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Robust empirical constitutive laws for granular materialsin air or in a viscous fluid have been expressed in
terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity
bifurcation or shear localization, observed also in foams,emulsions, and block copolymer cubic phases, seem
to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the
present work, we consider a T1 process as an example of a rearrangement. Using theSoft dynamicssimulation
method introduced in the first paper of this series, we describe theoretically and numerically the motion of four
elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille
squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. As
expected from simple scaling predictions, we observe that the duration of the simulatedT1 process can be varied
substantially by adjusting the elastic modulus of the particles and their initial separations. This provides hints
for simple rheological models of granular materials.

PACS numbers: 02.70.Ns, 82.70.-y, 83.80.Iz

I. INTRODUCTION

Foams, emulsions and granular materials are made of inter-
acting particles, respectively bubbles, droplets and grains, in a
surrounding fluid. A great deal of research revealed their elas-
tic, plastic and viscous characters [1, 2]. Some insight into
their rheological behaviour was obtained by considering the
dynamics of a single particle. Thus emerged the time

√

m/RP
for a single grain of massm, accelerated by the normal stress
P (forcePR2), to move over a distance comparable to its own
sizeR [3, 4, 5], the timeη/P for a grain immersed in a fluid
of viscosity η subjected to the same normal stress [6], and
the relaxation timeη R2/σ for a bubble or a droplet with sur-
face tensionσ in a viscous fluid [7, 8, 9]. The effective vis-
cosity was expressed as an empirical function of these mi-
croscopic timescales [6], thereby providing robust scaling ex-
pressions for various properties of grains [10, 11, 12] and bub-
bles [13, 14, 15, 16, 17, 18]. More recently, a two-particle ar-
gument [19], based on the same physics, provided a full pre-
diction for the effective viscosity of dry or immersed grains,
with an expression quite similar to the empirical function [6],
and which justifies its frictional form.

Nevertheless, particulate materials exhibit some additional
and uncommon rheological properties which seem to involve
other timescales. For instance, a delayed adaptation of the
shear rate to a sudden change in the applied stress [20, 21, 22,
23, 24, 25], and a critical shear rate below which no homoge-
neous flow exists have been observed [3, 4, 6, 21, 26]. Both
are qualitatively understood as arising from the competition
between external solicitations which disturb the particlenet-
work and some spontaneous reorganization process [21]. Get-
ting new insights into reorganization micro-timescale should
therefore clarify the origin of such properties and could also
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provide hints to refine and generalize existing models of
the material response. It may also be useful to predict the
coexistence of liquid and solid regions (shear localization,
shear banding, cracks) as observed with emulsions [27, 28],
foams [29, 30, 31, 32], wormlike micelles [33, 34] and granu-
lar materials [4, 12, 35, 36].

The common feature of many of these physical systems is
that they are made of rather soft particles immersed in a vis-
cous fluid. When such a complex fluid is subjected to defor-
mation, especially in a rather dense configuration, the flow be-
tween neighbouring particles interplays with the particlede-
formability in a non-trivial manner. As this feature was ig-
nored so far in existing simulations such as Molecular Dy-
namics [37] (for elastic grains without a surrounding fluid)
or Stokesian Dynamics [38] (for non-deformable grains in a
viscous fluid), we are introducing a new discrete numerical
method, namedSoft Dynamics, in a series of papers. In a
first paper [39], we illustrated this interplay by simulating the
normal interactions between two elastic particles in a viscous
fluid. We showed that such a system indeed exhibits two dis-
tinct dynamics, for the center-to-center and surface-to-surface
distances.

In this paper, again with purely elastic spheres in a New-
tonian fluid, we investigate the dynamics of four interacting
objects with both normal and tangential relative motion [55].
This will serve as an introduction to the principle of larger
scale simulations with this new method, which should consti-
tute a promising tool for investigating the collective behaviors
of many complex materials.

More precisely, we focus on the dynamics of aT1 pro-
cess. This is a rather common reorganization process, de-
picted schematically on Fig. 1: two particles separate while
two other particles establish contact. Meanwhile, the other
particle pairs reorient, as shown by the evolution of an-
gle θ from about π

3 to about π
6 . Such T1 processes oc-

cur in deformed regions of foams and emulsions, at a fre-
quency proportional to the deformation rate (see for exam-
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ple [29, 30, 40, 41, 42, 43, 44, 45, 46, 47]). As local plastic
deformation events, they relax some stress while dissipating
some energy. The duration of aT1 is thus expected to affect
the rheological behaviour of the material. For dry foams, the
T1 dynamics has been shown to result from the surface tension
and the surface viscosity [48], with a negligible contribution
from the viscosity of the surrounding fluid squeezed between
the approaching bubbles. By contrast, such processes are less
well described in wet foams or other less concentrated sys-
tems: visco-elastic and even adhesive properties were shown
to be important [49, 50, 51], and we expect the squeezing of
the surrounding liquid to play a significant role too.

