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Abstract— This paper establishes a new coherent frame- applications as is the case for other unitary transforms.
work to extend the class of unitary warping operators [1]t0  Recently, we have shown that a projection—processing—
the case of discrete—time sequences. Providing soraeriori inversion framework, in time—warped spaces, can be used
considerations on signals, we show that the class of discest - ” - ! .
time warping operators finds a natural description in linear for efficient non—stationary denoising purpos_e [4]. Still,
shift—invariant spaces. On such spaces, any discrete—time because of our non—exact approach, cumulative errors led
warping operator can be seen as a non-uniform weighted to inaccurate results in multi-stages processing.
resampling of the original signal. Then, gathering different As far as our knowledge, an extension of the class of
results from the non—-uniform sampling theory, we propose time warping operators, while keeping in mind invert-

an efficient iterative algorithm to compute the inverse ibility. h tb derived vet in th f di ¢
discrete—time warping operator and we give the conditions ibiiity, has not been derived yet in the case ot discrete—

under which the warped sequence can be inverted. Numer- time signals. We believe that this lack may explain the
ical examples show that the inversion error is of the order small number of signal—-processing methods based on this

of the numerical round—off limitations after few iteration s. class of operators. As an attempt to fill this lack, this
Index Terms— Time—frequency, Unitary equivalence, Im- ~ paper establishes a new coherent framework to extend
plementation of time—warping operators, Non-stationary the class of warping operators in the case of discrete—
filtering. time sequences. Main difficulties in the inversion of the
discrete—time operator is related to the inversion of the

I. INTRODUCTION resampling operator.
This inversion deals with the recovery of a signal from
§ non—uniformly distributed samples which is a difficult

of the representa}tlon Space. Th|s change.ls general roblem. Using recent results from non—uniform sampling
performed by projecting the original space into anothe heory, we show that this problem can be solved by an it-

one, _adapted_to a particular class of signals. The U rative algorithm. We state that providing a dense enough
derlying idea is that some spaces are better suited th

- o X ) ;Warped sequence, any discrete—time warping operator can
others to highlight specific properties of signals. As e numerically inverted. Then we gave a density relation

consequence, it is a natural feature to perform processir}getween the derivative of the warping function and the

_tasks on the projected space since the useful_ 'nfo_rmat'oghift—invariant space kernel to guarantee the existence of
is easily reachable. As a final step, a well-defined invers

R o >"Sthe inverse discrete—time warping operator. Performances
projection allows to return back to the original domain.

: L S ) of this procedure are illustrated on a toy example and
This prOJect|on—pro_ceSS|n_g—lnve_rsmnframewgrk has be.eghow that the precision the inverse discrete—time warp-
successfully used in various signal processing domamﬁg operator reach the finite round—off precision in few

[2]. . . : I . iterations.
An interesting class of unitary projections is the class We believe that this new definition of the warping

of time warping operators [1]. This class has been useSperators for discrete—time signals will give new insight i

in image processing [3] for non—linear coordinate trans'multi-components time—frequency signal processing and

formgtlons and morphing purposes. In §|gn_al ProcessiNgy| jeads to efficient signal—processing methods that are
warping operators have been used to build tlme—frequenclynknow so far

representations with reduced interference terms, the so— 1 . organization of this paper is as follows. Sec-
called VU-Cohen’s class [1]. Despite some other appl"tion Il starts with the classical definition of the class

cations, the reversib_ili_ty property of th? time Warpin_g of continuous time—warping operators and describes its
operators has surprisingly not found S'gnal_process'nﬂwathematical properties. Then a discrete—time formula-

This work was supported by the French Military Center of Goep tion Is propos_ed In Sh|ft_'nva”6_mt sp_aces. Sectl_on ol
raphy under the reaserch contract CA/2003/06/CMO. states the equivalence between inversion of the discrete—

Signal processing methods are often based on a chan




time warping operator and the inversion of a resamplind3. Discrete formulation
operator. Gathering different results from the non—umifor  Fqor real—life applications, the continuous formulation

