

−→
F i j between both particles entirely contributes to

the elastic surface deflection:

−→
F ela

i j ≃−→
F i j (2)

The expression of
−→
F ela

i j in terms of the corresponding surface
deflection is discussed in paragraph II F below.
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C. Force balance for each particle

The sum of all forces applied to particlei, both the external
force

−→
F ext

i and the pairwise forces
−→
F i j is equal to the massmi

times the acceleration. This is assumed to vanish due to the
dominant effect of the fluid viscosity over inertia:

−→
F ext

i +∑
j

−→
F i j = mi

−̈→
X i =

−→
0 (3)

where
−→
F ext

i is an external force acting on graini (such as grav-
ity) and where the sum runs over the neighbours of particlei.
In principle, there is another equation, similar to Eq. (3),for
the torques applied to particlei. But as mentioned earlier [63],
this is not needed for the present symmetricT1 configuration
such as that of Fig. 1.

TheSoft Dynamicsmethod [57] simulates the dynamics of
such a system, determined by the system of Eqs. (??) for all
interactions and Eqs (3) for all particlesi. In the present work,
for simplicity, we omit the remote interactions in Eq. (??) as
we did before [57].

In order to specify the elastic and viscous forces, let us now
describe the geometry and the kinematics of the interacting
region between a pair of neighbouring particles.

D. Contact geometry and kinematics

Let i and j denote two interacting particles, as depicted on
Fig. 2. As compared to the first paper, the positions of the
particles centers are now vectors, labeled

−→
OXi and

−−→
OXj , and

−→
X i j =

−−→
OXj −

−→
OXi is the center-to-center vector. The deflec-

tions of the particle surfaces are also vectors, labeled
−→
δ j

i and
−→
δ i

j . Since all particles are identical and since the (lubrica-
tion) forces are pairwise and act locally, facing deflections are

symmetric:
−→
δ j

i +
−→
δ i

j = 0. Thus, for simplicity, we shall use

the total deflection
−→
δ i j =

−→
δ j

i −
−→
δ i

j for each pair of interact-
ing particles. The unit vector normal to the contact can be
expressed as

−→n i j =

−→
Xi j −

−→
δ i j

|−→Xi j −
−→
δ i j |

(4)

The gaphi j between both particle surfaces depends on both

the center-to-center vector
−→
Xi j and the total deflection

−→
δ i j :

hi j = |−→Xi j −
−→
δ i j |−2R, (5)

Similarly, the relative velocity of the material points that con-
stitute each particle surface,−→v s, involves the translation ve-
locity of the particles (as already mentioned [63], the particles
do not rotate in the present situation) and the evolution of the
surface deflection:

−→v s =
−̇→
X i j −

−̇→
δ i j . (6)

In order to specify viscous and elastic interactions, we will
need to deal with projectors and tensors. We will use the
symbol “·” for the tensor product (contraction of one coordi-
nate index), and−→u T will denote the transposed of vector−→u .
Hence,−→u T ·−→v = −→v T ·−→u will be the scalar product of−→u and
−→v , and−→u ·−→v T their outer product, which is a tensor. In par-
ticular, we will make use of tensorα defined as the projector
onto the normal direction:

α = −→n ·−→n T (7)

�������������
�������������
�������������

�������������
�������������
�������������

h

(a)

δn

a

(c)

(b)

−→n

−→
δ i

j

−→
δ

j
i

−−→
OXi

−−→
OXj

−→vs · a

−→vs · (i − a)

FIG. 2: Model of interaction for two elastic spheres in a viscous
fluid. (a) elastic deflection of the surfaces (in traction); (b) normal
dissipation due to Poiseuille flow in the gap; (c) tangentialdissipation
due to the Couette flow. The force is transmitted from a particle to
another through the fluid and through a possible remote force. Such
a system behaves like a Maxwell fluid (a dashpot and a spring in
series). The effective friction is a function of the gaph and of the
sizea of the surface through which the force is transmitted.

