
HAL Id: hal-00349406
https://hal.science/hal-00349406

Submitted on 30 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasistatic behavior and force transmission in packing
of irregular polyhedral particles

Emilien Azéma, Farhang Radjai, Gilles Saussine

To cite this version:
Emilien Azéma, Farhang Radjai, Gilles Saussine. Quasistatic behavior and force transmission in
packing of irregular polyhedral particles. Powders and Grains 2009, Jul 2009, Golden, Colorado,
United States. pp.273-276. �hal-00349406�

https://hal.science/hal-00349406
https://hal.archives-ouvertes.fr


Quasistatic behavior and force transmission in packing of
irregular polyhedral particles

Emilien Azéma∗, Farhang. Radjai∗ and Gilles Saussine†

∗LMGC, Université Montpellier 2, 34080 Montpellier cedex 05, France
†Innovation and Research Departement of SNCF, 45 rue de Londres, 75379 Paris Cedex 08, France

Abstract. Dense packings composed of irregular polyhedral particlesare investigated by numerical simulations under
quasistatic triaxial compression. The Contact Dynamics method is used for this investigation with 40 000 particles. The effect
of particle shape is analyzed by comparing this packing witha packing of similar particle size distribution but with spherical
particles. We analyze the origin of the higher shear strength of the polyhedra packing by considering various anisotropy
parameters characterizing the microstructure and force transmission. Remarkably, we find that the polyhedra packing has
a lower fabric anisotropy in terms of branch vectors (joining the particle centers) than the sphere packing. In contrast,
the polyhedra packing shows a much higher force anisotropy which is at the origin of its higher shear strength. The force
anisotropy in the polyhedra packing is shown to be related tothe formation of face-face contacts. In particular, most face-face
contacts belong to strong force chains along the major principal stress direction whereas vertex-face and edge-edge contacts
are correlated with weak forces and oriented on average along the minor principal stress direction in steady shearing.
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INTRODUCTION

During the last two decades, granular media composed of
circular particles (in 2D) and spheres (in 3D) have been
a subject of systematic research. In particular, various
microscopic features such as fabric anisotropy [1], force
transmission [2, 3, 4, 5, 6] and friction mobilization
[7] have been analyzed numerically and experimentally.
Hence, an emerging issue today is how robust these
findings are with respect to particle properties such as
shape and size distribution [8, 9, 10].

In this paper, we study numerically granular materials
composed of polyhedral particles. We use the contact
dynamics method to simulate the slow shear of these
materials in comparison to sphere packings with similar
particle size distribution. The facetted shapes give rise
to a rich microstructure where the particles touch at
their faces, edges and vertices. We analyze the fabric
and force anisotropies and their link with the stress-
strain behavior. We show that face-face contacts play a
major role in force transmission and statics of polyhedra
by accommodating long force chains that are basically
unstable in a packing composed of spheres.

NUMERICAL PROCEDURES

The simulations were carried out by means of the contact
dynamics (CD) method with irregular polyhedra parti-
cles [11, 12]. We used LMGC90 which is a multipurpose
software developed in our laboratory, capable of model-

FIGURE 1. Examples of polyhedra used in the simulations.

ing a collection of deformable or undeformable particles
of various shapes by different algorithms [13].

We generate two numerical samples. The first sam-
ple (S1) is composed of 36933 polyhedra. The particle
shapes are taken from a library of 1000 digitalized ballast
grains provided by the French Railway Company SNCF.
Fig. 1 shows several examples of the polyhedral particles
used in the simulations. We used the following size dis-
tribution: 50% of diameterdmin = 2.5 cm, 34% of diam-
eter 3.75 cm, 16% of diameterdmax= 5 cm, wheredmin
is defined as two times the largest distance between the
barycenter and the vertices of the particle. The second
sample (S2) is composed of 19998 spheres with exactly
the same size distribution as in S1. Fig. 2 shows a snap-
shot of the sample S1 in equilibrium state after deposi-
tion and isotropic compression under a constant stress of
σ0 = 104 Pa in a rectangular box at zero gravity.