Sampling theory, an efficient iterative imp|ementati0n iSOf the class of Warping Operators defined in Sec. IlI-

proposed, and invertibility conditions on the resamplinga has to be turned into a discrete formulation. Let
set are derived. Numerical and convergence results argn] € RYN | n = 0,...,N — 1 be the sequence

given section IV-A, and concluding remarks are givengptained by uniform sampling of the continuous signal,
section V. z[n] = [,2(t)5(t — nT)dt with T the sampling rate, and
rwm] € RM m =0,..., M —1 be the warped discrete

Il. CLASS OF UNITARY TIME—WARPING OPERATORS sequence. Since we are now dealing with finite—length
sequences, we shall restrict ourself to the class of warping
functions defined in the intervdd, (N — 1)7], for which

Unitary warping methods play an important role inw(0) = 0, andw(nT) = nT. For the sake of notation
large number of signal-processing applications. Such asimplicity, we denote bym the normalized sequence
application is the design of time—frequency distributionsm /(M — 1), m = 1...M — 1. Then a straightforward
that match almost any one—to—one group delay or instantalefinition for the sampled discrete—time warping operators
neous frequency characteristics [5], [6], [7]. The priteip is
of the time—warping concept has been introduced in [1] L 1/2 _
and is based on the transformation of the time axis by W) [m] = [da ()| 2 (wa () (N = D)T), - (7)
means of a non-linear mapping. This can be done byhere the warping functiomw,(t) is defined by{wg :
warping the original timet axis by an eventually non— [0,1] — [0,1] € C}| wq(0) = 0, wg(1) = 1, wg(t) > 0}.
linear warping functionu(t) designed to match the signal From this definition, the computation of the discrete—time

A. Continuous formulation

properties. warping operator requires samplegw, (m) (N — 1)T).
Let z(t) € L*(R) be a square-integrablsignal and However, from the sequencen], only samplest(nT’)
let are known and the recovery of the missing samples has

L, to deal with this partial knowledge.
W, w(t) e, w'(t)>0:a(t) »Wa(t)}, (1) From the Shannon’s theory [8], it is well known that
any bandlimited signal can be exactly recovered from its

be a the class of warping operators whergt) is the uniform samples with the so—callesihc interpolatorby

derivative ofw(t) with respect tot andC is the class

of derivable functions. Warping transformation is a linear z(t) = Z x[nlsinc(t — nT), 8
transformation of the signal(t) into the warped domain, n
whose effect on:(¢) is defined in [1] by where sinc(t) = sin (xt) /7t. However this method is
i 1/2 generally not used because of the slow decay of the sinc
Wa(t) = ﬂ x(w(t)). (2)  function with orderO(1/z) which is not well-suited for
dt practical applications.

In [1], the warping concept has been introduced in the More powerful methods can be found in an interpola-
context of unitary transformations. An operatéris said ~ion perspective [9]. One of those is the general class of
to be unitary if it preserves the energy of the transformednterpolators inlinear shift-invariantspaces.
signal, that is|i/z||2 = ||z|2 and if it preserves the inner A linear  shift-invariant - spaceV,, is uniquely
product, that isitfz, Uy) = (x, ). determined by the kernel ¢ with Vj =

Thus, warping operators are unitary since the envelopgPan({¢(. — k), k € Z}). The general interpolation
|dw(t)/dt|'/? preserves the energy of the signal at theformula onV; is given by [10]

output of W that is for allz,y € L?(R) . Z [Zfﬂ[n]w(k —n)] (. — k1) ©)

d k€ezZ n
ol = [ |02 fown o @ |

agk
B NE 4 wherey is the impulse response of some projection filters,
e j2(t)] ’ 4) and the coefficientsa;,) are the result of the filtering. In

the scope of this paper we shall restrict ourself to the

and preserves the inner product that is case ofexact interpolationwhich is equivalent tac[n] =

. x(t)|t=nr, n = 0..N — 1. The latter condition is met,
Wa, Wy) = /RW(x(t) y(t)) dt () in the shift-invariant spac#, generated by the kernel
. ©() =D pep Wk —n)é(. —kT), k€ Z, t € R, if and
= /Rfﬂ(ﬁ) y(t) dt. (6)  only if ¢ verifies theexact interpolation condition
p(nT) = (k= n)¢(nT — kT) = 6,0, VnZ, (10)