E. Viscous force

For a pair of close spheres, as discussed earlier [57], the
fluid region that mediates most of the force between both par-
ticles has a large aspect ratio, and the flow is essentially par-
allel to the solid surfaces: thelubrication approximationcan
be used (see for example [60]). As before, the fluid inertia
is negligible (low Reynolds numbers) and the viscous force−→
F vis acting on the surfaces depends linearly on their relative
velocity−→v s:

−→
F vis = Z ·−→v s (8)

Z = ζα+ λ (1−α) (9)

ζ =
3πηa4

2h3 (10)

λ =
πηa2

h
(11)

where the interparticle friction tensorZ has two components
(normal and in-plane), expressed in terms of the unity tensor
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1 and the projectorα defined by Eq. (7). The normal viscous
friction ζ is related to the Poiseuille flow induced by squeez-
ing or pulling [57] (see Fig. 2b), while the in-plane friction
coefficientλ reflects the tangential motion (sliding) between
both particles, which generates a Couette (shear) flow in the
gap (see Fig. 2c).

F. Elastic force

Let us assume that the sizea (discussed in the next para-
graph) of the interacting region between particlesi and j is
known. Then, as before [57], the force depends linearly on
the surface deflection, but this time the relation is tensorial:

−→
F ela = aE ·−→δ , (12)

E = E
(
cn

α+ct (1−α)
)
, (13)

where the tensorial proportionality constantE is essentially
the (scalar) Young modulusE, but incorporates geometrical
constants on the order of unitycn andct for the normal and
tangential responses, respectively.

The elastic response of bubbles and droplets were found to
deviate from such a Hertz elasticity [54, 55]. Although they
have no bulk elasticity, the surface tensionσ confers them
some elastic-like properties, and the elastic-like force mainly
depends on the deflectionδ , the sizea of the interacting region
and an effective Young modulus which scales likeσ/R.

G. Size of the interacting region

The size of the interacting region, again [57], depends ei-
ther on the gap thicknessh (Poiseuille regime) when the parti-
cle surface is weakly deflected, or on the normal force (Hertz
regime) when the particle surface can be considered planar.In
the first case, it can be expressed asa≈

√
2Rh. In the second

case, it is essentially independent of the tangential force[61]
and can thus be expressed in terms of the normal deflection:

a ≈
√

R|δ n| =

√

R|−→n T ·−→δ |. As explained earlier [57], for
the purpose of theSoft Dynamicsmethod, we interpolate be-
tween both behaviours ofa in a simple manner:

a(h,δ n) =
√

R(2h+ |δ n|). (14)

The choice of this interpolation is not physically supported,
but it does not affect assymptotic behavior in both limits.

III. METHOD OF THE SOFT-DYNAMICS SIMULATION

The Soft-Dynamics method aims at simulating the time
evolution of a system of elastic particles and in a viscous
fluid, such as depicted in previous sections. Like usual dis-
crete simulation methods, the motion of each particle center
results from the force balance, Eq. (3). The specificity is that
the interaction evolution results from the decomposition of
the center-to-center distance given by Eq. (5). As illustrated

previously [57], this generates a Maxwellian contact dynam-
ics through the combination of the elastic surface deflection
and the viscous response of the fluid in the gap: it is possi-
ble to move the center-to-center distance

−→
X i j while keeping

constant the deflection
−→
δ i j , andvice-versa. But as compared

to a classical Maxwell behaviour, the elastic element does al-
ways behave linearly (Hertzian contact in the strong deflec-
tion regime), and the viscous element does not have a constant
value, as it depend on the geometry of the gap, see Eqs. (8-11).

The Soft-Dynamics method consists in calculating the rate
of change of all center positions

−→
OXi and all gap deflections−→

δ i j as a function of their current values, and integrating them
over a small time step.

A. Equations of motion

The system satisfies one equation per interaction, namely
Eq. (??), and one equation per particle, namely Eq. (3). We
shall now see how it is possible to derive equations of motion.

For this, we need to express the unknowns velocities
−̇→
δ i j and

−̇→
X i j in terms of the current state of the system.

From Eqs. (4), (5) and (14), it appears that the sizea of the
interacting region can be expressed as a function of

−→
Xi j and

−→
δ i j . It then follows from Eqs. (4) and (12) that the elastic

force
−→
F ela can also be expressed as a function of

−→
Xi j and

−→
δ i j :

−→
F ela =

−→
F ela(

−→
Xi j ,

−→
δ i j ) (15)

As a result, its time-derivative ˙−→
F ela

i j can be expressed as a sum

two terms: one of them is linear iṅ
−→
X i j while the other is linear

in
−̇→
δ i j . The (tensorial) coefficient of each of these two terms

is a function of the current system configuration,i.e., of all

particle and gap variables
−→
OXi and

−→
δ i j . Now, it follows from

Eqs. (6), (8) and (??) that
−̇→
δ i j is an affine function of

−̇→
X i j :