In the following, we first present the interactions between
the elastic particles (Section II). We then provide the main
steps of the implementation of theSoft Dynamicsmethod in
the present context (Section III). Next, we derive theoretically
the expected behaviour, in particular we discuss under which
circumstances aT1 process should indeed occur and (if it does
occur) how long are the successive stages of the corresponding
evolution (Section IV A). We finally present and discuss the
numerical results (Section IV B).

II. MODELLING PARTICLE INTERACTIONS

When adressing the question of aT1 process between elastic
spheres in a viscous fluid, see Fig. 1, most of the interactions
have already been described in the first paper [39]. The only
new feature is particle sliding and, correspondingly, tangential
forces. Hence, quantities such as viscous friction coefficients
or spring constants are now tensorial.

A. Pairwise interactions

As discussed in detail in the first paper [39], because we
consider rather dense systems where each particle is close to
several other particles (surface-to-surface gap much smaller
than the particle size), we simply discard long-range, many-
body interactions (see for instance Ref. [52] for a presentation
of such interactions). Furthermore, under such thin gap condi-
tions, the interacting region between particles is much smaller
than the particle size and the interactions between a particle

(a) (b) (c)

θ ≃ π/3 θ ≃ π/6θ

FIG. 1: Schematic representation of aT1 process. Due to the applied
forces, the group of four particles swap neighbours. The process is
monitored through angleθ .

and its neighbours are mostly independent from each other
and can therefore be treated as a sum of pairwise interactions.

Due to the neighbouring particlej, the surface of particlei
is deflected elastically as a result of(i) the local pressure field
in the fluid that results from a viscous lubrication interaction
and(ii) a remote interaction (such as a damped electrostatic
interaction, steric repulsion, van der Waals interactions, dis-
joining pressure, etc):

−→
F ela

i j =
−→
F vis

i j +
−→
F rem

i j (1)

Besides, because the particle inertia can be neglected due to
the dominant effect of the fluid viscosity, the sum of all forces
applied to particlei vanishes:

−→
F ext

i +∑
j

−→
F ela

i j = 0 (2)

where
−→
F ext

i is an external force acting on graini (such as grav-
ity) and where the sum runs over the neighbours of particlei.

In principle, there is another equation, similar to Eq. (2),for
the torques applied to particlei. But as mentioned earlier [55],
this is not needed for the present symmetricT1 configuration
such as that of Fig. 1.

TheSoft Dynamicsmethod [39] simulates the dynamics of
such a system, determined by the system of Eqs (2) for all
particlesi. In the present work, for simplicity, we omit the
remote interactions in Eq. (1) as we did before [39].

In order to specify the elastic and viscous forces, let us now
describe the geometry and the kinematics of the interacting
region between a pair of neighbouring particles.

B. Contact geometry and kinematics

Let i and j denote two interacting particles, as depicted on
Fig. 2. As compared to the first paper, the positions of the
particles centers are now vectors, labeled

−→
OXi and

−−→
OXj , and

−→
X i j =

−−→
OXj −

−→
OXi is the center-to-center vector. The deflec-

tions of the particle surfaces are also vectors, labeled
−→
δ j

i and
−→
δ i

j . Since all particles are identical and since the (lubrica-
tion) forces are pairwise and act locally, facing deflections are

symmetric:
−→
δ j

i +
−→
δ i

j = 0. Thus, for simplicity, we shall use

the total deflection
−→
δ i j =

−→
δ j

i −
−→
δ i

j for each pair of interact-
ing particles. The unit vector normal to the contact can be
expressed as

−→n i j =

−→
Xi j −

−→
δ i j

|−→Xi j −
−→
δ i j |

(3)

The gaphi j between both particle surfaces depends on both

the center-to-center vector
−→
Xi j and the total deflection

−→
δ i j :

hi j = |(−→Xi j −
−→
δ i j |−2R, (4)

Similarly, the relative velocity of the material points that con-
stitute each particle surface,−→v s, involves the translation ve-
locity of the particles (as already mentioned [55], the particles
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do not rotate in the present situation) and the evolution of the
surface deflection:

−→v s =
−̇→
X i j −

−̇→
δ i j . (5)