1The set of square—integrable functions denoted BgR) is a Hilbert
space with inner productr, y) = [, z(t)y* (¢)dt, wherey*(t) denotes ) )
the conjugate, and with norm(t)[ls = (f, z(t)2dt)/? < oo for yvhere 6,,%,_” denotes the Kronecker delta function. This
all z(t), y(t) € L2(R). interpolation method allows a degree of freedom on the

kEZ



choice of the interpolation kerneb(¢). In truth, this and providingX = {n,}, m = 0.M — 1 a stable
choice is a matter ofa priori considerations on the sampling set inV,, the uniform samples[n], n =
signal z(t). If one deals with bandlimited signals then 0..N —1 for all z € V,, can be recovered by the following
(t) = sinc(t) has to be chosen to recover Equ. 8. Oniterative algorithm.

the other hand, if the signat(t) can be modelled by

a spline, then the cardinal B-spline [10] is the optimal * [itialization
choice. 2O[n] = z5[k], k= argmin {|n — n,,|}
N-—1
LetS: {z[n]} — zs[m], n=0.N—1, m=0..M—-1 O, 1 _ (0) B
be the resampling operator on the shift—invariant spgce zs[m] 7; 2 [nlp(nm —n)
defined by

LUntil  [|2® — 2@ Y|, < do
zs[m] = (Sz)[m] = ch[n]w(f(m) —-n), (11) Az®[m] = zs[k] — xgp_l)[k], k = argmin{|n — n,,|}

for some resampling mapping Definingn,,, = f(m) = 2P [n] = 2*V[n] + AzP)[n]
(N —1) w(m), the setX = {n,,}, m =0.M —1is ) Nl )
a non—uniform sampling set for tHe, space. This gives & [m] = Y & [n]o(ny, —n)

the final expression for the class of discrete—time warping n=0
operators - End
ewlm] = Wa)[m] = [ia (@)|/? zs[m], (12) andlimyo [lz[n] — 2P [n]]|, = 0 with a geometric
convergence.

which can be seen as a weighted resamplingjrof the
sequence(n)].

Proof of convergence related to this algorithm are
I1l. DISCRETETIME INVERSE WARPING OPERATOR gathered in the appendix VI.

A. Problem statement

Our starting point is the definition of the discrete—timec' Maximal gap between samples

inverse warping operatan ! Itis obvious that a signat € V,, is not always uniquely
i N determined for all sampling set = {n,,}, m =
W™ (Wz))[n] = z[n]. (I3)  0..M —1, especially ifX contains large gaps. In the case

of bandlimited function the Beurling—Landau’s theorem
[13] provides a condition o’ to be stable. However, in
the case of shift-invariant spaces, this result does nat hol
W Law)[n] = (S iy (@)~ /? zw[m])[n). (14) anymore and the exact conditions @hto be stable in
V., are unknown so far. Recently, under—optimal stability

Inversion of the discrete-time warping operator resumes @ nditions have been determined for shift-invariant space
the inversion of the sampling operator which is a difficult;,, [12].

task in shift-invariant spaces for any kernel function. Let B,, be thes—ball defined by

Then, definingS—! the inverse sampling operator, and
using Equ. 12 leads to

= : m < ) ) - .
B. Equivalence in non—uniform sampling theory B ={z:n ol <ok ze0,N —1] (47

The problem of recovering a signale V from a non— We define thanaximal gapthe smallest such that
uniformly dis?ributed set _of samples is generally referred UBm =0, N —1]. (18)
as a non-uniform sampling problem [11].

It can be shown that if the maximal gap between th
samplesn,,, nm41, is small enough, then any € V,,
can be recovered from the sets[m|}, and one says that
the sampling seft’ is stable inV,,. Conditions onX’ to
be stable inV,, are discussed in Sec. lll-C. Then, from
[11] and [12] we derive the following iterative algorithm
of the inverse sampling operator.

