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Soft Dynamics simulation:
2. Elastic spheres undergoing a T1 process in a viscous fluid

Pierre Rognon and Cyprien (@y
Centre de Recherche Paul Pascal, CNRS UPR 8641 - Av. Dr. 8zbwé’essac, France
Matiere et Systemes Complexes, Université Paris-BideParis 7, CNRS UMR 7057 - Paris, France
(Dated: January 1, 2009)

Robust empirical constitutive laws for granular materialgir or in a viscous fluid have been expressed in
terms of timescales based on the dynamics of a single partidbwever, some behaviours such as viscosity
bifurcation or shear localization, observed also in foaamulsions, and block copolymer cubic phases, seem
to involve other micro-timescales which may be related eéodyinamics of local particle reorganizations. In the
present work, we consider a T1 process as an example of amgament. Using th8oft dynamicsimulation
method introduced in the first paper of this series, we desdheoretically and numerically the motion of four
elastic spheres in a viscous fluid. Hydrodynamic interastiare described at the level of lubrication (Poiseuille
squeezing and Couette shear flow) and the elastic defledtitie particle surface is modeled as Hertzian. As
expected from simple scaling predictions, we observe tHeadltiration of the simulateéll process can be varied
substantially by adjusting the elastic modulus of the pkasi and their initial separations. This provides hints
for simple rheological models of granular materials.

PACS numbers: 02.70.Ns, 82.70.-y, 83.80.1z

I. INTRODUCTION provide hints to refine and generalize existing models of
the material response. It may also be useful to predict the

Foams, emulsions and granular materials are made ofinte?—oeXiStean of liquid and solid region§ (shear .Iocaliza,tio
’ shear banding, cracks) as observed with emulsips[[27, 28],

acting particles, respectively bubbles, droplets anchgréain a X X ) ‘
surrounding fluid. A great deal of research revealed thas-el foams 2], wormlike mmelleEI 34] and granu-
lar materials 4, B6].

tic, plastic and viscous characteﬁ; [} 2]. Some insighd int ] ]
their rheological behaviour was obtained by considerireg th  1he common feature of many of these physical systems is
dynamics of a single particle. Thus emerged the tijra/RP that they are made of rather soft particles immersed in a vis-
for a single grain of mas®, accelerated by the normal stress €0Us fluid. When such a complex fluid is subjected to defor-
P (forceP R?), to move over a distance comparable to its ownMation, especially in a rather dense configuration, the flew b
sizeR [B, {.[3], the timen /P for a grain immersed in a fluid tween neighbouring particles interplays with the partibée

of viscosity ) subjected to the same normal strelds [6], andormability in a non-trivial manner. As this feature was ig-
the relaxation time) R2/o for a bubble or a droplet with sur- nored so far in existing simulations such as Molecular Dy-
face tensioro in a viscous fluid[[7[J8[]9]. The effective vis- namics [371 (for elastic_grains without a surrounding fluid)
cosity was expressed as an empirical function of these mier Stokesian Dynam|cﬂj38] (for non-deformable grains in a
croscopic timescale§|[6], thereby providing robust sgpéin-  VISCOUS fluid), we are introducing a new discrete numerical
pressions for various properties of graipg [LQ,[T1, 12] aristb  Method, namedSoft Dynamicsin a series of papers. In a
bles [13[1k[ A5} 14, 17, 118]. More recently, a two-particle a first paper],_we illustrated this interplay by simulafithe
gument [1P], based on the same physics, provided a full Ioreno_rmal interactions between two elastic particles in aodsc
diction for the effective viscosity of dry or immersed grgin f!wd. We sh_owed that such a system indeed exhibits two dis-
with an expression quite similar to the empirical functifjp [  tinct dynamics, for the center-to-center and surfacevigase

and which justifies its frictional form. distances.