In order to specify viscous and elastic interactions, we will
need to deal with projectors and tensors. We will use the
symbol “·” for the tensor product (contraction of one coordi-
nate index), and−→u T will denote the transposed of vector−→u .
Hence,−→u T ·−→v = −→v T ·−→u will be the scalar product of−→u and
−→v , and−→u ·−→v T their outer product, which is a tensor. In par-
ticular, we will make use of tensorα defined as the projector
onto the normal direction:

α = −→n ·−→n T (6)
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h

(a)

δn

a

(c)

(b)

−→n

−→
δ i

j

−→
δ

j
i

−−→
OXi

−−→
OXj

−→vs · a

−→vs · (i − a)

FIG. 2: Model of interaction for two elastic particles in a viscous
fluid. (a) elastic deflection of the surfaces (in traction); (b) normal
dissipation due to Poiseuille flow in the gap; (c) tangentialdissipation
due to the Couette flow. The force is transmitted from a particle to
another through the fluid and through a possible remote force. Such
a system behaves like a Maxwell fluid (a dashpot and a spring in
series). The effective friction is a function of the gaph and of the
sizea of the surface through which the force is transmitted.

C. Viscous force

For a pair of close spheres, as discussed earlier [39], the
fluid region that mediates most of the force between both par-
ticles has a large aspect ratio, and the flow is essentially par-
allel to the solid surfaces: thelubrication approximationcan
be used (see for example [53]). As before, the fluid inertia
is negligible (low Reynolds numbers) and the viscous force−→
F vis acting on the surfaces depends linearly on their relative

velocity−→v s:

−→
F vis = Z ·−→v s (7)

Z = ζα+ λ (1−α) (8)

ζ =
3πηa4

2h3 (9)

λ =
πηa2

h
(10)

where the interparticle friction tensorZ has two components
(normal and in-plane), expressed in terms of the unity tensor
1 and the projectorα defined by Eq. (6). The normal viscous
friction ζ is related to the Poiseuille flow induced by squeez-
ing or pulling [39] (see Fig. 2b), while the in-plane friction
coefficientλ reflects the tangential motion (sliding) between
both particles, which generates a Couette (shear) flow in the
gap (see Fig. 2c).

D. Elastic force

Let us assume that the sizea (discussed in the next para-
graph) of the interacting region between particlesi and j is
known. Then, as before [39], the force depends linearly on
the surface deflection, but this time the relation is tensorial:

−→
F ela = aE ·−→δ , (11)

E = E
(
cn

α+ct (1−α)
)
, (12)

where the tensorial proportionality constantE is essentially
the (scalar) Young modulusE, but incorporates geometrical
constants on the order of unitycn andct for the normal and
tangential responses, respectively.

E. Size of the interacting region

The size of the interacting region, again [39], depends ei-
ther on the gap thicknessh (Poiseuille regime) when the parti-
cle surface is weakly deflected, or on the normal force (Hertz
regime) when the particle surface can be considered planar.

In the first case, it can be expressed asa ≈
√

2Rh. In the
second case, it is essentially independent of the tangential
force [54] and can thus be expressed in terms of the normal

deflection: a ≈
√

R|δ n| =

√

R|−→n T ·−→δ |. As explained ear-
lier [39], for the purpose of theSoft Dynamicsmethod, we
interpolate between both behaviours ofa in a simple manner:

a(h,δ n) =
√

R(2h+ |δ n|). (13)

III. METHOD OF THE SOFT-DYNAMICS SIMULATION

The Soft-Dynamics method aims at simulating the time
evolution of a system of elastic particles and in a viscous
fluid, such as depicted in previous sections. Like usual dis-
crete simulation methods, the motion of each particle center
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results from the force balance, Eq. (2). The specificity is that
the interaction evolution results from the decomposition of
the center-to-center distance given by Eq. (4). As illustrated
previously [39], this generates a Maxwellian contact dynam-
ics through the combination of the elastic surface deflection
and the viscous response of the fluid in the gap: it is possi-
ble to move the center-to-center distance

−→
X i j while keeping

constant the deflection
−→
δ i j , andvice-versa. But as compared

to a classical Maxwell behaviour, the elastic element does al-
ways behave linearly (Hertzian contact in the strong deflec-
tion regime), and the viscous element does not have a constant
value, as it depend on the geometry of the gap, see Eqs. (7-10).

The Soft-Dynamics method consists in calculating the rate
of change of all center positions

−→
OXi and all gap deflections−→

δ i j as a function of their current values, and integrating them
over a small time step.