SThen it can be shown that the upper bound
T Gy(w)
T Gy(w)
guarantees the sampling s&t to be stable inV,. The

functions G,(w) and G, (w) are both related to the
Fourier transformp(w) of the kernel functionp(t) by

0 <

; (19)
0

Alg. 1 (Inverse sampling operator)-et ¢(.) be a ker- 1/2
nel for the shift-invariant spadé,. For all o(t) verifying Go(w) = (Z |P(w + 2k7T)|2> : (20)
!

sup |p(t —n)| <oo, VneZ, teR, (15)

1/2
I tG[O,l] . - 2
" Gyp(w) = ljw $(w + 2km)| . (21
@()|imnT = On.o, YN EZ, t R, (16) v <2,;



BecauseG,(w) and G, (w) are both2r—periodic, the | e

norm ||| is given by||G.(w)]o = i[nf ]G_(w). 0s o
wel0,2m 03
Since the maximal gap is equal tp,, [nm+1 — 0 02
nm|/2, it is easy to show that 05 01
2 (N -1 N 0
sup |’n””—"_1 _ ’I’L,”Ll S Sup(wd(t)) ( ) S (57 (22) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
m te[0,1] M—1 (a) z[n]: original sequence. (b) [STFT(z[n])|: spectrogram of
. . . . he original .
and to establish the under—optimal stability conditionhsuc he original sequence
that 1 o (f) d . 05
) wq(t
T2 HLH sup 2040 - og)
2 Ggom(f) o t€[0,1] dt ' {

0
and we denote this condition as the critical redundanc _0_5 |
ratio r. = M/N. This conditions implies that the time— _1 \

warped sequenceyy[m| has always more samples than o oz o2 o5 o8 1

o

0.2 0.4 0.6 0.8

-

the original sequence[n] in order to guarantee a stable ©  awlml: time-warped(d) [STFT (- [n])|: spectrogram
reconstruction of the signal from the inverse warping op-sequence. of the time—warped sequence.
erator. Then, for any sequen¥®z|m|, conditions under

which the discrete—time warping operator can be inverte: 4 z

only depend on the kernel function and the maximum of , 15

the derivative of the warping function. M N
0
05

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the performances of the To oz os o5 05 1
proposed method. To do so, we illustrate our algorithre) z[n] — (W= (Wa)) [n]: re- (f) wa(t): Derivative of the warp-
with two examples construction error. ing function.

Fig. 1. Numerical example of discrete—time warping opegtdn

A. Example 1: warping and unwarping of a discrete time—this exampleN’ = 200, M = 320 anda = 5. (2)(b) original cosine
sequence. (c)(d) time—warped sequence. (e) reconstitior between

sequence the original sequence and the sequence recovered from theedva

We illustrate, in this section, our method on a numericafeauence after 45 iterations. (f) derivative of the wargmgction.
example. We consider here the shift-invariant spégce
generated by

0

o
o
N
o
IS
o
=
o
©
-

non-linear modulation effect comes from the derivative
of the warping function represented Fig 1(f). Fig. 1(e)
shows the difference between the original sequence and
the sequence recovered with the inverse—warping operator
gfter45 iterations. As seen, the maximal reconstruction
error is of the order of the round—off precision we used
(e~222 10716 in our example).

7t

2
©*(t) = sinc(t) cos <%) _g,q)(1), (24)

where the functiodl[_, () = 1, t < |a|, 0 otherwise.
©*(t) has to be seen as an approximation of the sin
function in the sense théim, .., ¢*(t) = sinc(t). This
kernel belongs to the class of windowed-sinc interpolator
[3] and is generally preferable to the sinc function since
it has a compact support and leads to a reduction of the
ringing artifacts.

For anya < oo it is obvious thatp®(¢) verify Equ. 15
and Equ. 16, and the iterative algorithm always converges
for a stable seft’.

