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Abstract— This paper establishes a new coherent frame-
work to extend the class of unitary warping operators [1] to
the case of discrete–time sequences. Providing somea priori
considerations on signals, we show that the class of discrete–
time warping operators finds a natural description in linear
shift–invariant spaces. On such spaces, any discrete–time
warping operator can be seen as a non–uniform weighted
resampling of the original signal. Then, gathering different
results from the non–uniform sampling theory, we propose
an efficient iterative algorithm to compute the inverse
discrete–time warping operator and we give the conditions
under which the warped sequence can be inverted. Numer-
ical examples show that the inversion error is of the order
of the numerical round–off limitations after few iteration s.

Index Terms— Time–frequency, Unitary equivalence, Im-
plementation of time–warping operators, Non–stationary
filtering.

I. I NTRODUCTION

Signal processing methods are often based on a change
of the representation space. This change is generally
performed by projecting the original space into another
one, adapted to a particular class of signals. The un-
derlying idea is that some spaces are better suited than
others to highlight specific properties of signals. As a
consequence, it is a natural feature to perform processing
tasks on the projected space since the useful information
is easily reachable. As a final step, a well–defined inverse
projection allows to return back to the original domain.
This projection–processing–inversion framework has been
successfully used in various signal processing domains
[2].

An interesting class of unitary projections is the class
of time warping operators [1]. This class has been used
in image processing [3] for non–linear coordinate trans-
formations and morphing purposes. In signal processing,
warping operators have been used to build time–frequency
representations with reduced interference terms, the so–
called VU–Cohen’s class [1]. Despite some other appli-
cations, the reversibility property of the time warping
operators has surprisingly not found signal–processing
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applications as is the case for other unitary transforms.
Recently, we have shown that a projection–processing–
inversion framework, in time–warped spaces, can be used
for efficient non–stationary denoising purpose [4]. Still,
because of our non–exact approach, cumulative errors led
to inaccurate results in multi–stages processing.

As far as our knowledge, an extension of the class of
time warping operators, while keeping in mind invert-
ibility, has not been derived yet in the case of discrete–
time signals. We believe that this lack may explain the
small number of signal–processing methods based on this
class of operators. As an attempt to fill this lack, this
paper establishes a new coherent framework to extend
the class of warping operators in the case of discrete–
time sequences. Main difficulties in the inversion of the
discrete–time operator is related to the inversion of the
resampling operator.

This inversion deals with the recovery of a signal from
its non–uniformly distributed samples which is a difficult
problem. Using recent results from non–uniform sampling
theory, we show that this problem can be solved by an it-
erative algorithm. We state that providing a dense enough
warped sequence, any discrete–time warping operator can
be numerically inverted. Then we gave a density relation
between the derivative of the warping function and the
shift–invariant space kernel to guarantee the existence of
the inverse discrete–time warping operator. Performances
of this procedure are illustrated on a toy example and
show that the precision the inverse discrete–time warp-
ing operator reach the finite round–off precision in few
iterations.

We believe that this new definition of the warping
operators for discrete–time signals will give new insight in
multi-components time–frequency signal processing and
will leads to efficient signal–processing methods that are
unknow so far.

The organization of this paper is as follows. Sec-
tion II starts with the classical definition of the class
of continuous time–warping operators and describes its
mathematical properties. Then a discrete–time formula-
tion is proposed in shift–invariant spaces. Section III
states the equivalence between inversion of the discrete–



time warping operator and the inversion of a resampling
operator. Gathering different results from the non–uniform
sampling theory, an efficient iterative implementation is
proposed, and invertibility conditions on the resampling
set are derived. Numerical and convergence results are
given section IV-A, and concluding remarks are given
section V.

II. CLASS OF UNITARY TIME–WARPING OPERATORS

A. Continuous formulation

Unitary warping methods play an important role in
large number of signal–processing applications. Such an
application is the design of time–frequency distributions
that match almost any one–to–one group delay or instanta-
neous frequency characteristics [5], [6], [7]. The principle
of the time–warping concept has been introduced in [1]
and is based on the transformation of the time axis by
means of a non–linear mapping. This can be done by
warping the original timet axis by an eventually non–
linear warping functionw(t) designed to match the signal
properties.