A. Equations of motion

The system satisfies one equation per interparticle interac-
tion, namely Eq. (1), and one equation per particle, namely
Eq. (2). We shall now see how it is possible to derive equa-
tions of motion. For this, we need to express the unknowns

velocities
−̇→
δ i j and

−̇→
X i j in terms of the current state of the sys-

tem.
From Eqs. (3), (4) and (13), it appears that the sizea of the

interacting region can be expressed as a function of
−→
Xi j and

−→
δ i j . It then follows from Eqs. (3) and (11) that the elastic

force
−→
F ela can also be expressed as a function of

−→
Xi j and

−→
δ i j :

−→
F ela =

−→
F ela(

−→
Xi j ,

−→
δ i j ) (14)

As a result, its time-derivative
˙−→

F ela
i j can be expressed as a sum

two terms: one of them is linear in
−̇→
X i j while the other is linear

in
−̇→
δ i j . The (tensorial) coefficient of each of these two terms

is a function of the current system configuration,i.e., of all

particle and gap variables
−→
OXi and

−→
δ i j . Now, it follows from

Eqs. (5), (7) and (1) that
−̇→
δ i j is an affine function of

−̇→
X i j :

−̇→
δ i j =

−̇→
X i j +Z

−1
i j ·

(−→
F ela

i j −−→
F rem

i j

)

(15)

whereZi j ,
−→
F ela

i j and
−→
F rem

i j depend on the current system con-

figuration. Hence,
˙−→

F ela
i j can be expressed as an affine function

of
−̇→
X i j :

˙−→
F ela

i j = Gi j ·
−̇→
X i j −

−→
b i j (16)

where the coefficientsGi j and
−→
b i j depend only on the cur-

rent system configuration. The detailed calculation of these
coefficients is provided in Appendix A.

From this, the time derivative of Eq. (2) yields a system of
equations for the particle center velocities. The equationthat
corresponds to particlei reads:

∑
j

{

Gi j · (
−̇→
OX j −

−̇→
OXi)

}

= ∑
j

−→
b i j − ˙−→

F ext
i . (17)

where the sums run over all neighbours of particlei.
Note that becauseG ji = −Gi j and

−→
b ji = −−→

b i j , and if we
assume that the sum of all external forces vanishes,

∑
i

−→
F ext

i = 0, (18)

then the sum of Eqs. (17) for all particlesi vanishes. In other
words, these vector equations are not independent: one of
them must be replaced, for instance, by the condition that the
average particle velocity is zero:

∑
i

−̇→
OXi = 0 (19)

Let us consider the system of Eq. (19) (or a similar one) to-
gether with Eqs. (17), taken for all particlesi except one. This
system of equations can be inverted to obtain the particle cen-

ter velocities
−̇→
OXi . The gap velocities

˙−→
F ela

i j are then calculated
from Eq. (16).

B. Choice of a numerical step

Gaining the center velocity
−̇→
OXi requires to solve the linear

system (17). Standard and efficient procedures are available
to inverse it. We used a second order Newtonian scheme for
the numerical integration of particle position and as well as
deflections. A typical time in the problem is the Stokes time
τ taken by a single particle submitted to a typical forceF to
move over a distanceR in a fluid with viscosityη , see Eq. (28)
below. The numerical time step is set to 10−3 in units of τ
for all simulations. Other numerical schemes, such as Runge
Kutta method, should make simulations faster. Furthermore, a
study of the optimal required time step will be necessary when
dealing with significantly more than only four particles.

IV. T1 DYNAMICS

Let us now use the Soft-Dynamics method to simulate a
singleT1 process. The system is depicted on Fig. 3: initially,
particlesB andC are aligned horizontally, with a small gaph0,
while particlesA andD are aligned vertically. The diagonal
gaps (betweenA andB, etc) have thicknessh0 too.

A horizontal forceNx is applied on particlesB andC while
a vertical forceNy is applied onA andD. Various evolutions
are possible depending on these two forces, which may or may
not give rise to aT1 process (see Fig. 3). Basically, aT1 occurs
only if the interaction between particlesB andC is tensile.
The criterion for the occurence of aT1 process will be derived
below, as well as a scaling for its dynamics. The duration of a
T1 will then be measured from the simulation.
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A. Theoretical predictions

The T1 process, which consists in a separation of the hor-
izontal pair of particles (BC) and an approach of the vertical
pair of particles (AD), implies some sliding of the diagonal
pairs (see Fig. 1).