The sequence:n] = cos(2750m), n = 0,...,199
is first generated. The discrete—time warping operator
we use is defined by the warping functian,(t) = ‘ ; ;
t + 0.04 sin(4nt). The warped sequencey[m|, m = 0 50 100 150 200
0,...,319 is generated withy’ (t) by means of Equ. 12. Number of iterations
Then we use Equ. 14 and Alg. 1 to recover the Origina‘:ig. 2. Reconstruction error versus number of iterationsditierent
sequencer|n]. Results of the numerical simulation are sizes of resampling sets{ = 284, 303, 313, 350).
depicted in Fig. 1.

Fig. 1(a) shows the original discrete—time cosine se-
qguence and Fig. 1(b) its time—frequency representatiorkig. 2 and Fig. 3 show results of convergence. Fig 2
Fig. 1(c) shows the warped sequence and Fig. 1(d3hows the reconstruction errar. = 20 log|/z[n] —
its time—frequency representation. The instantaneous fréV)~*(Waz)[n]||2 as a function of the number of itera-
guency of the warped sequence is cosine modulated. Thi®ns, for different sizes of resampling sets. Clearly, the
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Fig. 3. Number of iterations necessary to reagh< —320 dB, versus
the size of the resampling set. A number of iterations eqaabQ0
signifies that the iterative algorithm does not convergetfi@r current
resampling set
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zp, [n]. T, [n].
reconstruction error is linearly decreasing on a dB scale

. . . . . . 0.05
as the iterations increase. This confirms the geometric
convergence of the inverse sampling algorithm stated in
Alg. 1.

As can be seen in Fig. 2, the size of the resampling set

. oy . . -0.05 -0.05
is critical as regards of thg number of iterations neededto ~ °  * gaifhles™ ° ™ Safples™
reach a fixed re_conStrUCt'Or.‘ erro_r bound. As an exgmple,(e) Error of separation betwed(f) Error of separation between
one needs 10 times more iterations for a resampling setthe “lower” component and théhe “higher” component and the
with size M = 284 than for a set with a size/ = extracted “lower” component. extracted “higher” component.
350. This is ar_‘_eXpeCted reSUIt_S'nce 'F is well-known Fig. 4. Example of separation of two close frequency moddlaignals
that the repartition of the sampling set is related to thevased on the proposed time—varying filtering method.
conditioning of the non—uniform sampling problem, and

so to the convergence rate of the iterative reconstruction _ o
algorithm. are very close and have constructive and destructive inter-

Fig 3 shows the number of iterations needed to reacferences on the spectrogram which leads to a “poor” rep-
the error bounce, < —640 dB, as a function of the resentation of the time—frequency content. The extraction
size of the resampling set. In this example, a number ofask illustrated at Fig. 5 consists to separate the “upper”
iterations equal 500 iterations signifies that the itegativ and the “lower” component into two signals. For this
algorithm does not converge for the current resamplinurpose, we choose the warping functieft) = ¢~ (t)
set. Below M = 280 the resampling set is not stable such that
and the iterative algorithm does not converge. Between
M = 280 and M = 318 the resampling set isritically
stableand a small perturbation of a stable set may give an

IS

500 1000 1500
Samples

0.05

Frequency
[}
=
\\
\
i
!

unstable set. Afted/ = 318, the resampling set is stable z[n]
and the number of iterations needed to reach the fixed Time
error bound is globally decreasing. This result speaks in
favour of Iarge.values fonf for p_ractlcal applications. W1 (Wazn] * by [n]) WY (W[n] * ha[n])
However, the size of the resampling set cannot be set as / -
large as wanted for computation burden reasons and a e
trade—off has to be found between converging rate and & % 2 [n]
computation cost. S nlr g
£ Time L Time
B. Example 2: separation of close time—frequency COMeig. 5. lllustration of the extraction task based on timerpiray
ponents operators. Top: Received signa[n|. Bottom—left: “lowpass” filtered

. . . signal. Bottom-right: “highpass” filtered signal.
In this example we consider a signal made of two close g 9 ghp 9

time—frequency components. Le{n| be the sequence
generated by the sum of two close cosine frequency
modulated components, [n] and z[n] where

