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Abstract: Robust naval target detection is of significant importance to 
national security, to navigation safety, and to environmental monitoring. 
Here we consider the particular case of high resolution coastal radars, 
working at low grazing angles. The robustness of detection heavily relies on 
the appropriate knowledge of two classes of backscattered signals: the 
target echo, and the sea echo. The latter, usually regarded as a noise, is 
known as the sea clutter. This particular combination, of high resolution 
and low grazing angles, raises considerable challenges to radar processing 
algorithms. Specifically, the probability density function governing the sea 
clutter amplitude is no more Gaussian and a lot of effort has been aimed at 
characterizing it. Three approaches are reviewed here: the stochastic, 
texture and chaotic models. While the stochastic models represent an essay 
to extend classical detection theory to radars operating in marine 
environment, the other two models represent entirely new paradigms. Since 
each model has its strengths and weaknesses and more testing on real data 
is required to credibly validate any of the proposed models, a definitive 
conclusion is far from reach. However, critical comments, as well as 
experimentally supported conclusions are presented in the paper. 
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1. Introduction 
The exact knowledge of the sea clutter properties is of great importance 

for a modern maritime surveillance radar because they are directly involved in 
the optimization of the detection process, mainly through the CFAR processor 
design. Gaussian models are the most used as they arise from the central limit 
theorem and lead to simple processing architectures. Indeed, these models are a 
good match for the sea clutter when the radar resolution is poor and the grazing 
angle is large enough, but they become inadequate when any of these two 
requirements is no more fulfilled. 

In the latter case, the sea clutter becomes spikier, which results in a false 
alarm rate much more important than those predicted by a Gaussian model. 
Therefore, other models, able to take into account this different behavior, have 
to be considered. 

This is typically illustrated by the case of high-resolution radars, which 
allow to reduce the intensity of sea clutter (by reducing the extent of analyzed 
cell resolution) and, thus, to improve the signal on noise report. Thus, target 
detection probability should increase. However, in the real world, at high 
frequencies, classic models of target radar echo and of reflected sea clutter are 
no more valid. This penalizes the detection rate. Therefore, one needs better 
fitted models in high frequency. 

Here we critically review some sea clutter models, revealing both their 
strengths and weaknesses. 

2. Sea Clutter as a One-Dimensional Stochastic 
Process 

Although large consensus stands behind the phenomenological model 
explaining the scattering of electromagnetic waves at the encounter of sea 
surface, there are different ways to model the outcome of such interaction. 
Among the simplest ones is the one-dimensional stochastic approach, detailed 
below. 

First, let us present a short introduction to the phenomenological model. 
The dynamics of the sea could be, at least at a coarse level, characterized 

by the sea state and the direction of the sea waves. The sea state synthesizes the 
amplitude of the waves and the distance between them (their wavelength). Two 
kinds of waves are encountered at the surface of the sea, generated by two 
different mechanisms: the capillarity waves and the gravity waves [5]. 

The first kind of waves is mainly generated by the influence of the wind 
and expresses the superficial tension of the water. These waves are of small 
amplitude (we do not discuss here extreme meteorological conditions) and in 
very large number, having a short wavelength (less than 2 centimeters). In fact, 
even in almost completely still weather, they are seen at the surface of the sea as 
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a continuous, almost random motion. They are almost ubiquitous, but their 
properties are, generally, very localized. Additionally, they do not carry much 
(impact) energy. This will reflect in the properties of their electromagnetic echo. 
The capillarity waves are superposed onto the second kind of waves, discussed 
below: the gravity waves. 

The second kind of waves is mainly generated by the accumulation of 
gravitational forces. At the origin, they may be also triggered by the wind or by 
a storm or by some other meteorological phenomena, including difference of 
temperature. Unlike the capillarity waves, the gravity waves have larger 
amplitudes and larger wavelengths (more than 2 centimeters). Their properties 
are spread over a larger area of the sea (so they have a greater distance of 
correlation) and are the main energy carrying factor, greatly impacting on naval 
targets. Eventually, it is their properties which determine the state of the sea. 

Given the different nature of the two kinds of waves, one could easily 
foresee that the nature of their electromagnetic echo is also different. Indeed, 
this is the case, as it is also confirmed by the analysis of real data, and most of 
the stochastic models are based on this assumption. 

Generally, the two kinds of waves are superimposed, with the gravity 
waves having their surface modulated by the capillarity waves. This is illustrated 
in Figure 1. 