−̇→
δ i j =

−̇→
X i j +Z

−1
i j ·

(−→
F ela

i j −−→
F rem

i j

)

(16)

whereZi j ,
−→
F ela

i j and
−→
F rem

i j depend on the current system con-

figuration. Hence,
˙−→

F ela
i j can be expressed as an affine function

of
−̇→
X i j :

˙−→
F ela

i j = Gi j ·
−̇→
X i j −

−→
b i j (17)

where the coefficientsGi j and
−→
b i j depend only on the cur-

rent system configuration. The detailed calculation of these
coefficients is provided in Appendix A.

From this, the time derivative of Eq. (3) yields a system of
equations for the particle center velocities. The equationthat
corresponds to particlei reads:

∑
j

{

Gi j · (
−̇→
OX j −

−̇→
OXi)

}

= ∑
j

−→
b i j − ˙−→

F ext
i . (18)
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where the sums run over all neighbours of particlei.
Note that becauseG ji = −Gi j and

−→
b ji = −−→

b i j , and if we
assume that the sum of all external forces vanishes,

∑
i

−→
F ext

i = 0, (19)

then the sum of Eqs. (18) for all particlesi vanishes. In other
words, these vector equations are not independent: one of
them must be replaced, for instance, by the condition that the
average particle velocity is zero:

∑
i

−̇→
OXi = 0 (20)

Let us consider the system of Eq. (20) (or a similar one) to-
gether with Eqs. (18), taken for all particlesi except one. This
system of equations can be inverted to obtain the particle cen-

ter velocities
−̇→
OXi . The gap velocities

˙−→
F ela

i j are then calculated
from Eq. (17).

B. Choice of a numerical step

Gaining the center velocity
−̇→
OXi requires to solve the linear

system (18). Standard and efficient procedures are available
to inverse it. We used a second order Newtonian scheme for
the numerical integration of particle position and as well as
deflections. A typical time in the problem is the Stokes time
τ taken by a single particle submitted to a typical forceF to
move over a distanceR in a fluid with viscosityη , see Eq. (29)
below. The numerical time step is set to 10−3 in units of τ
for all simulations. Other numerical schemes, such as Runge
Kutta method, should make simulations faster. Furthermore, a
study of the optimal required time step will be necessary when
dealing with significantly more than only four particles.

IV. T1 DYNAMICS

Let us now use the Soft-Dynamics method to simulate a
singleT1 process. The system is depicted on Fig. 3: initially,
particlesB andC are aligned horizontally, with a small gaph0,
while particlesA andD are aligned vertically. The diagonal
gaps (betweenA andB, etc) have thicknessh0 too.

A horizontal forceNx is applied on particlesB andC while
a vertical forceNy is applied onA andD. Various evolutions
are possible depending on these two forces, which may or may
not give rise to aT1 process (see Fig. 3). Basically, aT1 occurs
only if the interaction between particlesBandC is tensile. The
criterion for the occurrence of aT1 process will be derived
below, as well as a scaling for its dynamics. The duration of a
T1 will then be measured from the simulation.

A. Theoretical predictions

The T1 process, which consists in a separation of the hor-
izontal pair of particles (BC) and an approach of the vertical

pair of particles (AD), implies some sliding of the diagonal
pairs (see Fig. 1).

At the early stages of the process, whenθ ≈ π/3, the exter-
nal forcesNx andNy can be expressed in terms of the normal
forces in the horizontal (Nh) and diagonal (Nd) pairs of parti-
cles, and in terms of the sliding forceSd in the diagonal pairs:

Nx = Nh +2
1
2

Nd −2

√
3

2
Sd (21)

Ny = 2

√
3

2
Nd +2

1
2

Sd (22)

In fact, as we shall now see, the tangential forceSd is much
smaller than the normal forces. To show this, let us first notice
that the tangential velocity is related to the angleθ defined
on Fig. 1: vt ≃ −Rθ̇ . In the Poiseuille regime, the particles
surfaces are weakly deflected and the horizontal and diagonal
gaps are related to angleθ throughR+ 1