At the early stages of the process, whenθ ≈ π/3, the exter-
nal forcesNx andNy can be expressed in terms of the normal
forces in the horizontal (Nh) and diagonal (Nd) pairs of parti-
cles, and in terms of the sliding forceSd in the diagonal pairs:

Nx = Nh +2
1
2

Nd −2

√
3

2
Sd (20)

Ny = 2

√
3

2
Nd +2

1
2

Sd (21)

In fact, as we shall now see, the tangential forceSd is much
smaller than the normal forces. To show this, let us first notice
that the tangential velocity is related to the angleθ defined
on Fig. 1: vt ≃ −Rθ̇ . In the Poiseuille regime, the particles
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time

(V)
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D

A
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D

A

B C
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A

B C
D

A

B C
D

A

B C
D

A

Nx

Ny

time

(III)

N
y

=
N
x

√ 3

FIG. 3: Schematic evolution of four particles subjected to external
forces. ForceNx is horizontal and acts on particlesB andD. Force
Ny is vertical and acts upon particlesA andC. Both Nx andNy can
be either compressive (> 0) or tensile (< 0). Regimes (I) and (II)
correspond to compressive forces. In regime (I), the configuration
remains mostly unaltered. By contrast, a topological rearrangement
(T1 process) occurs whenNy &

√
3Nx, which corresponds to region

(II). WhenNx or Ny is tensile, the four beads do not remain together,
as can be seen from the time evolutions sketched for regimes (III)-
(VI). On the whole, aT1 process always occurs whenNy &

√
3Nx

(regimes II, III and IV, white region). It is followed by particle sep-
aration whenNx is tensile (regimes III and IV). By contrast, noT1
process occurs whenNy .

√
3Nx (regimes I, V and VI, light grey

region).

surfaces are weakly deflected and the horizontal and diagonal
gaps are related to angleθ throughR+ 1

2 hh = (2R+hd) cosθ .
Hence, the gap variations obey1

2ḣh ≈ ḣd cosθ − 2Rθ̇ sinθ ,
i.e.:

1
2

ḣh ≈ ḣd cosθ +2vt sinθ (22)

Let us now transform each term of the above equation by ex-
pressing it as a function of the corresponding normal or tan-
gential force by using the appropriate friction coefficientas
defined by Eq. (8):

− 1
2

Nh

ζ
≈−Nd

ζ
1
2

+2
Sd

λ

√
3

2
(23)

The relative magnitude of friction coefficientsζ andλ can be
derived from Eqs. (9) and (10):

ζ
λ

=
3
2

(a
h

)2
. (24)

where the sizea of the interaction region is given by Eq. (13).
We thus haveζ/λ ≈ R/h in the Poiseuille regime andζ/λ ≈
Rδ n/h2 in the Hertz regime. Hence, except for very large gaps
hcomparable to the particle sizeR, the normal friction is much
larger than the sliding friction:ζ ≫ λ . It follows that

Sd ≃
1

2
√

3

λ
ζ

(Nd −Nh) (25)

can be neglected in Eqs. (20–21). Hence, the interaction force
within the horizontal pairBC depends only on the applied
forces:

Nh ≈ Nx−
1√
3

Ny (26)

This implies that, as pictured on Fig. 3, the gap will open
and theT1 will proceed wheneverNh is tensile, i.e., when
Ny & Nx

√
3 (white region of the diagramme). By contrast,

the particles will not swap neighbours whenNy . Nx
√

3 (light
grey region).

WhenNh is indeed tensile, we now wish to determine how
long it takes for the horizontal pair of particles to separate.

The dynamics of such a normal motion was detailed in
Ref. [39]. Let us define the reduced force

κ =
|Nh|
ER2 (27)

and the Stokes time

τ =
6πηR2

|Nh|
(28)

With the forceNh acting within the horizontal pairBC, the
initial configuration (gaph0) corresponds to the Poiseuille
regime ifh0 & hHP and to the Hertz regime ifh0 . hHP, where

hHP = Rκ2/3 (29)



6

The corresponding rate of change of the gap [39] can be ex-
pressed as:

ḣ =
h
τ

(Poiseuille,h > hHP) (30)

ḣ =
h3

τ R2 κ− 4
3 (Hertz,h < hHP). (31)

Integrating these equations yields the typical time∆ required
to achieve the separation of the horizontal pairBCof particles
from an initial gaph0 to a much larger gaphf ≈ R:

∆ ≃ τ ln

(
hf

h0

)

≈ τ (Poiseuille,h0 > hHP) (32)

∆ ≃ τ κ
4
3

(
R2

h2
0

− R2

h2
HP

)

+ τ ln

(
hf

hHP

)

≈ τ κ
4
3

R2

h2
0

≫ τ (Hertz,h0 < hHP) (33)

Once the gaphh of the horizontal pairBC becomes compa-
rable toR, the diagonal pairs such asAB slide rather quickly
(since theirλ ≪ ζ ), and soon the gaphv of the vertical pair
AD becomes significantly smaller thanR. The time it then
takes to reach the same valueh0 is again comparable to∆.