 

 
Figure 1. The phenomenological model of sea surface and interaction  

with electromagnetic waves 

The figure also illustrates the specific hydrodynamic modulation, as 
emphasized by [1], i.e. the amplitude of capillarity waves is larger on the 
advancing front of gravity sea waves (on the figure, the right versant). This is 
important, by example, in adjusting radar processor parameters with respect to 
the meteorological conditions. 

Figure 1 also illustrated the scattering of electromagnetic waves at the sea 
surface. Obviously, the irregular surface of the sea will scatter the incident 
electromagnetic wave in almost every direction. On the other hand, some 
masked areas are invisible to the radar system, at least under direct sight, since 
they are masked by other sea waves (the shadowed region in the Figure 1). 
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The electromagnetic waves scattered by the two kinds of sea waves will 
exhibit different statistic and correlation (or, equivalently, spectral) properties. It 
is their combined effect that allows us to characterize the properties of the sea 
clutter. The statistics of sea clutter are important in the detection algorithm, 
while their spectral properties are very valuable for implementing Doppler 
filtering. The latter will allow improved signal on noise ratios (SNR), thus 
increasing the visibility of the target on radar screen (and, obviously, allowing 
better detection performances). Additionally, for each kind of waves, their 
respective statistic and spectral properties vary in function of the incidence 
angle, the frequency range, the regime the radar is working in (e.g. fixed 
frequency or agility in frequency), and even the type of the mission the radar is 
performing (aerial patrolling, surveillance etc.) [21, 22]. 

Since the statistic behavior of the clutter is very important to target 
detection algorithms, many works have been dedicated to this issue, e.g.:  
[24, 15, 8, 4, 29, 16, 17, 18, 28, 3, 9]. 

In the one-dimensional stochastic clutter model, the combined effect of 
capillarity and gravity waves over the scattered electromagnetic waves translates 
in a composed echo. The latter is the product of two components: one having a 
Gamma pdf, corresponding to a large-scale, slow-varying physical structure (the 
gravity waves), further referred to as “underlying” component, and the other 
having a Rayleigh pdf, corresponding to a small-scale, rapid varying physical 
structure, representing the contribution of isolated scatterers (the capillarity 
waves), further referred to as “speckle” component [20] (Figure 2). 

 
 

Speckle comp. 
(Rayleigh pdf) 

Underlying comp. 
(Gamma pdf) 

Capillarity 
waves 

Gravity 
waves 

Compound model

 
Figure 2. The compound model of the sea clutter 

The global pdf of sea clutter is a direct description of this physical and 
phenomenological model: 

 ( ) ( ) ( )1
2

2
b b xp x K b x

ν

ν−
⋅ ⋅⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟Γ ν ⎝ ⎠

, (1) 

where ( )K xν  is the modified Bessel function of order ν , b  is the scale 
parameter and ν  is the shape parameter. 
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The pdf given by equation (1) is known as the K-compound probability 
law, somewhat accepted as one of the best candidates in describing sea clutter 
behavior (along with the Weibull probability law). Its scale parameter is linked 
with the power of the clutter, while its shape parameter gives an indication of 
how “peaked” the clutter is. As such, for little values of ν , the clutter will have 
large-amplitude peaks, while for large values of ν , it will be relatively 
smoothed. In the latter case itself, the K-compound probability law will 
approach Rayleigh law (which is a particular case and is also used to describe 
sea clutter distribution, but usually at larger grazing angles). 

The differences between the two components of the sea clutter will count 
for different outcomes when signal processing techniques are applied. By 
example, the speckle component becomes completely uncorrelated when agility 
in frequency is used [23]. However, the underlying component remains 
correlated. The former exhibit very little spatial correlation (between one 
resolution cell and the surrounding ones), while the latter may be correlated for 
distances up to 20 or 40 meters [30]. 

An example of real data [23] is presented in Figure 3, where the 
amplitude of sea clutter in a single resolution cell is depicted. The data has been 
acquired with fixed frequency (the upper part) and, then, with agility in 
frequency (the lower part). The moving average (i.e. the underlying component) 
is depicted in the right side of the figure, for each set of data. 

While real data analysis confirm that speckle component becomes 
uncorrelated when agility in frequency is used, as well as other theoretically 
predicted properties of sea clutter, it also shows up some difficulties that the 
researchers may face. By example, data analyzed in [23] show unusual high 
dispersion of correlation times around the average value. This is quite difficult 
to interpret and it is possible to be linked with the non-stationary character of sea 
electromagnetic echo. This incoherence between theory and practice will have 
negative impact on detection performances, and is foreseeable as one important 
limitation of the assumed phenomenological model. However, [23] validates the 
K-compound stochastic model for data used therein. 