2 hh = (2R+hd) cosθ .
Hence, the gap variations obey1

2ḣh ≈ ḣd cosθ − 2Rθ̇ sinθ ,
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(VI)

time

time

(II)

(I)

time

(V)

B C
D

A

B C
D

A
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D

A

B C
D

A

B C
D

A

B C
D

A

Nx

Ny

time

(III)

N
y

=
N
x

√ 3

FIG. 3: Schematic evolution of four particles subjected to external
forces. ForceNx is horizontal and acts on particlesB andD. Force
Ny is vertical and acts upon particlesA andC. Both Nx andNy can
be either compressive (> 0) or tensile (< 0). Regimes (I) and (II)
correspond to compressive forces. In regime (I), the configuration
remains mostly unaltered. By contrast, a topological rearrangement
(T1 process) occurs whenNy &

√
3Nx, which corresponds to region

(II). WhenNx or Ny is tensile, the four beads do not remain together,
as can be seen from the time evolutions sketched for regimes (III)-
(VI). On the whole, aT1 process always occurs whenNy &

√
3Nx

(regimes II, III and IV, white region). It is followed by particle sep-
aration whenNx is tensile (regimes III and IV). By contrast, noT1
process occurs whenNy .

√
3Nx (regimes I, V and VI, light grey

region).



6

i.e.:

1
2

ḣh ≈ ḣd cosθ +2vt sinθ (23)

Let us now transform each term of the above equation by ex-
pressing it as a function of the corresponding normal or tan-
gential force by using the appropriate friction coefficientas
defined by Eq. (9):

− 1
2

Nh

ζ
≈−Nd

ζ
1
2

+2
Sd

λ

√
3

2
(24)

The relative magnitude of friction coefficientsζ andλ can be
derived from Eqs. (10) and (11):

ζ
λ

=
3
2

(a
h

)2
. (25)

where the sizea of the interaction region is given by Eq. (14).
We thus haveζ/λ ≈ R/h in the Poiseuille regime andζ/λ ≈
Rδ n/h2 in the Hertz regime. Hence, except for very large gaps
h comparable to the particle sizeR, the normal friction is much
larger than the sliding friction:ζ ≫ λ . It follows that

Sd ≃
1

2
√

3

λ
ζ

(Nd −Nh) (26)

can be neglected in Eqs. (21–22). Hence, the interaction force
within the horizontal pairBC depends only on the applied
forces:

Nh ≈ Nx−
1√
3

Ny (27)

This implies that, as pictured on Fig. 3, the gap will open
and theT1 will proceed wheneverNh is tensile, i.e., when
Ny & Nx

√
3 (white region of the diagram). By contrast, the

particles will not swap neighbours whenNy . Nx
√

3 (light
grey region).

WhenNh is indeed tensile, we now wish to determine how
long it takes for the horizontal pair of particles to separate.

The dynamics of such a normal motion was detailed in
Ref. [57]. Let us define the reduced force

κ =
|Nh|
ER2 (28)

and the Stokes time

τ =
6πηR2

|Nh|
(29)

With the forceNh acting within the horizontal pairBC, the
initial configuration (gaph0) corresponds to the Poiseuille
regime ifh0 & hHP and to the Hertz regime ifh0 . hHP, where

hHP = Rκ2/3 (30)

The corresponding rate of change of the gap [57] can be ex-
pressed as:

ḣ =
h
τ

(Poiseuille,h > hHP) (31)

ḣ =
h3

τ R2 κ− 4
3 (Hertz,h < hHP). (32)

Integrating these equations yields the typical time∆ required
to achieve the separation of the horizontal pairBCof particles
from an initial gaph0 to a much larger gaphf ≈ R:

∆ ≃ τ ln

(
hf

h0

)

≈ τ (Poiseuille,h0 > hHP) (33)

∆ ≃ τ κ
4
3

(
R2

h2
0

− R2

h2
HP

)

+ τ ln

(
hf

hHP

)

≈ τ κ
4
3

R2

h2
0

≫ τ (Hertz,h0 < hHP) (34)

Once the gaphh of the horizontal pairBC becomes compa-
rable toR, the diagonal pairs such asAB slide rather quickly
(since theirλ ≪ ζ ), and soon the gaphv of the vertical pair
AD becomes significantly smaller thanR. The time it then
takes to reach the same valueh0 is again comparable to∆.

