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Abstract- The instantaneous frequency law (IFL) is a very
important element when the physical parameters of he
corresponding signal have to be evaluated. Blind eqlisation,
modulation recognition and mechanical diagnostic & just three
domains where the non-stationarity behavior of thesignal
imposes the IFL estimation. Generally, an IFL is composed by
slowly varying time-frequency structures separated by fast
transitions which could be considered as phase disatinuities.
Digital phase modulations or signals propagated tragh a multi-
path channel are typical examples of IFLs having fst transient
parts. The common methods employed for these operahs are
wavelet transform and Cohen's class time-frequency
representation, respectively.

In this paper we propose an alternative based on &
instantaneous moments. By an appropriate choice ¢fie moment
order and lags it is possible to accurately estimat the both
transient and slowly time-frequency parts. While ths method uses
one dimensional data and, thanks to its recursivetrsicture, it is
well suited for real time applications. Therefore,its real-time
implementation on TMS320C6x structure is describedOn the
other hand, few examples on realistic data will she the practical
interest for this method.

I.  INTRODUCTION

Analysis of the signals characterized by complareti
frequency behaviour is a challenging topic, duthtorichness
of the information carried by the IFL. In a larganber of
applications the analysis of the time-frequencyFjTeontent
provides an efficient solution to the problemsiagsin these
fields [1]. The signals associated to real appbcet are
generally characterized by many time-frequency cstines
usually considered as slowly varying parts. Corinast
between these stationary parts are often subjectfasd
transitions whose estimation can be of great itemesreal
applications. These two types of time-frequencyditires are
typically processed with different classes of mdtoln the
case of slowly varying structures there are a fotnethods
which aim to provide IFL estimation.
representations (TFRs) belonging to Cohen’s cladsptive
TFRs [2], [3] or parametric TFRs [4] are just fexamples of
potential methods used for analysis of slowly wvagyi
structures. While many drawbacks affect the perfiogmof
these methods (cross-terms, computational complenéeds
for a priori information) the polynomial phase mbbitg arises
as an interesting tool for analytical character@abf the IFL

[5], [6]. This type of methods is based on the higter
instantaneous moment (HIM).

In the case of fast varying time-frequency struesuthe
methods cited above are inappropriate. The polyabptfiase
modelling, for example, cannot be applied sincelffthecannot
be approximated by a polynomial. The analysis sf Y&rying
structures is conventionally done by the waveleteda
techniques [7]. That is, numerous works have beegr ¢h this
field. Therefore, the analysis of both slowly amdtfvarying
structures requires different types of techniqUéss can be a
serious problem where the processing techniquesotdne
arbitrarily complex. The managing of complex tecjugis and
their associated parameters restricts their imphtation in
real-time applications.

In this paper we extend firstly the HIM concepttal with
phase discontinuities. Namely, by considering caxthgs for
the computation of the instantaneous moments, ieshow
that it is possible to characterize phase discaitigs. The
results prove that this method is more precise tharwavelet
transform. Secondly, the combination of both HIMdan
complex lag instantaneous moment (CIM) constituses
efficient tool for the characterization of hybrid=U (ie
composed by slowly and fast varying multi-compon@&r
structures). Since these methods operate with mono-
dimensional data we will focus on their implemeiotaton a
DSP-based architecture.

This paper is organized as follows. In the secardgraph,
we present the model of the signals processedéyprbposed
technique. In this section we focus also on theagyarising
from few real applications and we will see thatstimodel
corresponds to these signals. In section 3 weintibduce the
hybrid method based on the joint use of HIM and CRésults
for signals illustrated in section 2 are given @ct®on 4. The
real-time implementation skills on a TMS320C6x éestture
are discussed in section 5. The section 6 — “Caeihl will
close this communication.

Time-frequency

II. SIGNAL'S MODEL

Generally, a signal having an IFL which containgthb
slowly and fast varying parts can be theoreticaftitten as

s(t) :exp{j ZTZk: hs, (t-7,)a (t—rk)} )



whereh is the rectangular function of durati@, 7, is its

signal has an IPL characterized by two slowly vwagyparts

origin andg is the instantaneous phase law (IPL) bounded Byd a transient one.
. and 7i.1. The IPLsg are supposed to be smooth functions These two examples show that the model (1) can éle w

and, consequently, they will be used to charaaettiez slowly
varying time-frequency content of the IFL. In thgaper, we
consider that these functions can be expressedoasth order
polynomial. This constitutes an appropriate moaeld large
number of time-frequency slowly varying structuypds [5].

The transitory parts of the IPL are representedhleyfronts
of the rectangular functiongy .
parameters related to the rectangular functinprovides the
localization in time of the fast-varying time-frezncy parts.

Expression (1) constitutes a good model for sevesaltlife
signals. Let us consider firstly the case of a FB#&dulation
whose theoretical IFL is displayed in figure 1.