Nevertheless, particulate materials exhibit some addifio !N this paper, again with purely elastic spheres in a New-
and uncommon rheological properties which seem to involvdonian fluid, we investigate the dynamics of four interagtin
other timescales. For instance, a delayed adaptation of tHPI€Cts with both normal and tangential relative motior] {55
shear rate to a sudden change in the applied s{rasf ]20]21, JHhis WI.|| serve as an mtyoducﬂon to the prmmple of Iarger.
P3.[24[2b], and a critical shear rate below which no homogeﬁcale S|muI§1t_|ons with th|s new mgthod, which s_houlq censti
neous flow exists have been obseridd]d] 4, B[ A1, 26]. Botk!te a promising tool for investigating the collective beioas
are qualitatively understood as arising from the compuetiti ©f many complex materials.
between external solicitations which disturb the partizé- More precisely, we focus on the dynamics offa pro-
work and some spontaneous reorganization pro¢eps [21]. Getess. This is a rather common reorganization process, de-
ting new insights into reorganization micro-timescalewdtdo  picted schematically on Fig] 1: two particles separate avhil

therefore clarify the origin of such properties and coukbal two other particles establish contact. Meanwhile, the othe
particle pairs reorient, as shown by the evolution of an-

gle 6 from about % to abouty. SuchT; processes oc-
cur in deformed regions of foams and emulsions, at a fre-
*Electronic addresg: cyprien.gay@univ-paris-didefot.fr guency proportional to the deformation rate (see for exam-
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ple [29.[30.,[4P[ 41 44, 48, 1#.145]46] 47]). As local plasticand its neighbours are mostly independent from each other

deformation events, they relax some stress while dissigati and can therefore be treated as a sum of pairwise interaction

some energy. The duration ofTa is thus expected to affect
the rheological behaviour of the material. For dry foams, th

Due to the neighbouring particle the surface of particle
is deflected elastically as a result(@fthe local pressure field

T1 dynamics has been shown to result from the surface tensian the fluid that results from a viscous lubrication interawt

and the surface viscositﬂ48], with a negligible contribat

and (ii) a remote interaction (such as a damped electrostatic

from the viscosity of the surrounding fluid squeezed betweelinteraction, steric repulsion, van der Waals interactialis-
the approaching bubbles. By contrast, such processessare Igoining pressure, etc):

well described in wet foams or other less concentrated sys-
tems: visco-elastic and even adhesive properties werershow

to be important[[49[ 8, $1], and we expect the squeezing
the surrounding liquid to play a significant role too.

In the following, we first present the interactions between

the elastic particles (Sectidﬂ II). We then provide the main

steps of the implementation of tf&oft Dynamicsnethod in
the present context (Secti@ I11). Next, we derive thecedly

the expected behaviour, in particular we discuss undertwhic

Tela__ Fvis | Trem
Fij = F” + F”

1)

Oéesides, because the particle inertia can be neglectedbdue t

the dominant effect of the fluid viscosity, the sum of all fesc
applied to particle vanishes:

FetyFia=o @)
J

circumstances & process should indeed occur and (if it doeswhereF #is an external force acting on grdisuch as grav-

occur) how long are the successive stages of the corresppndi

ity) and where the sum runs over the neighbours of pariicle

evolution (Sectioff IVRA). We finally present and discuss the In principle, there is another equation, similar to E. t@),

numerical results (Sectidn 1\ B).

Il. MODELLING PARTICLE INTERACTIONS

When adressing the question dFgprocess between elastic

spheres in a viscous fluid, see Ap. 1, most of the interagtion
have already been described in the first pa@r [39]. The onl

new feature is particle sliding and, correspondingly, &artil
forces. Hence, quantities such as viscous friction coefitsi
or spring constants are now tensorial.

A. Pairwise interactions

As discussed in detail in the first pap[39], because we

consider rather dense systems where each particle is dose
several other particles (surface-to-surface gap muchlemal

the torques applied to partidleBut as mentioned earlier [55],
this is not needed for the present symmetiiconfiguration
such as that of Fig] 1.

The Soft Dynamicsnethod ] simulates the dynamics of
such a system, determined by the system of EEhs (2) for all
particlesi. In the present work, for simplicity, we omit the
remote interactions in Eqf](1) as we did befdrd [39].