Hence, the order of magnitude given by Eqs. (33–34) for
the time∆ is typically the expected order of magnitude for
the duration of the entireT1 process. We will now test this
prediction by comparing it with the simulation results.

B. Result from simulations

We implement theSoft Dynamicsmethod to simulate aT1
process such as that depicted on Fig. 3, varying the two con-
trol parameters we pointed out above: the initial gap 10−3 <
h0/R< 0.8 and the reduced force 10−4 < κ < 0.1. For sim-
plicity, there is no horizontal force (Nx = 0). The reduced
force given by Eq. (28) is then equal toκ = |Ny|/ER2

√
3 and

the Stokes time isτ = 6π
√

3ηR2/|Ny|.
Figure 4 displays the variations of several quantities in

the course of aT1 process with a given set of parameters
(h0 = 10−2R, κ = 3.10−3). In order to avoid discontinuities
in the simulation, the forceNy is increased from zero to its
nominal value within a timeτ, and remains constant there-
after. From a macroscopic point of view, for instance through
the variation of the angleθ , the system seems to be almost
blocked (θ ≈ π/3) for a significant amount of time (t . 100τ).
It then starts moving to reach its final configuration (θ ≈ π/6)
where it remains thereafter (t & 250τ). During the “blocked”
phase, the applied forceNy is transmitted through the diag-
onal interaction such asAB, thereby inducing a tensile force
Nh ≈ −Ny/

√
3 in the horizontal pairBC. Hence, despite the

overall “blocked” appearance of the system, the horizontal
gaphh between particlesB andC slowly increases from its
initial value h0. Correspondingly, the horizontal friction de-
creases.

The fast moving period starts as soon as this friction is low
enough. ParticlesB andC then separate quickly while parti-
clesA andD in the vertical pair approach each other, thereby
giving rise to sliding friction on the diagonal interactions. As
particlesA and D approach, the corresponding gaphv de-
creases and the friction increases. This approach then slows
down. Thus, although the system keeps moving, itappearsto
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reach a new “blocked” configuration, with no more sliding or
horizontal traction, but only a vertical compression.

As the system subjected to a constant force keeps moving,
we need to arbitrarily define the end of theT1 process. Among
various possible choices, we shall here consider that theT1
process is completed when the vertical interaction transmits
most of the applied force (Nv = 0.99Ny). The resulting du-
ration of theT1 process is plotted on Fig. 5 (other criteria
would yield similar results). The first observation is that,for
the range of initial gaps and particle stiffnesses we consider,
the duration of theT1 is distributed over a wide range of time
scales, roughly between 3τ and 103τ. Next, we observe that
these results match our theoretical predictions reasonably:

• if the horizontal pairBC is in the Poiseuille regime, the
T1 duration∆ scales likeτ ln(R/h0). It thus depends
on particle radius, on the applied force and on the fluid
viscosity throughτ, as can be seen from Eq. (29), and
slightly on the initial gap through the logarithmic factor.
TheT1 duration is then just a few times larger than the
Stokes timeτ;

• if pair BC is in the Hertz regime, theT1 duration

∆ scales essentially likeτ κ
4
3

(
R
h0

)2
, which implies a

much stronger dependence onh0, and longer durations
since the particles are soft. In this case,∆ can be much
longer than the Stokes timeτ.

Note that in the latter case, the separating pair of particles
leave the Hertz regime and enter the Poiseuille regime in the
late stages of separation (h > hHP). However, because the
evolution is much slower in the Hertz regime, see Eqs. (31–
32), these late Poiseuille stages contribute very weakly tothe
overallT1 duration∆.

In summary, the numerical result for the duration of aT1
process presented on Fig. 5 are compatible with Eqs. (33–34).
They demonstrate that the duration of aT1 is hardly larger than
the Stokes timeτ given by Eq. (29) as long as the surface de-
flection is small compared to the inter-particle gap (Poiseuille
regime) and thus depend mainly on the applied force, on the
fluid viscosity and on the particle size. Remarkably, in the op-
posite regime where the deflection is larger than the gap (Hertz
regime), theT1 duration depends strongly on the interparticle
gap and can reach very large values, as illustrated by Fig. 5.

V. CONCLUSION: BEYOND VOLUME FRACTION

In this paper, we studied one of the simplest reorganiza-
tion processes for immersed, closed-packed, elastically de-
formable particles in a simple geometry. We showed that the
time needed for this process results principally from the vis-
cous flow of the fluid into or out of the gap between pairs of
almost contacting particles: it is always mostly driven by the
normal approach or separation, while the role of tangential
sliding is negligible.