Let x(t) ∈ L2(R) be a square–integrable1 signal and
let
{
W , w(t) ∈ C1, w′(t) > 0 : x(t) → Wx(t)

}
, (1)

be a the class of warping operators wherew′(t) is the
derivative ofw(t) with respect tot and C1 is the class
of derivable functions. Warping transformation is a linear
transformation of the signalx(t) into the warped domain,
whose effect onx(t) is defined in [1] by

Wx(t) =

∣∣∣∣
dw(t)

dt

∣∣∣∣
1/2

x (w(t)) . (2)

In [1], the warping concept has been introduced in the
context of unitary transformations. An operatorU is said
to be unitary if it preserves the energy of the transformed
signal, that is‖Ux‖2

2 = ‖x‖2
2 and if it preserves the inner

product, that is〈Ux,Uy〉 = 〈x, y〉.
Thus, warping operators are unitary since the envelope

|dw(t)/dt|1/2 preserves the energy of the signal at the
output ofW that is for allx, y ∈ L2(R)

‖x‖2
2 =

∫

R

∣∣∣∣
dw(t)

dt

∣∣∣∣ |x (w(t))|
2
dt, (3)

=

∫

R

|x(t)|2 dt, (4)

and preserves the inner product that is

〈Wx,Wy〉 =

∫

R

W (x(t) y∗(t)) dt (5)

=

∫

R

x(t) y∗(t) dt. (6)

1The set of square–integrable functions denoted byL2(R) is a Hilbert
space with inner product〈x, y〉 =

R
R

x(t)y∗(t)dt, wherey∗(t) denotes

the conjugate, and with norm‖x(t)‖2 =
�R

R
x(t)2dt

�1/2
< ∞ for

all x(t), y(t) ∈ L2(R).

B. Discrete formulation

For real–life applications, the continuous formulation
of the class of warping operators defined in Sec. II-
A has to be turned into a discrete formulation. Let
x[n] ∈ R

N , n = 0, . . . , N − 1 be the sequence
obtained by uniform sampling of the continuous signal,
x[n] =

∫
t
x(t)δ(t− nT )dt with T the sampling rate, and

xW [m] ∈ R
M , m = 0, . . . ,M−1 be the warped discrete

sequence. Since we are now dealing with finite–length
sequences, we shall restrict ourself to the class of warping
functions defined in the interval[0, (N − 1)T ], for which
w(0) = 0, andw(nT ) = nT . For the sake of notation
simplicity, we denote bym the normalized sequence
m/(M − 1), m = 1 . . .M − 1. Then a straightforward
definition for the sampled discrete–time warping operators
is

(Wx)[m] = |ẇd (m)|
1/2

x (wd (m) (N − 1)T ) , (7)

where the warping functionwd(t) is defined by{wd :
[0, 1] → [0, 1] ∈ C1| wd(0) = 0, wd(1) = 1, ẇd(t) ≥ 0}.
From this definition, the computation of the discrete–time
warping operator requires samplesx (wd (m) (N − 1)T ).
However, from the sequencex[n], only samplesx(nT )
are known and the recovery of the missing samples has
to deal with this partial knowledge.

From the Shannon’s theory [8], it is well known that
any bandlimited signal can be exactly recovered from its
uniform samples with the so–calledsinc interpolatorby

x(t) =
∑

n

x[n]sinc(t− nT ), (8)

where sinc(t) = sin (πt) /πt. However this method is
generally not used because of the slow decay of the sinc
function with orderO(1/x) which is not well–suited for
practical applications.

More powerful methods can be found in an interpola-
tion perspective [9]. One of those is the general class of
interpolators inlinear shift–invariantspaces.

A linear shift–invariant spaceVφ is uniquely
determined by the kernel φ with Vφ =
Span({φ(. − k), k ∈ Z}). The general interpolation
formula onVφ is given by [10]

x =
∑

k∈Z

[∑

n

x[n]ψ(k − n)

︸ ︷︷ ︸
ak

]
φ(.− kT ), (9)

whereψ is the impulse response of some projection filters,
and the coefficients(ak) are the result of the filtering. In
the scope of this paper we shall restrict ourself to the
case ofexact interpolation, which is equivalent tox[n] =
x(t)|t=nT , n = 0..N − 1. The latter condition is met,
in the shift–invariant spaceVϕ generated by the kernel
ϕ(.) =

∑
k∈Z

ψ(k − n)φ(. − kT ), k ∈ Z, t ∈ R, if and
only if ϕ verifies theexact interpolation condition

ϕ(nT ) =
∑

k∈Z

ψ(k − n)φ(nT − kT ) = δn,0, ∀nZ, (10)

where δn,m denotes the Kronecker delta function. This
interpolation method allows a degree of freedom on the



choice of the interpolation kernelϕ(t). In truth, this
choice is a matter ofa priori considerations on the
signal x(t). If one deals with bandlimited signals then
ϕ(t) = sinc(t) has to be chosen to recover Equ. 8. On
the other hand, if the signalx(t) can be modelled by
a spline, then the cardinal B–spline [10] is the optimal
choice.