In order to specify the elastic and viscous forces, let us now
&escribe the geometry and the kinematics of the interacting
region between a pair of neighbouring particles.

B. Contact geometry and kinematics

Leti andj denote two interacting particles, as depicted on
Fig. E As compared to the first paper, the positions of the

. — —

articles centers are now vectors, labe®q and OX;, and
— —_— .

Xij = OXj — OX is the center-to-center vector. The deflec-

- - . - =i
than the particle size), we simply discard long-range, manytions of the particle surfaces are also vectors, labél¢dnd

body interactions (see for instance R [52] for a pregenta
of such interactions). Furthermore, under such thin gaplieon
tions, the interacting region between particles is muchlsma
than the particle size and the interactions between a faartic

FIG. 1: Schematic representation ofgprocess. Due to the applied
forces, the group of four particles swap neighbours. Thegs® is
monitored through anglé.

—.
5'j. Since all particles are identical and since the (lubrica-
tion) forces are pairwise and act locally, facing deflecdiare

. =i = . . .
symmetric: 5i' + 5'j = 0. Thus, for simplicity, we shall use

— — —.
the total deflectiond; = &/ — 8, for each pair of interact-
ing particles. The unit vector normal to the contact can be
expressed as

—_— —
s K= 0jj
Nij=—=

Xij — 0l

The gaphjj between both particle surfaces depends on both
—

the center-to-center vect&i_)rj and the total deflectior ;:

®)

—_— —
hij = [(Xij — &ij[ — 2R, 4
Similarly, the relative velocity of the material points tltan-
stitute each particle surface/s, involves the translation ve-

locity of the particles (as already mentioned [55], theipbas



do not rotate in the present situation) and the evolutiomeft velocity Vs:
surface deflection:

FYs = 7.V, 7)
Vs=Xij - 3. (5) Z = fatA(l-a) ®
3mnat
(= S ©)
In order to specify viscous and elastic interactions, wé wil a2

need to deal with projectors and tensors. We will use the A= (10)
symbol “” for the tensor product (contraction of one coordi- h

nate index), andi" will denote the transposed of vectot.  where the interparticle friction tens@ has two components
Hence,U'-V = V' - T will be the scalar product 6& and  (normal and in-plane), expressed in terms of the unity tenso

V,andT - V" their outer product, which is a tensor. In par- 1 and the projectoex defined by Eq.[{6). The normal viscous
ticular, we will make use of tenset defined as the projector friction Z is related to the Poiseuille flow induced by squeez-

onto the normal direction: ing or pulling ] (see Fig[|2b), while the in-plane frictio
coefficientA reflects the tangential motion (sliding) between
T both particles, which generates a Couette (shear) flow in the
a=mn-n ®)  gap (see Figf]2c).

D. Elastic force

Let us assume that the siag(discussed in the next para-
graph) of the interacting region between partidlesd j is
known. Then, as beforﬂsg], the force depends linearly on
the surface deflection, but this time the relation is teradori

Fela — ag. 3, (11)
E = E(c"a+cd(1-a)), (12)

where the tensorial proportionality constatitis essentially
the (scalar) Young modulus, but incorporates geometrical
constants on the order of unit} andc' for the normal and
tangential responses, respectively.

E. Size of the interacting region
FIG. 2: Model of interaction for two elastic particles in sedus

fluid. (a) elastic deflection of the surfaces (in tractiom) tormal . . . . .
dissipation due to Poiseuille flow in the gap; (c) tangemiss$ipation The size of the interacting region, aga[39], depends ei-

due to the Couette flow. The force is transmitted from a pertc ~ (1€r on the gap thicknesg(Poiseuille regime) when the parti-
another through the fluid and through a possible remote fceh ~ €le _surface is weakly O_leflected, oron the norm_al force (Hertz
a system behaves like a Maxwell fluid (a dashpot and a spring ifegime) when the particle surface can be considered planar.