We also showed that the time needed can bevery longwhen
particles are close or soft (more explicitely, when the gap is
much thinner than the particle surface deflection). This is the

central result of the present study and, as we show below, it
pleads towards going beyond the sole usual volume fraction
to describe the state of a particulate material.

A. Volume fraction and interparticle gap

Let us consider four particles in a compact configuration
such as that on Fig. 1a (angleθ ≈ π/3). More precisely, let
us consider two variants of this configuration, with two dif-
ferent values of the interparticle gaph0, sayh0 ≃ 10−2R and
h0 ≃ 10−3R. Let us now apply weak forces (sayκ ≃ 10−2).
In both situations, because the force is weak and the gaps
are small, the center-to-center distances are almost identical.
Hence, both situations cannot be distinguished at first sight.

Yet it can be seen from Fig. 5 that the duration of theT1
process will then differ substantially.

Similarly, with a large, disordered assembly of grains, it
is anticipated that there will exist different situations where
the volume fraction is almost identical but where a change in
the typical value of the interparticle gaps causes a dramatic
alteration of the delay∆ after application of the stress for the
system to set into appreciable motion.

This conjecture will be tested in a future work, using simu-
lations with a large number of particles.

B. Dilatancy and permeation

In even larger samples of granular materials in a compact
state, it is anticipated that the need for some additional fluid
to enable reorganization processes (a phenomenon called di-
latancy and illustrated on Fig. 1) will become the main source
of delay: fluid from loose or particle-free regions needs to
permeate through the granular material which behaves as a
porous medium [27]. Describing such a phenomenon requires
introducing the liquid pressure, and is not included in our sim-
ulation so far.

C. Towards other materials

As such, the present work applies to soft, plain, elastic par-
ticles (such as elastomer beads or latex particles) immersed in
a very viscous fluid. We showed that a possible physical ori-
gin for a delay in the system response is the viscous flow in
the thin gap between neighbouring particle surfaces.

In other materials, however, other ingredients may also in-
fluence this delay or even become dominant. For instance, for
objects enclosed in fluid interfaces (vesicles, onions, bubbles,
droplets, etc), phenomena such as Marangoni effects, surface
viscosity, the dynamics of surfactant adsorption and Gibb’s
elasticity should play a role. Finer phenomena should also be
considered, such as the hydrodynamics involved either near
a moving “contact” line between two such objects or within
Plateau borders. By contrast, for solid grains, very different
phenomena may come into play, including solid friction.
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FIG. 4: Time evolution of various quantities in the course ofa T1 process, with parametersκ = 310−3, h0 = 10−2R andNx = 0. The gaph
(a), the normal and tangential forces(c) and the ratio|δ n|/h (d)are plotted for the vertical (solid black lines,AD), the horizontal (dotted black
lines,BC) and the diagonal (solid grey lines,AB etc) pairs of particles. On graph(c), the dotted grey line represents the tangential forceSd of
a diagonal pair such asAB (which is zero for the vertical pairAD and horizontal pairBC). Graph(b) shows the angleθ such as defined on
Fig. 1. On graph(d), a pair of particles for which|δ n|/h > 1 is in the Hertz regime. If|δ n|/h < 1, it is in the Poiseuille regime.
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FIG. 5: (Color online) Typical duration∆ of a T1 process as a function of the initial gaph0 and of the dimensionless applied forceκ. The
data points were obtained through the Soft-Dynamics simulation presented here. Blue open circles correspond toT1s where the horizontal pair
has remained in the Poiseuille regime during the entire process. Full red squares correspond toT1s, such as that represented on Fig. 4, whose
horizontal (separating) pair has been in the Hertz regime for part of the time. The surface is that defined by the theoretical model for both
regimes (Eqs. 33–34 withhf = 2.5R).

For each of these phenomena, a simplified yet realistic pair-wise interaction law will need to be expressed and can then be
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included in the simulation rather easily.