21[n] = exp (2im (5¢0s(0.01 n) 4 0.10 n)), (25) 1o generates the warping operator.
R 99 (5 c0s(0.01 0.115 26 In Fig. 4(b), the spectrum of the sequent®z[n]
w2[n] = exp (2im (5.cos(0.01 n) +0. n).  (26) is shown. In the warped domain, both components are

and wheren = 0,...,2000. The spectrogram of the well-separated as the energy of the spectrum falls to
sequencer[n] is given in Fig. 4(a). The two components zeros around the normalized frequency 0.0707 Hz. Thus,

©(t) = 5co0s(0.01 n) +0.11 n, (27)



components can be separated by means of frequency filtéhe extraction of close time—frequency components. This
To do so, we first multiply the spectrum of the Fig. 4(b) has been done by means of a linear time—invariant filter,

by the frequency windows (f), i/z;(f) given by that has been applied in the warped domain.
) We have already shown that time—warped spaces, can
hAl(f) — {17 if f €10.0707,0.5], (28) be used for efficient non—stationary denoising purpose [4].
0, else. We think that this new definition of the class of discrete—
) time warping operators can be useful for multi-stages
i/z;(f) _ {L if f € [0,0.0707], (29) signal denoising algorithms and separation of components
0, else. with non-linear instantaneous frequency laws. Another

issue is the definition of a new class of time—varying filter

Then we recover signals and , the esti- : . . :
9 m [7] Zns [1] based on the demodulation properties of the time—warping

mates of respectively; [n] and z3[n], by means of the

inverse local harmonic Fourier with operator.
Zp, 0] = z[n] - (J-"la(f)) [n], (30) VI. APPENDIX: CONVERGENCEPROOF OF THE

1 ITERATIVE ALGORITHM
0 o~
wnaln) = aln] * " (F0a() . (3D
Thenzy, [n] contains the extracted “upper” component
as xzp,[n| contains the extracted “lower” component.
Spectrograms of the filtered sequenegs[n] andxy,, [n]
are shown in Fig. 4(c) and Fig. 4(d). The error of the
extraction procedure,, = z;[n] — zp,[n], i = 1,2 be-
tween the “true” component and the extracted component O =por (33)
are shown Fig. 4(e) and Fig. 4(f). (n) _ ne1 n
As can be seen, the components are well-separated and =P -+ (34)
the destructive interferences terms are suppressed. Thigen iteratesf,, converges tof uniformly and in the

Theorem 1:[11] Let ¢; in Wy(LL) and letP be a
bounded projection froni?2 onto V?(¢). Then there exist
a densityy > 0 such that anyf € V? can be recovered
from its samples{ f(z;) : z; € X} on anyo—dense set
X = {z;,j € J} by the iterative algorithm

SNR of the extracted components calculated by W (L?) and LY, norms. The convergence is geometric,
T2 that is,
SNR =10 logw( o]l 2), =12, ,
lz:[n] — @, [n]] 1 =F g < CIF=FDllweey < CNF=FPlzge™,
(32) (35)

is 31.41 dB for both which confirms a globally good for somea = af
performance of the extraction procedure. The error of

separation is smaller in the middle of the signal than The task is now to define suitable operatétsand Q
in the sides of the signal : as is also the case in lineaf, ;. qer 1o design the iterative algorithm. In Theo. 1, the

]tcime—_inva}/rli\ant filte(rji%g this sideh—effect is duehtp theﬁﬁlte quasi—interpolan® have to be generated from a suitable
unctionshy(f) andhz(f) that have a smoothing effect o nition of the unity [11]. An efficient possibility [12] is
on the amplitude of the extracted sequenegsn] and (1 jefine thevoronoi domainV: as

Thy[n].
Vi={n: |ng—n|<|n;—n|, k#i}. (36)

v) < 1.

\_/' CONCLUSION Then, the quasi—interpolant operatdrcan be defined by
We have established a new coherent framework to

extend the class of warping operators to the case of Qf = f(ni)xvi, (37)
discrete—time sequences and defined conditions under i
which such operators are invertible. wherexy, is the characteristic function df;.