Hence, the order of magnitude given by Eqs. (32–33) for
the time∆ is typically the expected order of magnitude for
the duration of the entireT1 process. We will now test this
prediction by comparing it with the simulation results.

B. Result from simulations

We implement theSoft Dynamicsmethod to simulate aT1
process such as that depicted on Fig. 3, varying the two con-
trol parameters we pointed out above: the initial gap 10−3 <
h0/R< 0.8 and the reduced force 10−4 < κ < 0.1. For sim-
plicity, there is no horizontal force (Nx = 0). The reduced
force given by Eq. (27) is then equal toκ = |Ny|/ER2

√
3 and

the Stokes time isτ = 6π
√

3ηR2/|Ny|.
Figure 4 displays the variations of several quantities in

the course of aT1 process with a given set of parameters
(h0 = 10−2R, κ = 3.10−3). In order to avoid discontinuities
in the simulation, the forceNy is increased from zero to its
nominal value within a timeτ, and remains constant there-
after. From a macroscopic point of vue, for instance through
the variation of the angleθ , the system seems to be almost
blocked (θ ≈ π/3) for a significant amount of time (t . 100τ).
It then starts moving to reach its final configuration (θ ≈ π/6)
where it remains thereafter (t & 250τ). During the “blocked”
phase, the applied forceNy is transmitted through the diag-
onal interaction such asAB, thereby inducing a tensile force
Nh ≈ −Ny/

√
3 in the horizontal pairBC. Hence, despite the

overal “blocked” appearence of the system, the horizontal gap
hh between particlesB andC slowly increases from its initial
valueh0. Correspondingly, the horizontal friction deacreases.

The fast moving period starts as soon as this friction is
low enough. ParticlesB andC then separate quickly while

particlesA and D in the vertical pair approach each other,
thereby giving rise to sliding friction on the diagonal inter-
actions. As particlesA and D approach, the corresponding
gaphv deacreases and the friction increases. This approach
then slows down. Thus, although the system keeps moving, it
appearsto reach a new “blocked” configuration, with no more
sliding or horizontal traction, but only a vertical compression.

As the system subjected to a constant force keeps moving,
we need to arbitrarily define the end of theT1 process. Among
various possible choices, we shall here consider that theT1
process is completed when the vertical interaction transmits
most of the applied force (Nv = 0.99Ny). The resulting dura-
tion of theT1 process is plotted on Fig. 5 (other criteria would
yield similar results). The first observation is that, for the
range of inital gaps and particle stiffnesses we consider, the
duration of theT1 is distributed over a wide range of timesc-
cales, roughly between 3τ and 103τ. Next, we observe that
these results match our theoretical predictions reasonably:

• if the horizontal pairBC is in the Poiseuille regime, the
T1 duration∆ scales likeτ ln(R/h0). It thus depends
on particle radius, on the applied force and on the fluid
viscosity throughτ, as can be seen from Eq. (28), and
sligthly on the inital gap through the logarithmic factor.
TheT1 duration is then just a few times larger than the
Stokes timeτ;

• if pair BC is in the Hertz regime, theT1 duration

∆ scales essentially likeτ κ
4
3

(
R
h0

)2
, which implies a

much stronger dependance onh0, and longer durations
since the particles are soft. In this case,∆ can be much
longer than the Stokes timeτ.

Note that in the latter case, the separating pair of particles
leave the Hertz regime and enter the Poiseuille regime in the
late stages of separation (h > hHP). However, because the
evolution is much slower in the Hertz regime, see Eqs. (30–
31), these late Poiseuille stages contribute very weakly tothe
overallT1 duration∆.

In summary, the numerical result for the duration of aT1
process presented on Fig. 5 are compatible with Eqs. (32–33).
They demonstrate that the duration of aT1 is hardly larger than
the Stokes timeτ given by Eq. (28) as long as the surface de-
flection is small compared to the inter-particle gap (Poiseuille
regime) and thus depend mainly on the applied force, on the
fluid viscosity and on the particle size. Remarkably, in the op-
posite regime where the deflection is larger than the gap (Hertz
regime), theT1 duration depends strongly on the interparticle
gap and can reach very large values, as illustrated by Fig. 5.