IFL of a FSK modulation
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Figure 1. Theoretical IFL of a Frequency Shift Keyi
(FSK) modulation
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This signal can be written, according to (1), as:

s(t) = expj 7] h,(t) 00.1568+ hy,(t -~ 19p0 0.2813
h, (t—257)[0.2187+h,,,(t - 320 0.1563 h,(t -

()

450 0.281

In the second example we consider a signal recdrgech

accelerometer connected to a rotating machineryctwhi

changes continuously its angular velocity [8]. Ttheoretical
variation of the angular velocity is displayed I ffigure 2.

Angular velocity Theoretical IFL
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Figure 2. Angular velocity and the correspondingg IF
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The angular velocity variation has three phaseghénfirst
phase, between 0 and 16 sec, the velocity varmglysifrom
200 rpm (rotations per minute) to 610 rpm. As iiridicated
by the corresponding IFL (the sampling frequency ikHz)
this evolution of the angular velocity is traduded a slowly
varying non-linear time-frequency component. In seeond
phase, which corresponds to a transition stage,véhecity

matched for real-life signals. The next sectionl wibpose a
hybrid method which allows the estimation of thegpaeters
of this model.

[ll. THECONCEPTOFINSTANTANEOUSMOMENTS

The estimation of the A. High-order instantaneous moments

The High-Order Instantaneous Moments (HIM) giveor, d
signals(t), by the following relation :

HIM [S(t);r]éﬁ[s(*q) (t_QZ'):|(Nq_1] (3)

whereN is the HIM order 1 is the lag and*@Q) is an operator

defined as :
§ (1) = {s(ﬁt), if q is even @
s (t), if qis odd
whereq is the number of conjugate operator ** applicatio
From the computational point of view, the main propef the

HIM [1] states that thé\"™-order HIM can be computed as the
2"order HIM of the N-1)"-order HIM :

HIM, [s(t);7]= HIM, [ HIM, [ s(t): 7] 7] ®)

Another remarkable property, which makes HIM an
attractive tool in the polynomial phase modelingiteat, is
that theN™order HIM of a polynomial phase signal (PPS),

N
defined ass(t) = exp{j 27y at

}is reduced to a constant
k=1

N-2
amplitude harmonic with amplitudeA2 , frequency &,

and phasep,, [5] :

HIM [s(t)i]= A" expi(@ 3+@) (o)

where :
@, =NIT""a,

- 7
@ =(N-1)!7" ", -05N (N -1)7"a, "

A natural idea to take advantage of this propestytd
compute the Fourier transform bf"-order HIM, which leads
to the HAF (High-Order Ambiguity Function) definitidh] :

HAF, [s;w,1] = ]: HIM, [s(t);t]e’“dt (g

Obviously, taking into consideration the relatia), ¢theN"-
order HAF peaks at the frequer@y. This property gives a
practical method for polynomial coefficients esttioa [5].

varies very fast. This could correspond to a madanaStarting with the highest-order coefficiea(, the maximum of
changing of the operation conditions. In the donudithe IFL  the HAF iS_evaIl_Jated for_each order. T&order polynomial
it is associated to a phase discontinuity. Finaillythe last coefficient is estimated via :

phase, the angular velocity decreases in a noaflimanner as
indicated by the IFL as well. According to the mb¢B this



3 Larg ma>{|HAFN (sw r)|} (9)

N TN

Using this estimation, the effect of the phasentef the
higher order is removed :

sV (t)=s (t) e a

Once the N™-order reduced, theN¢1)™-order HAF is

(10)

k+1

=N plen () T 14
Q,(t,7) ZKZZ;QJ (t) 2+ 2) (14)
_ +00 (4k+2) T2k+1 15
Q,(t.7) 4%?# (t)722k+1(4k+2)! (15)

The first phase derivative implying spreading isoofler 6
for our distribution and the next ones are of ort&ri14,... For
the other, the first one is of order 4 and the ras are of

computed. The coefficienty, is also estimated thanks togrger 6, 8, 10, ... Therefore, our distributioress sensitive to

relation (9). The algorithm is iterated througheinér orders
until all polynomial coefficients are estimated.

In practice the algorithm based on the HIM operatell for
reduced values of highest orddr For this reason, the HIM
method is inappropriate for analyzing phase disnaiites
which would require a high order approximating palgnial.