series). The effective friction is a function of the gamnd of the In the first case, it can be expressedias v2Rh In the
sizea of the surface through which the force is transmitted. second case, it is essentially independent of the tangentia

force ] and can thus be expressed in terms of the normal

deflection:a ~ /R|d"| = \/R|WT-3|. As explained ear-
lier [@], for the purpose of th&oft Dynamicsnethod, we
interpolate between both behavioursagh a simple manner:

C. Viscous force a(h,8") = /R(2h+ [a")). (13)

For a pair of close spheres, as discussed ea@r [39], the
fluid region that mediates most of the force between both par-lll. METHOD OF THE SOFT-DYNAMICS SIMULATION
ticles has a large aspect ratio, and the flow is essentiaily pa
allel to the solid surfaces: tHabrication approximatiorcan The Soft-Dynamics method aims at simulating the time
be used (see for example J53]). As before, the fluid inertidevolution of a system of elastic particles and in a viscous
is negligible (low Reynolds numbers) and the viscous forcfiuid, such as depicted in previous sections. Like usual dis-
F V'S acting on the surfaces depends linearly on their relativerete simulation methods, the motion of each particle cente
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results from the force balance, Eﬂ. (2). The specificity@ th ~ From this, the time derivative of Ecﬂ(2) yields a system of
the interaction evolution results from the decompositién o equations for the particle center velocities. The equattian
the center-to-center distance given by Eﬂ] (4). As illustta corresponds to particiereads:

previously ], this generates a Maxwellian contact dynam IR -

ics through the combination of the elastic surface deflactio Z {Gij -(OXj — OXi)} = Z bij — F & a7)
and the viscous response of the fluid in the gap: it is possi- ] ]

ble to move the center-to-center dlstamﬂ while keeplng where the sums run over all neighbours of parﬁc|e

constant the deflectioﬁij, andvice-versa But as compared Note that becaus&'ji = —Gj; and?ji = —Kij, and if we
to a classical Maxwell behaviour, the elastic element dbes aassume that the sum of all external forces vanishes,
ways behave linearly (Hertzian contact in the strong deflec- _
tion regime), and the viscous element does not have a cdanstan >F =0, (18)
value, as it depend on the geometry of the gap, see Ffis] (7-10) !

The Soft-Dynamics method consists in calculating the ratehen the sum of Eq7) for all particlesanishes. In other

-y . H H .
of change of all center positio®% and all gap deflections words, these vector equations are not independent: one of
—

3 ; as a function of their current values, and integrating then}€M must be replaced, for instance, by the condition tfeat th
over a small time step. average particle velocity is zero:

Z&i =0 (19)

A. Equations of motion . o
Let us consider the system of Ef.{19) (or a similar one) to-
ether with Eqs[(37), taken for all particlesxcept one. This

The system satisfies one equation per interparticle 'mera(gystem of equations can be inverted to obtain the particle ce

tion, namely Eq.|]1), and one equation per particle, namely s RN
Eq. (). We shall now see how it is possible to derive equaler velocitiesOX;. The gap velocitie§ &2 are then calculated

]
tions of motion. For this, we need to express the unknown&om Ed. (1F).

-
velocities 0 j; and?ij in terms of the current state of the sys-

tem. B. Choice of a numerical step
From Egs.[[3).[{4) and (IL3), it appears that the sipé the

ﬂteractlng region can be expressed as a functio pand ~ Gaining the center velocitﬁ requires to solve the linear
dij. It then follows from Egs.[{3) and (JL1) that the elastic system [(1]7). Standard and efficient procedures are awailabl

force F &2 can also be expressed as a functiodpfand d jj: to inverse it. We used a second order Newtonian scheme for
the numerical integration of particle position and as wsll a
_ . . o . )
Fela_ E)ela(xi—_)j’ 3i)) (14) deflections. A typical time in the problem is the Stokes time

T taken by a single particle submitted to a typical foFcéo
o R, move over a distandein a fluid with viscosityn, see Eq.8)