V. CONCLUSION

Elastic particles interacting closely in a viscous fluid may
exhibit various microscopic timescales during their relative
motions. In the present paper, we focused on the dynamics of
aT1 process, as it is a common local plastic event in particulate
materials. Its typical duration∆ studied in the present work
should play an important role in the macroscopic behaviour
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FIG. 4: Time evolution of various quantities in the course ofa T1 process, wth parametersκ = 310−3, h0 = 10−2R andNx = 0. The gaph
(a), the normal and tangential forces(c) and the ratio|δ n|/h (d)are plotted for the vertical (solid black lines,AD), the horizontal (dotted black
lines,BC) and the diagonal (solid grey lines,AB etc) pairs of particles. On graph(c), the dotted grey line represents the tangential forceSd of
a diagonal pair such asAB (which is zero for the vertical pairAD and horizontal pairBC). Graph(b) shows the angleθ such as defined on
Fig. 1. On graph(d), a pair of particles for which|δ n|/h > 1 is in the Hertz regime. If|δ n|/h < 1, it is in the Poiseuille regime.
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FIG. 5: (Color online) Typical duration∆ of aT1 process as a function of the initial gaph0 and of the adimensionalized applied forceκ. The
data points were obtained through the Soft-Dynamics simulation presented here. Blue open circles correspond toT1s where the horizontal pair
has remained in the Poiseuille regime during the entire process. Full red squares correspond toT1s, such as that represented on Fig. 4, whose
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regimes (Eqs. 32–33 withhf = 2.5R).

of the material, especially in some phenomena mentioned in the Introduction, such as a delayed adaptation of the shear rate
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to a sudden change in the applied stress [20, 21, 22, 23, 24, 25]
or the existence of a critical shear rate below which no homo-
geneous flow can survive [3, 4, 6, 21, 26].

More specfically, the present study, summarized by the re-
sults presented on Figs. 4 and 5, shows that for a given ma-
terial (particle size and elastic modulus, fluid viscosity)the
duration of aT1 process is strongly dependent on the typical
gaph0 between neighbouring particles. Microscopic ingredi-
ents such as this one will need to be tested and refined in larger
scale simulations. Meanwhile, combined with other ingredi-
ents, they may serve as a ground to outline more elaborate
assumptions and refine existing simple rheological models for
granular materials. In particular, the present study strongly
suggests that in a granular material immersed in a viscous
fluid, the typical gaph0 between neighbouring particles or
a similar parameter should constitute an essential ingredient
to determine the plastic dynamics of the material, and should
therefore be used instead of, or in combination with, the usual
particle volume fraction criterion.
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APPENDIX A: DYNAMICS OF PARTICLES

In this Appendix, we deduce the particle dynamics, given
by Eqs. (17), from the physical model of interactions and the
mechanical equilibria described in Sec. III. We start from the
time derivative of the particle force balance given by Eq. (2):

∑
j

˙−→
F ela

i j +
˙−→

F ext
i = 0, (A1)

Let us express the aboveas a sum of(i)
˙−→

F ext
i which is supposed

to be known,(ii) terms that are linear in the particle center
velocities, and(iii) another term that is explicitly known from

the current state of the system,i.e., from
−→
X i j and

−→
δ . To this

aim, using Eq. (11), let us express
˙−→

F ela
i j in terms of the partial

derivative of
−→
F ela(a,E,

−→
δ ):

˙−→
F ela

i j =
a
2
E · −̇→δ +

a
2
Ė ·−→δ + ȧ

E ·−→δ
2

. (A2)

1. Combination

We can now easily express each terms of Eq. (A2) as a func-

tion of
−̇→
X i j . The first term is directly given by (5):

a
2
E · −̇→δ = G1 ·

−̇→
X i j −

−→
b 1 (A3)

G1 =
a
2
E (A4)

−→
b 1 = G1 ·−→v s (A5)

The second term involves the time derivativeĖ = E(cn−ct)α̇
of the contact stiffness expressed by Eq. (12). Using (A13),it
can be expressed as:

a
Ė

2
·−→δ = −−→

b 2 (A6)

−→
b 2 = −aE(cn−ct)

2
α̇ ·−→δ (A7)

Note that this term vanishes forcn = ct .
The third term involves the time derivative ofa, which we

express through its partial derivatives: ˙a(δ n,h) = aδ nδ̇ n+ahḣ
(we used the notationaδ n = ∂a

∂δ n and ah = ∂a
∂h ). Replac-

ing δ̇ n andḣ by their respective expressions in terms of
−̇→
X i j ,

Eqs. (A14) and (A15) lead to:

ȧ
E ·−→δ

2
= G3 ·

−̇→
X i j −

−→
b 3 (A8)