The coefficient of friction is 0.5 between the particles
and 0 with the walls. The initial value of the solid fraction
is ρ ≃ 0.6 in both samples. Both samples have a nearly
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FIGURE 2. A snapshot of the packing S1 (polyhedra). The
walls are not shown.

square bottom of side such thatL ≈ l and an aspect ratio
H/L ≃ 2, whereH is the height. The isotropic samples
were subjected to vertical compression by downward
displacement of the top wall at a constant velocity of
1 cm/s for a constant confining stressσ0 acting on the
lateral walls.

SHEAR STRENGTH

In this section, we compare the stress-strain behavior
between the packings of polyhedra (packing S1) and
spheres (packing S2). For the estimation of the stress
tensor, we use the internal moment tensorMMMi of each
particle i defined by [14]:

Mi
αβ = ∑

c∈i
f c
α rc

β , (1)

where f c
α is the α component of the force exerted on

particle i at the contact c,rc
β is theβ component of the

position vector of the same contact c, and the summation
runs over all contact neighbors of particle i.

It can be shown that the internal moment of a collec-
tion of rigid particles is the sum of the internal moments
of individual particles [14]. The stress tensorσσσ for a
packing of volumeV is simply given by

σσσ =
1
V ∑

i∈V
MMMi =

1
V ∑

c∈V
f c
αℓc

β , (2)

whereℓℓℓc is the branch vector joining the centers of the
two touching particles at the contactc.

Under triaxial conditions with vertical compression,
we haveσ1 ≥ σ2 = σ3, where theσα are the stress
principal values. We extract the mean stressp = (σ1 +
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FIGURE 3. The normalized shear stressq/p as a function of
shear strainεq for the polyhedra packing S1 and sphere packing
S2.

FIGURE 4. Geometry of a contact between two polyhedra.

σ2 +σ3)/3, and the stress deviatorq = (σ1−σ3)/3. For
our system of perfectly rigid particles, the stress state is
characterized by the mean stressp and the normalized
shear stressq/p.

The cumulative strain componentsεα are defined by

ε1 =

∫ H

H0

dH′

H ′
,ε2 =

∫ L

L0

dL′

L′
,ε3 =

∫ l

l0

dl′

l ′
, (3)

where H0, l0 and L0 are the initial height, width and
length of the simulation box, respectively, and∆H =
H0 − H, ∆l = l0 − l and ∆L = L0 − L are the cor-
responding cumulative displacements. The cumulative
shear strain is defined byεq ≡ ε1− ε3.

Figure 3 displays the evolution ofq/p for the pack-
ings S1 and S2 as a function ofεq. For both packings, we
observe a classical behavior characterized by a harden-
ing behavior followed by (slight) softening and a stress
plateau. The higher level ofq/p for the polyhedra pack-
ing reflects the organization of the microstructure and the
features of force transmission that we analyze below.

GEOMETRICAL ANISOTROPY

For the analyses that will be discussed below, we intro-
duce the local frame(nnn′,ttt ′) wherennn′ is the unit vector
along the branchlll andttt′ is an orthonormal unit vector ;
figure 4. We set

ℓℓℓ = ℓnnn′, (4)

whereℓ is the length of the branch vector.
We define the angular averages associated with the

branch vectorsℓℓℓ. Let A (Ω) be the set of branch vectors



FIGURE 5. Polar representation of the probability density
function PΩ and 〈ℓ(Ω)〉 for the samples S1 and S2 in the
residual state.

pointing in the directionΩ ≡ (θ ,φ) up to a solid angle
dΩ and Nc(Ω) its cardinal. The angular averages are
defined as follows:

PΩ(Ω) =
Nc(Ω)

Nc
, 〈ℓ〉(Ω) =

1
Nc(Ω) ∑

c∈A (Ω)

ℓc, (5)

whereNc is the total number of contacts, andℓc,is the
actual values of branch vector length, for contactc, re-
spectively.

Under the axisymmetric conditions of our simulations,
these two functions are independent ofφ . Fig. 5 displays
a polar representation of these functions in theθ -plane
for polyhedra (S1) and spheres (S2) atεq = 0.3. We
observe an anisotropic behavior of the unit inter-center
vectorPΩ(θ ) in both cases. A weak anisotropy of branch
vector can be seen for S1. The magnitude of anisotropy
is larger for spheres compared to polyhedra except for
〈ℓ〉(θ ) which is weakly anisotropic for polyhedra.