As a result, its time-derivative iej'acan be expressed as a sum pejow. The numerical time step is set to£0n units of T
two terms: one of them is linear i j while the other s linear ~ for all simulations. Other numerical schemes, such as Runge
N ) . Kutta method, should make simulations faster. Furtherp@ore
in &ij. The (tensorial) coefficient of each of these two termsgy,qy of the optimal required time step will be necessarywhe
is a function of the current system configuratiom,, of all  gealing with significantly more than only four particles.
particle and gap variablg3X and o ij. Now, it follows from

Egs. [b). [[7) and[]1) th£ij is an affine function OR)”-: IV. T, DYNAMICS

=X+ 2L (?ﬁ'a— ?f?m) (15) - -
j i i i i Let us now use the Soft-Dynamics method to simulate a
singleT; process. The system is depicted on IE|g. 3: initially,
whereZ;, E’ﬁja andﬁirjem depend on the current system con- ParticlesB andC are aligned horizontally, with a small gap,
) _ — i _while particlesA andD are aligned vertically. The diagonal
flgu_rat|on. HenceF iej'acan be expressed as an affine functlongaps (betweeA andB, etc) have thickness, too.
of Yij: A horizontal forcelNy is applied on particleB andC while
a vertical forceNy is applied orA andD. Various evolutions
are possible depending on these two forces, which may or may
not give rise to &, process (see Fi. 3). BasicallyJaoccurs
- only if the interaction between particl&andC is tensile.
where the coefficienté&; and bi; depend only on the cur- The criterion for the occurence offa process will be derived
rent system configuration. The detailed calculation of éhes below, as well as a scaling for its dynamics. The duration of a
coefficients is provided in Appendﬂ A. T, will then be measured from the simulation.

E)iejla: Gij '?ij — Kij (a6)
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A. Theoretical predictions surfaces are weakly deflected and the horizontal and didgona
gaps are related to angdehroughR+ % hn = (2R+hg) cosB.

The Ty process, which consists in a separation of the horHence, the gap variations obéyn, &~ hg cosd — 2R6 sin®,
izontal pair of particlesgC) and an approach of the vertical i.e.:
pair of particles AD), implies some sliding of the diagonal 1. _
pairs (see Fid]1). “hh ~ hq cos8 +2Vv; sin@ (22)

At the early stages of the process, witers 11/3, the exter- 2
nal forcesk andNy can be expressed in terms of the normal| et us now transform each term of the above equation by ex-
forces in the horizontalN) and diagonalNy) pairs of parti-  pressing it as a function of the corresponding normal or tan-
cles, and in terms of the sliding for&g in the diagonal pairs:  gential force by using the appropriate friction coefficiest
defined by Eq.[(8):

1 V3
Ny = Np+2-Ng—2—- 20
25N~ 25 S, (20) 1N Nl oS3 (23)
N = 22N+ 20s (21) peo ez e

: . The relative magnitude of friction coefficienfsandA can be
In fact, as we shall now see, the tangential fdgés much  yarived from Eqs ug) ancﬂllO)'
smaller than the normal forces. To show this, let us firstosoti | '

that the tangential velocity is related to the an§lelefined { 3/a\2
on Fig.[1:w ~ —R&. In the Poiseuille regime, the particles 1=3 (ﬁ) (24)
where the siza of the interaction region is given by EcﬂlS).
Ny T We thus have /A ~ R/hin the Poiseuille regime angl/A ~
T m R&"/h? in the Hertz regime. Hence, except for very large gaps
) hcomparable to the particle sigthe normal friction is much
"* (:8) larger than the sliding friction{ > A. It follows that
* (I11) T time 1 )\
() S~—==(Ng—N 25
i S @
to dme S @QO can be neglected in Eq. [40}21). Hence, the interactiae for
5 5 within the horizontal paiBC depends only on the applied
forces:
b () No Nh A~ Ny — 1 26
O V3
—~CO—~ D 080 0RO P
7 fime . @) This implies that, as pictured on Fﬂ. 3, the gap will open
—@O— OO and theT; will proceed wheneveN, is tensile,i.e, when
©
t W) 1 timoO Ny 2> Ny v/3 (white region of the diagramme). By contrast,
@@@ @) OOO the particles will not swap neighbours when<< Ny /3 (light
@~ CO grey region).
O e O WhenN; is indeed tensile, we now wish to determine how
long it takes for the horizontal pair of particles to separat