However, even if one-dimensional statistical model is assumed, a few 
more difficulties have to be overcome to usefully exploit measured data. For the 
K-compound model, this has been achieved with standard methods, such as 
Raghavan and Watts [32], since no analytical relation allowing parameters from 
measured data exists for this pdf [31]. 

Note that the K-compound stochastic model is validated (and, thus, 
useful) for independent simulation of the sea clutter in resolution cells only. As 
such, samples will be generated according to the K-compound pdf alone, while 
correlation properties will be enforced using additional filters. 

Usually, since the area covered by the radar system during a specified 
amount of time is a two-dimensional map (expressed as the product between 
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range and an angular interval), the amplitudes for all range resolutions cells are 
generated at one time. This will give the complete view of the clutter 
surrounding the radar system. This is the principle of the classic models, such as 
ones presented in [7]. 

 

 

 
Figure 3. Amplitude of the clutter in a given resolution cell as acquired by radar (left) 

and the extracted underlying component (right), at fixed frequency (upper)  
and with agility in frequency (lower) 

However, these models forget that not all the resolution cells are seen at 
the same time. As such, time correlation between cells (i.e. the changing of the 
clutter, in the same cell, with time) is not appropriately accounted for. In fact, 
while radar antenna turns, it will continuously discover resolution cells whose 
angular coordinate (with respect to the radar’s polar coordinate system) is 
linearly varying with time. Since the radar turning speed is generally constant, 
the polar angle will be proportional with the time passed. 

In conclusion, sea clutter data should be progressively generated, and the 
angular coordinate of the resolution cell should also be linked with the 
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observation time. Specifically, the correlation imposed in time and in angle 
should be coherently applied. 

This is achievable by using an additional diagonal lecture of generated sea 
clutter samples, stepping simultaneously in time and angular coordinate. The 
implementation of the method is illustrated in Figure 4a. 

 
 Gamma 
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b) 

Figure 4. The one-dimensional stochastic model for sea clutter (upper)  
and comparison of real and simulated sea clutter (lower) 
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Further, to take into account the variation of sea clutter’s radar cross-
section (RCS), i.e. the exponentially decrease of its power with the increase in 
range, a multiplication with a coefficient is doable. The RCS of sea clutter may 
be determined as shown in [5]. 

However, while simple and appealing, the clutter simulated with this 
procedure is not entirely similar with the real recordings [23]. This may be seen, 
by example, in Figure 4b. While amplitudes of real and simulated clutter data 
may look quite similar (the upper subfigures), their correlation functions (and, 
consequently, their spectral properties) differ significantly. 

3. Sea Clutter as a Two and Multi-Dimensional 
Stochastic Process 

These approaches extend the number of correlation dimensions when 
clutter is generated. This is justified by the generally poor match between the 
real data sets and the K-compound theoretical distributions. Generalizations 
have been made, and usually a spherically invariant random process (SIRP) 
model is assumed for the sea clutter, especially at very low grazing angles and 
large bandwidths, where the K-compound distribution also fails. 

The SIRPs are positive definite quadratic forms. Under this paradigm, sea 
clutter samples are simultaneously generated in angular and range coordinates, 
while integrating multi-dimensional statistics (i.e. also, conjoint pdf between 
clutter samples). This approach has been exposed in [4]. While the generated sea 
clutter better copes with real measured data, difficulties arise in exploiting this 
model into a detection algorithm. Indeed, the computation of the generalized 
likelihood ratio is difficult when multi-dimensional stochastic clutter model are 
assumed. 

4. Sea Clutter as a Texture Realization 
These drawbacks of stochastic modeling of sea clutter lead to new 

approaches, especially in estimating the parameters of the assumed pdf, but also 
in the appropriateness of the chosen pdf to a given meteorological condition, led 
to new approaches. The latter are non-parametric, although the information 
about specific framework (meteorological conditions, radar position and regime, 
mission) may be coded, recorded and reloaded into the system as needed. 

Basically, a set of real data, representing measured sea clutter samples, is 
recorded. Then, this information is used to extract a “mask” filter of the clutter, 
which would allow reproducing its stochastic and correlation properties. This is 
achievable without making narrow and easily erroneous assumptions about the 
laws governing the distribution of clutter samples, and it s possible to adapt 
clutter model in real time. 