We have first considered the original discrete signal as |n Theo. 1, the projection operat®rhas to be bounded
a sampling procedure in a shift-invariant space and showgperatorp : L2(R) — V. In [11], gives a formulation,
that any discrete—time warping operator can be written ag, L?, of a suitable class of operators:
a weighted resampling of the original signal.
Before giving stability conditions on the resampling set, Pof =Y LG —k)eil. — k), (38)
we have shown that any discrete—time warping operator k
can be inverted by an efficient iterative algorithm with whereg; is the dual ofp;. Since the interpolation kernel
geometric convergence. w; verify the exact interpolation condition defined in
Finally, we have illustrated, on a first example, theEqu. 10, then for anyf € L?(R) the operatorP can
performances of the method on numerical examples ange expressed by
showed that the error of reconstruction of the inverse
discrete—time warping operator is of the order of th _ Y ~ L
round—off precision after few iterations. The second exejpf zk: <Zn:f(n)%(' )+ o Gl k)> #il-k),
ample showed that this class of transformation allows for (39)



wheref, . € Ker(P). Simplifying and rewriting Equ. 39
leads to

Pr=>_f(n)D (pi(.—n),Gi(.— k) @i(- — k)

=Y f(n))_d[n— K. — k)
n k
=Y f(n)pi(- —n) (40)

Finally, gathering Theo. 1, Equ. 37 and Equ. 40 leads to
the reconstruction algorithm presented in Sec. IIl.

REFERENCES

[1] R. Baraniuk, “Unitary equivalence: A new twist on signal
processing,” [EEE Trans. on Signal Processingol. 43, no. 10,
pp. 2269-2282, Oct. 1995.

[2] R. Allen and D. Mills, Signal Analysis: time, frequency, scale, and
structure, Wiley—IEEE Press, 2003.

[3] G. Wolberg,Digital image warping IEEE computer society press,
1990.

[4] A. Jarrot, C. loana, and A. Quinquis, “Denoising undeera
signals propagating through multi-path channels,”Oiceans’05
Europe, Brest, FrangeJune 2005.

[5] T. Twaroch and F. Hlawatsch, “Modulation and warping x@ers
in joint signal analysis,” InlEEE-SP Symposium on Time—
Frequency and Time—Scale Analysis, Pittsburgh, USét. 1998,
pp. 9-12.

[6] A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bart&lhe
hyperbolic class of quadratic time—frequency represiemstpart
i: constant—q warping, the hyperbolic paradigm, propsrtiend
member.,”IEEE Trans. on Signal Processingol. 41, no. 12, pp.
3425-3444, Dec. 1993.

[7] F. Hlawatsch, A. Papandreou-Suppappola, and G. F. Bauck-
Bartels, “The hyperbolic class of quadratic time—frequerepre-
sentations part ii: subclasses, intersection with theetiimd power
class, regularity and unitarity.JEEE Trans. on Signal Processing
vol. 45, no. 2, pp. 303-315, Feb. 1997.

[8] C. A. Shannon, “A mathematical theory of communicatiothe
bell system technical journalol. 27, pp. 379-423 and 623-656,
1948.

[9] E. Meijering, “A chronology of interpolation: from aremt
astronomy to modern signal and image processifygceedings
of the IEEE vol. 90, pp. 319-342, Mar. 2002.

[10] P. Thévenaz, T. Blu, and M. Unser, “Interpolation sidd,” IEEE
Trans. on medical imagingol. 19, no. 7, pp. 739-758, July 2000.

[11] A. Aldroubi and K. Grdchenig, “Non-—uniform samplingné
reconstruction in shift-invariant spaces3IAM Review vol. 43,
no. 4, pp. 585-620, 2001.

[12] W. Chen and J. Rong-Quing, “Maximal gap of a sampling set
for the exact iterative reconstruction algorithm in shiftzariant
spaces,"|EEE Signal Processing Lettersol. 11, no. 11, pp. 655—
658, Nov. 2004.

[13] A. Beurling, “The collected work of a. beurling,” i€arelson et
al Eds, vol. 2, pp. 341-365. Birkauser, Boston, 1989.