The dynamics of such a normal motion was detailed in
Ref. [B9]. Let us define the reduced force
FIG. 3: Schematic evolution of four particles subjectedtemal
forces. Force\y is horizontal and acts on particl&andD. Force K — M 27)
Ny is vertical and acts upon particlésandC. Both Ny andNy can T ER?
be either compressive>(0) or tensile £ 0). Regimes (I) and (II)
correspond to compressive forces. In regime (I), the cordiipn ~ @nd the Stokes time
remains mostly unaltered. By contrast, a topological eeagement 5
(Ty process) occurs whe, > v/3Ny, which corresponds to region _ 6rmR (28)
(I1). WhenNy or Ny is tensile, the four beads do not remain together, [Nh|
as can be seen from the time evolutions sketched for regitigs (
(V1). On the whole, aT; process always occurs whédy > /3N, With the forceN, acting within the horizontal paiBC, the
(regimes I, lll and 1V, white region). Itis followed by paete sep- initial configuration (gaphg) corresponds to the Poiseuille

aration when\y is tensile (regimes Ill and 1V). By contrast, g regime ifhg > hyp and to the Hertz regime iy < hyp, where
process occurs whely < V3N (regimes 1, V and VI, light grey

region). hyp = Rk?/3 (29)
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The corresponding rate of change of the @ [39] can be exparticlesA and D in the vertical pair approach each other,

pressed as:
h = 2 (Poiseuilleh > hyp) (30)
he It (Hertz,h < hyp) (31)

Integrating these equations yields the typical tineequired
to achieve the separation of the horizontal [Brof particles
from an initial gaphg to a much larger gap; ~ R:

A ~

~ T (Poiseuillehg > hyp) (32)
4 R2 R2 hf
A ~ TK3 <h_%_%) +r|n<m>
4 R?
A TK3I =>T (Hertz,hg < hyp) (33)

hg

Once the gapy, of the horizontal paiBC becomes compa-
rable toR, the diagonal pairs such &8 slide rather quickly

(since theird < ), and soon the gap, of the vertical pair

AD becomes significantly smaller thd& The time it then

takes to reach the same valygis again comparable .

thereby giving rise to sliding friction on the diagonal inte
actions. As particle®\ and D approach, the corresponding
gaphy deacreases and the friction increases. This approach
then slows down. Thus, although the system keeps moving, it
appeargo reach a new “blocked” configuration, with no more
sliding or horizontal traction, but only a vertical comses.

As the system subjected to a constant force keeps moving,
we need to arbitrarily define the end of theprocess. Among
various possible choices, we shall here consider thaffthe
process is completed when the vertical interaction tratssmi
most of the applied force\, = 0.99N,). The resulting dura-
tion of theT; process is plotted on Fig| 5 (other criteria would
yield similar results). The first observation is that, foeth
range of inital gaps and particle stiffnesses we consitier, t
duration of theT; is distributed over a wide range of timesc-
cales, roughly betweenr3and 1G1. Next, we observe that
these results match our theoretical predictions reasgnabl

e if the horizontal paiBC s in the Poiseuille regime, the
Ty durationA scales liket In(R/hp). It thus depends
on particle radius, on the applied force and on the fluid
viscosity througlr, as can be seen from E(DZS), and
sligthly on the inital gap through the logarithmic factor.
TheT; duration is then just a few times larger than the
Stokes timer;

Hence, the order of magnitude given by Eds] (32-33) for

the timeA is typically the expected order of magnitude for

the duration of the entir@; process. We will now test this
prediction by comparing it with the simulation results.