One similar approach is found in texture generation [2] where new 
textures, similar to a given model, are simulated. The essential of this technique 



Advanced Sea Clutter Models and their Usefulness for Target Detection 265 

is to concentrate the information from a bi-dimensional clutter map (a range of 
resolution cells), into a kernel. The storing space needed for the kernel is greatly 
reduced compared with the original clutter map. 

Once the kernel is extracted, new clutter maps are generated by 
considering a moving average (MA) 2D filter having the extracted kernel as 
impulse response. Excited with white noise, the filter will generate clutter maps 
whose correlation properties are identical with the ones of the original clutter 
map. Additional noise (e.g. the thermal noise of the receiver) may be easily 
accounted for, too. 

Once the kernel is available, different clutter maps may be generated 
using the following relation: 

 ˆ ˆ ˆ
s sI H E I H E= ⊗ ⇒ = ⋅ , (2) 

where ^  operator stands for the 2D Fourier transform, H  is the 2D kernel, sI  is 
the simulated clutter map, and E  are the different excitations (white noise) 
applied at the filter’s input. 

The main issue is to extract the 2D kernel corresponding to a given clutter 
dataset. A reference clutter map, rI , is used and its corresponding kernel, of a 
predefined size ( p q× ) is extracted, using the algorithm in [2]. 

If the kernel is correctly extracted, generated clutter maps are very similar 
to the reference ones, both in terms of amplitude (and visual) characteristics and 
of correlation properties. The Figure 5 depicts two situations of this kind. 

 

 
Figure 5. Reference and simulated clutter maps, compared in terms of amplitude (upper) 

and correlation (lower) 

5. Sea Clutter as a Chaotic Model 
The use of chaotic models for sea clutter was proposed in [11]. By 

analyzing the IPIX [14] public dataset, it was concluded that the sea clutter may 
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be seen as manifestation of an underlying chaotic system (a subclass of 
dynamical systems). The IPIX dataset comprises sea real radar echo, measured 
on the coast of Canada, in different conditions. After some careful thought, the 
conclusion of a chaotic model in not very surprising, if one accepts that the 
processes involved in sea clutter generation are, basically, non-random but 
purely deterministic phenomena (sea wave motion is described by 
hydrodynamic theory, while electromagnetic scattering is described by 
electromagnetic, both theories relying on deterministic models only). Thus, one 
could aim for a deterministic description of the phenomena, the only remaining 
reason for accepting unpredictable behavior being in the complexity of the 
model, and in the imperfect knowledge of its initial conditions. 

The chaotic modeling challenges the classical detection algorithms, since 
the latter relies heavily on statistics. As it will be shown, a different approach is 
needed to make the information extracted by chaotic modeling valuable for 
target detection. 

The classic chaotic model, assumed by [11] is the exponential one, also 
known as the Exponential Sensitivity to Initial Conditions (ESIC) model. It 
states that, no matter how close their initial conditions (IC) are, two systems 
governed by the same laws will have divergent evolutions. This latter property 
may be mathematically expressed as follows: let ( )0d  be the small separation 
between the IC of the two systems (at the time 0t = ). Then, the separation 
between their states at the time t  will be written as: 

 ( ) ( ) 10 e td t d λ∼ , (3) 

where 1λ  is a positive quantity, known as the Lyapunov exponent. 
This exponential divergence, combined with the bounded nature of the 

region in which it is possible for the system’s states to lay, causes complex 
evolutions for the chaotic systems. The set of all touched states is, generally, 
fractal, characterized by a non-integer dimensionality. This dimensionality 
(known as the “box dimension”) may be computed as: 

 ( ) , 0DN −ε ε ε→∼ , (4) 

where N  represents the maximal number of boxes, of linear length not larger 
that ε , needed to cover the attractor, and D  is typically a non-integer number, 
called the fractal dimension of the attractor (the attractor is a set of system states 
which is invariant with respect to the evolution of the system). 

It was assumed that a system having an evolution with an estimated 
positive largest Lyapunov exponent and a non-integral fractal dimension is a 
chaotic systems. In fact, it was the very assumption used by [11] when 
concluded that the sea clutter is chaotic. 
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However, a number of researchers [6, 26, 27] have questioned this 
conclusion. The showed that the two main invariants used in [11] and [12], 
namely the “maximum likelihood of the correlation dimension estimate” and the 
“false nearest neighbors” are problematic in the analysis of measured sea clutter 
data. This is because both invariants may interpret stochastic (so, purely 
random) processes as chaotic. By example, let us consider the following class of 
stochastic processes (the “pink” noise), having the following power spectral 
density: 

 ( ) ( )2 1Hs f f − += , (5) 

where f  is the frequency and ]0,1[H ∈  is the Hurst parameter. 
The trajectory of such stochastic process has a fractal dimension of 1 H  

[13]. And, with most algorithms of estimating the largest Lyapunov exponent, 
one obtains a positive number for it, and, thus, the purely random process is 
wrongly interpreted as being chaotic. 