The simple shapes of the above functions can be
approximated by harmonic approximation. Considering
only the functions compatible with the symmetries of the
problem (independent with respect toφ andπ-periodic
as a function ofθ ) we have

PΩ(θ ) =
1

4π
{ 1+a [3cos2 θ −1] }, (6)

〈ℓ〉(θ ) = ℓ0{ 1+al [3cos2 θ −1] } (7)

wherea, al are the anisotropy parameters,ℓ0 is the mean
branch vector length. The probability density function
PΩ(θ ) is normalized to 1. The harmonic fits are shown
in figure 5 for the two functions in the critical state.

The evolution of the anisotropies withεq are displayed
in Fig. 6 for S1 and S2. We see thata is systematically
larger for spheres than for polyhedra. The branch vec-
tor length anisotropyal is negligible for spheres. The
low anisotropy of the polyhedra packing results from a
particular organization of the force network in correla-
tion with the orientations of each contacts (edge-to-face,
vertex-to-edge...) in the packing [10, 15].
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FIGURE 6. Evolution of anisotropiesa, al with εq for pack-
ings S1 and S2.

FORCE ANISOTROPY

We consider the components of the contact force by

fff = fn′nnn
′ + ft′ttt

′. (8)

We refer to fn′ and ft′ as radial and orthoradial com-
ponents of the contact force. As the angular orientation
of the branch vector, we distinguish the angular distri-
butions of radial forces〈 fn′〉(Ω) and orthoradial forces
〈 ft′ 〉(Ω). These two functions can be expanded on a base
of spherical harmonics. At leading order, we have [8, 15]

{

〈 fn′〉(θ ) = f0{ 1+an′ [3cos2 θ −1] },
〈 ft′ 〉(θ ) = f0 at′ sin2θ ,

(9)

wherean′ andat′ are the anisotropy parameters, andf0
the mean force. The anisotropiesan′ andat′ are plotted
in figure 7 as a function ofεq. The radial force anisotropy
an′ increases as the fabric anisotropy, and tends to a
plateau. But, in contrast to fabric anisotropy, its value
is higher for polyhedra than for spheres. This means
that the large force anisotropy is correlated with particle
shape rather than with fabric anisotropy. The orthoradial
force anisotropyat′ has a similar behavior except that it
takes considerably higher values in the case of polyhedra
compared to spheres due to large friction developed by
face to face contacts [10, 15].

The anisotropiesa, al , an′ andat′ are interesting de-
scriptors of granular microstructure and force transmis-
sion as they underlie the shear stress. Indeed, it can be
shown that the general expression of the stress tensor Eq.
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FIGURE 7. Evolution of anisotropiesan′ , at ′ with εq for
packings S1 and S2.
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FIGURE 8. The normalized shear stressq/p as a function
of shear strainεq for the packings S1 and S2 both from direct
simulation data and theoretical prediction of Eq. (10).

(2) under some approximations leads to the following
simple “stress-force-fabric" relation [1, 8, 15]:

q
p
≃

2
5

(a+al +an′ +at′), (10)

As we see in Fig. 8, our simulation data are in quan-
titative agreement with this relation both for spheres
and polyhedra, all along the shear. A remarkable conse-
quence of Eq. (10) is to reveal that the fabric anisotropy
provides a major contribution to shear stress in the sphere
packing whereas the force anisotropies are more impor-
tant for shear stress in the polyhedra packing.

CONCLUSION

The objective of this paper was to isolate the effect of
particle shape with respect to shear strength in 3D gran-
ular media by comparing two similar packings with dif-
ferent particle shapes. A novel finding of this work is
that the origin of enhanced shear strength in a poly-
hedra packing compared to a sphere packing lies in
force anisotropy induced by particle shape. The fabric
anisotropy associated with the network of branch vec-
tors is lower in the polyhedra packing. In other words,
the force anisotropy, partially underlying shear strength,
is mainly controlled by the fabric anisotropy in a sphere
packing. This mechanism breaks down to some extent
in a packing of polyhedra where force anisotropy results
mainly from the “facetted" particle shape.
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