B. Result from simulations

We implement theSoft Dynamicsnethod to simulate &
process such as that depicted on
trol parameters we pointed out above: the initial gap®1@
ho/R < 0.8 and the reduced force 16< k < 0.1. For sim-
plicity, there is no horizontal forceNy = 0). The reduced
force given by Eq.[(37) is then equal ko= |Ny|/ER?v/3 and
the Stokes time is = 671v/3nR2/|Ny|.

e if pair BC is in the Hertz regime, thd; duration

2
A scales essentially like k3 (h—'f)) , which implies a

much stronger dependance lay) and longer durations
since the particles are soft. In this caAezan be much
longer than the Stokes tinte

Note that in the latter case, the separating pair of pasticle
leave the Hertz regime and enter the Poiseuille regime in the

Fg. 3, varying the two corate stages of separatioh & hyp). However, because the

evolution is much slower in the Hertz regime, see EE. (30—
@), these late Poiseuille stages contribute very weakilygo
overallT; durationA.

In summary, the numerical result for the duration of,a
process presented on Ff§. 5 are compatible with qk[(32-33)

Figure [4 displays the variations of several quantities inThey demonstrate that the duration dhds hardly larger than
the course of &, process with a given set of parametersthe Stokes time given by Eq. [2B) as long as the surface de-

(ho =10 2R, k = 3.109). In order to avoid discontinuities

flection is small compared to the inter-particle gap (Palkeu

in the simulation, the forc&l, is increased from zero to its regime) and thus depend mainly on the applied force, on the
nominal value within a tima, and remains constant there- fluid viscosity and on the particle size. Remarkably, in the o
after. From a macroscopic point of vue, for instance throughposite regime where the deflection is larger than the gagZHer
the variation of the anglé, the system seems to be almost regime), theT; duration depends strongly on the interparticle

blocked @ = 11/3) for a significant amount of timé £ 100r).
It then starts moving to reach its final configuratié=¢ 17/6)
where it remains thereafter £ 250r). During the “blocked”

phase, the applied fords, is transmitted through the diag-
onal interaction such a&B, thereby inducing a tensile force

Nh ~ —Ny,/+/3 in the horizontal paiBC. Hence, despite the

gap and can reach very large values, as illustrated b)ﬂFig. 5.

V. CONCLUSION

Elastic particles interacting closely in a viscous fluid may

overal “blocked” appearence of the system, the horizorapl g exhibit various microscopic timescales during their rie&at

h,, between particleB andC slowly increases from its initial

motions. In the present paper, we focused on the dynamics of

valuehy. Correspondingly, the horizontal friction deacreases.aT; process, as itis a common local plastic eventin particulate
The fast moving period starts as soon as this friction ismaterials. Its typical duratioA studied in the present work

low enough. Particle® andC then separate quickly while

should play an important role in the macroscopic behaviour
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FIG. 4: Time evolution of various quantities in the courseadf, process, wth parameteks= 31073, hy = 10-2R andNy = 0. The gaph
(a), the normal and tangential forcés and the ratidd"|/h (d) are plotted for the vertical (solid black linesD), the horizontal (dotted black
lines, BC) and the diagonal (solid grey line&AB etc) pairs of particles. On gragh), the dotted grey line represents the tangential f&cef

a diagonal pair such asB (which is zero for the vertical paiD and horizontal paiBC). Graph(b) shows the anglé such as defined on
Fig.|1. On grapKd), a pair of particles for whichd"|/h > 1 is in the Hertz regime. If3"|/h < 1, itis in the Poiseuille regime.

NN
: \“%\E\%

b

A SN TS S
A NN S

AN O

FIG. 5: (Color online) Typical duratioA of a T, process as a function of the initial gag and of the adimensionalized applied forceThe
data points were obtained through the Soft-Dynamics sitinlgpresented here. Blue open circles correspoidgavhere the horizontal pair
has remained in the Poiseuille regime during the entiregeaicFull red squares correspond’is, such as that represented on ﬂig. 4, whose
horizontal (separating) pair has been in the Hertz regim@aot of the time. The surface is that defined by the theaktiwdel for both
regimes (Eq ZESB withy = 2.5R).

of the material, especially in some phenomena mentioned irhe Introduction, such as a delayed adaptation of the shigar ra



to a sudden change in the applied strfss[[2d, 21, 28, PB.[p4, 25 1. Combination
or the existence of a critical shear rate below which no homo-
geneous flow can survivl (B, §.[6] 41] 26]. We can now easily express each terms of Eq] (A2) as a func-