B. Complex-lag instantaneous moments

The purpose of the complex lag instantaneous moiseot
provide an estimation of the second derivativehef signal’s
phase. Indeed, this derivative contains very useformation
about the phase discontinuities of the signal. &@mple, the
second order derivative of the phase of a FSK s$igrdefined
by Dirac pulses located at the transition pointseréfore, with
this kind of information, the detection of the mstaneous
frequency transitions is straightforward. A distion has
been designed in [9] to achieve concentration andérivative
which is also called frequency rate. However, thgribution
is well suited for polynomial phase signals of ar8er less. In
[10], a complex time distribution was introduced achieve
better accuracy for instantaneous frequency reptaten. By
modifying the complex moment leading to the
distribution, it is possible to obtain a distritari highly
concentrated along frequency rate which is necggsafind
points with singular behavior. Thus, we propose ¢cbmplex
lag moment defined by (11).

CIM [ s(t):7] =s(t+772)B(t-772)C
s (t+Vrr2) (- jVr72)

(11)

high non-linearities of the signal’'s phase. Somiiterelated
to the implementation can be found in [10].

Both methods presented above are two special cafses
instantaneous moment concept. They can be usedalyza
the signal modeled by (1). The algorithm issuednfrthe
combination of the HIM and CIM is illustrated inetext
figure.

Tk;DI&

CIM HIM

A

Figure 3 Characterization of signal modeled by (1)
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As we can remark on this figure the characteriratd the
signals according to the model (1) is done in tieps. Firstly,

using the CIM methods we estimate the origin of the

rectangular windows. Differences between two conbes

values of i lead to the duration®y. Secondly, applying the
polynomial phase modelling provided by HIM, we extte the
slowly varying parts comprised between to conseeuti.

latter

IV. IMPLEMENTATION ISSUES

In this section we illustrate how the methods enésd
previously can be implemented in a real-time embddd
architecture. As embedded target we consider
TMS320C6711 digital signal processor [11].

Let us take firstly a look on the general impletadon
architecture of the methods involved in the aldonitdevised

Let suppose thas(t) is of the form (12). The associatedor the estimation of the model (1). In the cas¢hefHIM, the

distribution (Complex Instantaneous DistributionCiD) is
defined by the Fourier transform of (11) and canvodten as

(13) where ], stands for the Fourier transform related. to
st) = eV 12)

CID[w,7] = 5(50— d°w (t)) 0, 0(e%)  @3)

dt?
One can see that this distribution is spread arotimel
frequency rate. It is more or less spread deperminipe value

of Q(t,r), which would be zero in the ideal case. We give

below two different forms of the spreading fact®he first
one, (14), is for a distribution similar to [9]. &rsecond one
(15) is the spreading factor for our defined diattion.

property expressed by (5)
implementation purposes. Namely, it shows thatHhd can
be recursively computed with help of of tlsame HIM

operator implemented as indicated in the figure 4.

By applying this operator iteratively it is podsilto retrieve
all the HIMs of interest. Furthermore, for each Hiwe apply
the FFT in order to obtain the associated HAF. freguency
location associated to the maxima of the HAF presjdiia (7),
the polynomial coefficients.

This algorithm provides the characterization of timae-
frequency slowly varying parts of the input signal.

is of a great value for
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Figure 4. Implementation of the polynomial phasalaimg

with the HIM

Starting from (11) the implementation of the Clidesoator is
illustrated in the figure 5.
Delay

The implementation of the operations implied bye th
algorithm illustrated in figures 4 and 5 has beenea] thanks to
their simplicity, with help of the routines availabin the
libraries associated to the Code Composer Studi@SjCThe
programs have been optimized [11] and loaded onD&€
board.
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Figure 5. Implementation of the phase discontindétection

The general organization of our processing architecis
illustrated in the figure 6.

____________________

Host PC

Code Composer

TMS320C6711 DSP starters kit

Inpiit sigral

Figure 6. DSP architecture used for the impleméntaif HIM and CIM processing

The input signal is obtained from the audio cod&b35 at
8 kHz sampling rate [11]. The signal is loaded in
“buffer_input” of 16328 samples size and sent it the
processor. Here, the CIM algorithm is applied idesrto detect
the time localizations of the phase discontinuitigghis
detection is based on the CIM (computed accordinghe
figure 5 diagram) thresholding. The time coordisaté the
phase discontinuities are loaded in SDRAM memony ey
are used to split the “buffer_input” in several terary
buffers containing the signal segmented in timeisncy
slowly varying parts. Furthermore, each buffer aggentially

processed by HIM and the polynomial coefficiente afso
aestimated. The polynomial coefficients and phase
discontinuities time coordinates are sent to thet R and the
next 16328 samples are introduced in the buffeutinp
During the operation, it is possible to have toachmphase
discontinuities. In this case, the temporary busffevill be
overloaded. In this case, the target will indicito the host
PC and the data exceeding the size of the tempdmafifers
will be transferred and processed to the PC. Tihisitson has
not been encountered in our experiments, but irrotd be
able to tackle it in future applications, we use RIrDX (Real-