An improved method to asses the chaotic nature of recorded data is the 
dynamical test for deterministic chaos [10]. This method compares the common 
envelope of different estimations of largest Lyapunov exponents. For  
non-chaotic systems, this envelope is absent (see Figure 6, in the vicinity of 
origin). Applied in [13] this method proved that, in fact, none of the datasets 
analyzed in [11] is chaotic (under the ESIC assumption). 

 
Figure 6. Different estimated Lyapunov exponents, for a chaotic system (left) 

 and for a stochastic one (right) 

While this conclusion may seem to incline balance in favor of stochastic 
modeling, this is far from truth. In fact, it has been shown, also in [13], that a 
generalization of the classical chaotic ESIC model may be used to characterize 
sea clutter: the PSIC (Power-law Sensitivity to Initial Conditions) model  
[25, 19]. 

For 1D state system (i.e. whose state can be described using a scalar), the 
PSIC is written as: 
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 ( )
( )

( )
( ) ( )

1
1

0 0
lim 1 1

0
qqx

x t
t q t

x
−

Δ →

Δ
⎡ ⎤ξ = = + − λ⎣ ⎦Δ

, (6) 

where ( )0xΔ  is the infinitesimal discrepancy of IC, ( )x tΔ  is the discrepancy at 
the current time t , q  is the entropic index, and qλ  equals qK , the generalization 

of the Kolmogorov-Sinau entropy [25]. Note that for large t , ( ) ( )1 1 qt t −ξ ∼  and 

that, when 1q → , ( ) 1e tt λξ →  (the PSIC reduces to ESIC). 
Further, the newly-introduced PSIC concept may be applied to target 

detection as follows: let ( ) 11 q −β = −  and then compute the values of this 
parameter for the time series formed by the samples from the same radar 
resolution cell. It is remarked that β  has low values for the resolution cells 
without targets (consequently, the entropic index q  is also low). On the other 
hand, β  has high values when a target is present in the analyzed resolution cell 
(see Figure 7a). 

 
     a)            b) 

Figure 7. a) Values of parameter β for a number of resolution cells) 
 b) Histogram of β for a number of resolution cells, without target (white bars) 

 and with targets (dark bars) 
 
The results using this new method, on the IPIX dataset, are strongly 

encouraging. An ideal, 100% good detection rate has been achieved [13]  
(see Figure 7b). 

6. Conclusions and Perspectives 
The presented results illustrate different approaches to the sea clutter 

modeling and target detection: mono or multiple-dimensional stochastic 
modeling, texture (kernel) modeling, or chaotic modeling. 
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The first approach is the classic approach, and has the advantage of being 
compatible with the existing radar processor and the detection algorithms 
implemented therein. However, this model seemed to have been stretched out to 
the limit: it is quite difficult to obtain a valid set of parameters for an assumed 
pdf from recorded (usually, in real time) sea clutter samples. There is no 
consensus with respect to the most adequate probability law to describe the 
distribution of sea clutter samples (more exactly, of their envelope). The multi-
dimensional stochastic modeling, while more flexible, basically removes the 
advantage of simplicity: the CFAR detector is far more difficult to implement. 
Additionally, the increase in flexibility (and modeling power) comes at the cost 
of an even more difficult estimation of the set of parameters of the underlying 
pdf (SIRP) process. 

The second approach shatters the classic detection algorithms. In fact, a 
completely new technique must be used, since no stochastic description is given 
to the sea clutter. Instead, a kernel (coding the intrinsic information) is 
constructed. Thus, one must presumably rely on automatic classifiers  
(e.g. neural networks), by turning the detection problem into a two-class 
classification problem. Details have been given. This approach seems quite 
promising. However, more work on real data is required before credibly 
validating it. On the other hand, it depends on the training performance of the 
neural network. 

The third approach also requires new radar processor paradigm. However, 
this time, the detection threshold may be given a numerical value and the 
detection function (the parameter β ) can be numerically estimated. The obtained 
results seem among the most promising ones, achieving 100% detection rate. 
Noise robustness and more real data validation are required for credible 
validation, though. 
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