More specfically, the present study, summarized by the regqp, Oinj- The first term is directly given b)ﬂ(S):
sults presented on Figl. 4 afjd 5, shows that for a given ma-

terial (particle size and elastic modulus, fluid viscosityg a
duration of aT; process is strongly dependent on the typical D)
gaphg between neighbouring particles. Microscopic ingredi-
ents such as this one will need to be tested and refined irrlarge )
scale simulations. Meanwhile, combined with other ingredi g

; b1 =G Vs (A5)
ents, they may serve as a ground to outline more elaborate

assumptions and refine existing simple rheological moaels f The second term involves the time derivatize- E(Cy—0)c

granular materials. In particular, the present study sfiyon of the contact stiffness exoressed b 12 U. AL3
suggests that in a granular material immersed in a viscou P Y Hg] (12)- Using(AL3)

Gan be expressed as:
fluid, the typical gaphg between neighbouring particles or P
a similar parameter should constitute an essential ingnedi E —

E-3=Gy Xij— by (A3)

Gy =

&

(A4)

to determine the plastic dynamics of the material, and shoul ai -0 = —E)z (AB)
therefore be used instead of, or in combination with, thelisu _ aE(Ca—G) . —
particle volume fraction criterion. b,= _“fctd .o (A7)

Note that this term vanishes fof = c;.
The third term involves the time derivative af which we
Acknowledgments express through its partial derivativegd", h) = asnd" +aph

we used the notatioasn = 22 anda, = 22 ). Replac-
96 oh
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versité Paris-7 Paris Diderot, and by the Agence Natiodale a—— = Gs- Xij— bs (A8)
la Recherche (ANR-05-BLAN-0105-01). agn . = T
Gs=2'E-3-T (A9)
F T
bs= ? [a5n <7J-ﬁ’—3 -ﬁ’> —ahh} (A10)

APPENDIX A: DYNAMICS OF PARTICLES

Finally, substituting the three results of Eqp. (A3), [A6)
In this Appendix, we deduce the particle dynamics, givenand [A8) into Eq. [AP) yields:
by Egs. ), from the physical model of interactions and the : :
mechanical equilibria described in Sgd, I1I. We start fréva t G- Y)ij = E)+E>iejla (Al11)
time derivative of the particle force balance given by @: (2

— — — —
whereG:G1+§3 andb = b1+ by+ bz are two ex-
) ) plicit functions of & and Xjj Then, for each particlg sum-
z E’fz_la_i_ ?Fm =0, (A1)  ming on its interacting particlesand using the force balance
- @) yields the system of equatidn [17).

Letus express the aboveas a sur(i)o?iext which is supposed 2. Preliminary differentiations

to be known,(ii) terms that are linear in the particle center

velocities, andiii) another term that is explicitly knownfrom  According to the definition of the normal vectoy =
—

. Ve . — =
the current state of the systene,, f_rom Xij and & . To this Xij— 0 , and to that of the associated projeciar= T - WT,

— —
aim, using Eq.[(d1), let us expreB<'2in terms of the partial ~ Xi-¢l . .
S g i@ ) - pressj P we obtain their time derivatives:
derivative of F ®3(a, E, & ): <
= (-0 == (A12)
a_ — a. — 3 Xij— 3|

s
ela _

. E
2 2 2 (A2) a = n-nT+n-nT (A13)



N
as two an explicit functions 0® and?ij. Indeed, according

to Eq. (I}), Vs can be expressed as a function of the elasticayolutionh as a function ofX

force: Ve=2"1. (?ela_ Erem)'

T
The evolution of the normal deflectiar = 3 - can be
expressed as a function &fi; by using Eqgs.[(A32) and](5):

L ;
N =3 W40 -

- .

X H-Vs T+3 -1 (Al4)

9

Finally, from Eq. ﬂS), we deduce the expression of the gap

i

h:()?,—’—?)*n#vs-ﬁ’. (A15)
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