G3 =
aδ n

2
E ·−→δ ·−→n T (A9)

−→
b 3 =

E ·−→δ
2

[

aδ n

(

−→v s
T ·−→n −−→

δ
T
· −̇→n

)

−ahḣ

]

(A10)

Finally, substituting the three results of Eqs. (A3), (A6)
and (A8) into Eq. (A2) yields:

G · −̇→X i j =
−→
b +

˙−→
F ela

i j (A11)

whereG = G1 + G3 and
−→
b =

−→
b 1 +

−→
b 2 +

−→
b 3 are two ex-

plicit functions of
−→
δ and

−→
X i j Then, for each particlei, sum-

ming on its interacting particlesj and using the force balance
(2) yields the system of equation (17).

2. Preliminary differentiations

According to the definition of the normal vector,−→n =
−→
Xi j−

−→
δ

|−→Xi j−
−→
δ |

, and to that of the associated projector,α = −→n ·−→n T ,

we obtain their time derivatives:

−̇→n = (1−α) ·
−→v s

|−→Xi j −
−→
δ |

(A12)

α̇ = −̇→n ·−→n T
+−→n · −̇→n T

(A13)
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as two an explicit functions of
−→
δ and

−→
X i j . Indeed, according

to Eq. (15),−→v s can be expressed as a function of the elastic

force:−→v s = Z
−1 ·

(−→
F ela−−→

F rem
)

.

The evolution of the normal deflectionδ n =
−→
δ

T
·−→n can be

expressed as a function of
−̇→
X i j by using Eqs. (A12) and (5):

˙︷︸︸︷

δ n =
−̇→
δ

T
·−→n +

−→
δ

T
· −̇→n

=
−̇→
X

T

i j ·−→n −−→v s
T ·−→n +

−→
δ

T
· −̇→n (A14)

Finally, from Eq. (5), we deduce the expression of the gap

evolutionḣ as a function of
−̇→
X i j :

ḣ =
(−→

Xi j −
−→
δ

)

· −̇→n +−→v s ·−→n . (A15)

[1] D. Weaire and S. Hutzler,The Physics of Foams(Oxford Uni-
versity Press, 2001).

[2] P. Coussot,Rheometry of pastes, suspensions, and granular ma-
terials (Wiley-Interscience, 2005).

[3] GDR MiDi, Euro. Phys. J. E14, 341 (2004).
[4] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir,

Phys. Rev. E72, 021309 (2005).
[5] Y. Forterre and O. Pouliquen, Annu. Rev. Fluid Mech.40, 1

(2008).
[6] C. Cassar, M. Nicolas, and O. Pouliquen, Phys. Fluids17,

103301 (2005).
[7] D. J. Durian, Phys. Rev. Lett.75, 4780 (1995).
[8] D. Durian, Phys. Rev. E55, 1739 (1997).
[9] P. Sollich, F. Lequeux, P. Hraud, and M. Cates, Phys. Rev.Lett.

78, 102020 (1997).
[10] P. Jop, Y. Forterre, and O. Pouliquen, Nature441, 727 (2006).
[11] P. Rognon, J. Roux, M. Naaı̈m, and F. Chevoir, Phys. Fluids19,

058101 (2007).
[12] P. G. Rognon, J.-N. Roux, M. Naaim, and F. Chevoir, J. Fluid

Mech.596(2008).
[13] S. Tewari, D. Schiemann, D. J. Durian, C. M. Knobler, S. A.

Langer, and A. J. Liu, Phys. Rev. E60, 4385 (1999).
[14] A. Gopal and D. Durian, J. Coll. Inter. Sci.213, 169 (1999).
[15] B. Gardiner, B. Dlugogorski, and G. Jameson, J. Non Newto-

nian Fluid Mech.92, 151 (2000).
[16] B. Gardiner, B. Dlugogorski, and G. Jameson, J. Phys. : Cond.

Mat. 11, 5437 (1999).
[17] B. Gardiner and A. Tordesillas, J. Rheol.49, 819 (2005).
[18] M. Kern, F. Tiefenbacher, and J. McElwaine, Cold Regions Sci-

ences and Technology39, 181 (2004).
[19] P. Rognon and C. Gay, submitted (2008), hal/arxiv.
[20] F. da Cruz, F. Chevoir, D. Bonn, and P. Coussot, Phys. Rev. E

66, 051305 (2002).
[21] P. Coussot, Q. Nguyen, H. Huynh, and D. Bonn, J. Rheol.43, 1

(2002).
[22] F. Rouyer, S. Cohen-Addad, M. Vignes-Adler, and R. Höhler,
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