Time Data Exchange) technology to communicate betvibe For the signal issued from the rotating machindigufe 8)
PC and the target. By this way we can continuoesgighange the results proof the efficiency of the method lbaea joint
data from the PC (parameters required by the mejhadd uses of CIM and HIM. In the case of wavelet transfothe
from the target (results and/or signals). fast transition of the angular velocity is matezed by some
The results are received on the PC and analyzedgdthe energetic wavelet coefficients but, since theysead over a
post-processing operation. Otherwise, the datedton the PC large time range, the precise localization of thagient part is
in the case of overloading of the DSP temporaldysfare sent impossible. Comparatively, the CIM indicates cotisethe fast
to the target for their processing. Note that ircamplete variation of the angular velocity. Concerning thewdy
embedded configuration the storing can be doneiexéernal varying parts, contrarily to the WVD, the HIM operat

memory board compatible with the DSP. provides an accurate estimation which follows theotetical
High frequency wavelet coefficients Cim

25 h

V. RESULTS

In this section we show that the characterizatiesults
provided by the proposed methods in the case afatsg .
described in section 2. Both signals have been ddetein a il il I}
white Gaussian noise with a signal-to-noise ratjaat to 15 ' i (T ‘
dB. For comparison purposes we also tested the \&av * e T F g B i
transform, widely used for the fast varying timeefuency
structures and the Wigner-Ville distribution whishthe main
tool of the Cohen’s class.

For the FSK signal the results are plotted in #&gur As we
can observe in the case of the wavelet transforenpat only
the wavelet coefficients issued by high-pass fiigr the
frequency steps are visible but the noise introdlactfacts.

Alternatively, the CIM provides only the time lozation of

Magnitude
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WVD Estimated IFL (solid line) Theoretical IFL(dashed line)
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Frequency [normalized]
Frequency [normalized]
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the frequency transitions but, compared with theelet, this Time [sec] Time [sec]
is accurately done. The localization of the tramgitparts
allows the segmentation of the time-frequency aunta Figure 8. Characterization of a signal issued feorotating

slowly varying parts. For each segment, the HIMrafme is machinery; comparison with wavelet transform and VvV

applied and it provides the polynomial modelinghese parts.

For the FSK signal this estimation is plotted bgdid line VI. CONCLUSION

(figure 7) whereas the theoretical IFL is displaygda dashed

line. We can remark that the estimated parts follthe The main purpose of this paper is to propose a adetbr

theoretical IFL. This is due of both accurate eation of the the characterization of time-frequency content hg\ioth fast

transient parts and HIM efficiency, respectivelyand slowly varying structures. This type of contentvidely

Comparatively, the WVD of the FSK signal is dramaltic encountered in real-life systems (mechanical, umdesr,

affected by the cross terms : the time-frequencyteott is radar, communication signals, etc) and an efficient

hidden by this phenomenon. characterization of the IFL can provide solutioos froblems
Highirequaricy wavelst cosflicients il as classification, physical analysis, monitoringuaization,

etc.

While the conventional analysis of this kind of Te€havior
implies the use of two types of methods (wavelet @ohen’s
class distributions, for example) the associatechrtigues
become too sophisticated. Their generalization and
Y implementation could be very complex.

Time For these reasons we propose a method based oigue un

Estimated IFL (solld Iine) Theoretcal IFL(dashed lin) concept — the instantaneous moment. Except its lsimp

o

Frequency [normalized]

Magnitude
L - R T

N _ structure, well suited for implementation, it leatls two

g 5% methods — CIM and HIM. The first one constitutesefficient

§ 03] 5o fuis e method for the estimation of time localization tEtphase

% 02 o2 = discontinuities. Hence, it provides the segmentatid the

£o Ef’-“ , signal in slowly varying time-frequency parts. Fugtmore, the

e ; HIM provides the polynomial characterization of lsugarts

L VO L e which is a good model for a large variety of ref-signals.

Figure 7. FSK characterization by the proposed owgth ~ The joint use of CIM and HIM has been tested foo tw
comparison with wavelet transform and WVD realistic configurations. We pointed out on the main

differences between classical methods (waveletdd®) and



the proposed methods. We remarked the efficiencythef
proposed approach which accurately characterizesplex
time-frequency content.

Taking into account the simplicity of the CIM andM
definitions, we proposed a real-time embedded stracthat
implements the proposed approach. This structusased on a
DSP TMS320C6711 and the CIM and HIM methods haes be
implemented. The results obtained with the DSP Haeen
compared with Matlab simulations and they were Isimbut
the computing time is significantly reduced witte treal-time
implementation. In addition, the implementation @m
embedded structure establishes the base for a&faperational
embedded system.

From the theoretical point of view, we intend tgnove the
performances of the existing approach by addingh-hig
resolution and multi-component processing capaslit The
application of the proposed approach on real sigmall be
subject of our future works as well.
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