D. Perspectives

The present study suggests that further investigations using
theSoft-Dynamicsmethod with larger systems (including par-
ticle rotation as well as boundary conditions) should provide
interesting results, not only with the present system of plain,
elastic beads in a viscous fluid, but also with different types of
particle interactions. By testing ideas such as the influence of
the typical interparticle gap (or other quantities if the interac-
tions are different), it should also provide hints for analytical
modelling beyond the role of the particle volume fraction.
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APPENDIX A: DYNAMICS OF PARTICLES

In this Appendix, we deduce the particle dynamics, given
by Eqs. (18), from the physical model of interactions and the
mechanical equilibria described in Sec. III. We start from the
time derivative of the particle force balance given by Eq. (3):

∑
j

˙−→
F ela

i j +
˙−→

F ext
i = 0, (A1)

Let us express the above as a sum of(i)
˙−→

F ext
i which is sup-

posed to be known,(ii) terms that are linear in the particle cen-
ter velocities, and(iii) another term that is explicitly known

from the current state of the system,i.e., from
−→
X i j and

−→
δ . To

this aim, using Eq. (12), let us express
˙−→

F ela
i j in terms of the

partial derivative of
−→
F ela(a,E,

−→
δ ):

˙−→
F ela

i j =
a
2
E · −̇→δ +

a
2
Ė ·−→δ + ȧ

E ·−→δ
2

. (A2)

1. Combination

We can now easily express each terms of Eq. (A2) as a func-

tion of
−̇→
X i j . The first term is directly given by (6):

a
2
E · −̇→δ = G1 ·

−̇→
X i j −

−→
b 1 (A3)

G1 =
a
2
E (A4)

−→
b 1 = G1 ·−→v s (A5)

The second term involves the time derivativeĖ = E(cn−ct)α̇
of the contact stiffness expressed by Eq. (13). Using (A13),it
can be expressed as:

a
Ė

2
·−→δ = −−→

b 2 (A6)

−→
b 2 = −aE(cn−ct)

2
α̇ ·−→δ (A7)

Note that this term vanishes forcn = ct .
The third term involves the time derivative ofa, which we

express through its partial derivatives: ˙a(δ n,h) = aδ nδ̇ n+ahḣ
(we used the notationaδ n = ∂a

∂δ n and ah = ∂a
∂h ). Replac-

ing δ̇ n andḣ by their respective expressions in terms of
−̇→
X i j ,

Eqs. (A14) and (A15) lead to:

ȧ
E ·−→δ

2
= G3 ·

−̇→
X i j −

−→
b 3 (A8)

G3 =
aδ n

2
E ·−→δ ·−→n T (A9)

−→
b 3 =

E ·−→δ
2

[

aδ n

(

−→v s
T ·−→n −−→

δ
T
· −̇→n

)

−ahḣ

]

(A10)

Finally, substituting the three results of Eqs. (A3), (A6)
and (A8) into Eq. (A2) yields:

G · −̇→X i j =
−→
b +

˙−→
F ela

i j (A11)

whereG = G1 + G3 and
−→
b =

−→
b 1 +

−→
b 2 +

−→
b 3 are two ex-

plicit functions of
−→
δ and

−→
X i j Then, for each particlei, sum-

ming on its interacting particlesj and using the force balance
(3) yields the system of equation (18).

2. Preliminary differentiations

According to the definition of the normal vector,−→n =
−→
Xi j−

−→
δ

|−→Xi j−
−→
δ |

, and to that of the associated projector,α = −→n ·−→n T ,

we obtain their time derivatives:

−̇→n = (1−α) ·
−→v s

|−→Xi j −
−→
δ |

(A12)

α̇ = −̇→n ·−→n T
+−→n · −̇→n T

(A13)

as two an explicit functions of
−→
δ and

−→
X i j . Indeed, according

to Eq. (16),−→v s can be expressed as a function of the elastic

force:−→v s = Z
−1 ·

(−→
F ela−−→

F rem
)

.

The evolution of the normal deflectionδ n =
−→
δ

T
·−→n can be

expressed as a function of
−̇→
X i j by using Eqs. (A12) and (6):

˙︷︸︸︷

δ n =
−̇→
δ

T
·−→n +

−→
δ

T
· −̇→n

=
−̇→
X

T

i j ·−→n −−→v s
T ·−→n +

−→
δ

T
· −̇→n (A14)
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Finally, from Eq. (6), we deduce the expression of the gap

evolutionḣ as a function of
−̇→
X i j :

ḣ =
(−→

Xi j −
−→
δ

)

· −̇→n +−→v s ·−→n . (A15)
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