Let S : {x[n]} → xS [m], n = 0..N−1, m = 0..M−1
be the resampling operator on the shift–invariant spaceVϕ

defined by

xS [m] = (Sx)[m] =
∑

n

x[n]ϕ(f(m) − n), (11)

for some resampling mappingf . Definingnm = f(m) =
(N − 1) w (m), the setX = {nm}, m = 0..M − 1 is
a non–uniform sampling set for theVϕ space. This gives
the final expression for the class of discrete–time warping
operators

xW [m] = (Wx)[m] = |ẇd (m)|1/2 xS [m], (12)

which can be seen as a weighted resampling inVϕ of the
sequencex[n].

III. DISCRETE-TIME INVERSE WARPING OPERATOR

A. Problem statement

Our starting point is the definition of the discrete-time
inverse warping operatorW−1

(W−1(Wx))[n] , x[n]. (13)

Then, definingS−1 the inverse sampling operator, and
using Equ. 12 leads to

(W−1xW)[n] = (S−1 |ẇd (m)|
−1/2

xW [m])[n]. (14)

Inversion of the discrete-time warping operator resumes to
the inversion of the sampling operator which is a difficult
task in shift–invariant spaces for any kernel function.

B. Equivalence in non–uniform sampling theory

The problem of recovering a signalx ∈ V from a non–
uniformly distributed set of samples is generally referred
as a non–uniform sampling problem [11].

It can be shown that if the maximal gap between the
samplesnm, nm+1, is small enough, then anyx ∈ Vϕ

can be recovered from the set{xS [m]}, and one says that
the sampling setX is stable inVϕ. Conditions onX to
be stable inVϕ are discussed in Sec. III-C. Then, from
[11] and [12] we derive the following iterative algorithm
of the inverse sampling operator.

Alg. 1 (Inverse sampling operator):Let ϕ(.) be a ker-
nel for the shift–invariant spaceVϕ. For allϕ(t) verifying

∑

n

sup
t∈[0,1]

|ϕ(t− n)| <∞, ∀ n ∈ Z, t ∈ R, (15)

ϕ(t)|t=nT = δn,0, ∀n ∈ Z, t ∈ R, (16)

and providingX = {nm}, m = 0..M − 1 a stable
sampling set inVϕ, the uniform samplesx[n], n =
0..N−1 for all x ∈ Vϕ can be recovered by the following
iterative algorithm.

� Initialization

x(0)[n] = xS [k], k = argmin
m

{|n− nm|}

x
(0)
S

[m] =

N−1∑

n=0

x(0)[n]ϕ(nm − n)

� Until ‖x(p) − x(p−1)‖2 < ε do

∆x(p)[m] = xS [k] − x
(p−1)
S

[k], k = argmin
m

{|n− nm|}

x(p)[n] = x(p−1)[n] + ∆x(p)[n]

x
(p)
S

[m] =

N−1∑

n=0

x(p)[n]ϕ(nm − n)

� End

and limp→∞

∥∥x[n] − x(p)[n]
∥∥

2
= 0 with a geometric

convergence.

Proof of convergence related to this algorithm are
gathered in the appendix VI.

C. Maximal gap between samples

It is obvious that a signalx ∈ Vϕ is not always uniquely
determined for all sampling setX = {nm}, m =
0..M −1, especially ifX contains large gaps. In the case
of bandlimited function the Beurling–Landau’s theorem
[13] provides a condition onX to be stable. However, in
the case of shift–invariant spaces, this result does not hold
anymore and the exact conditions onX to be stable in
Vϕ are unknown so far. Recently, under–optimal stability
conditions have been determined for shift–invariant spaces
in [12].

Let Bm be theδ–ball defined by

Bm = {x : |nm − x| ≤ δ}, x ∈ [0, N − 1]. (17)

We define themaximal gapthe smallestδ such that
⋃

m

Bm = [0, N − 1]. (18)

Then it can be shown that the upper bound

δ <

∥∥∥∥
π Gϕ(ω)

T Gϕ̇(ω)

∥∥∥∥
0

, (19)

guarantees the sampling setX to be stable inVϕ. The
functions Gϕ(ω) and Gϕ̇(ω) are both related to the
Fourier transformϕ̂(ω) of the kernel functionϕ(t) by

Gϕ(ω) =

(
∑

k

|ϕ̂(ω + 2kπ)|2

)1/2

, (20)

Gϕ̇(ω) =

(
∑

k

|jω ϕ̂(ω + 2kπ)|2

)1/2

. (21)



BecauseGϕ(ω) and Gϕ̇(ω) are both2π–periodic, the
norm ‖.‖0 is given by‖G.(ω)‖0 = inf

ω∈[0,2π]
G.(ω).

Since the maximal gap is equal tosupm |nm+1 −
nm|/2, it is easy to show that

sup
m

|nm+1 − nm| ≤ sup(ẇd(t))
t∈[0,1]

2 (N − 1)

M − 1
≤ δ, (22)

and to establish the under–optimal stability condition such
that

rc =
1

2

∥∥∥∥
G′

ϕint
(f)

Gϕint
(f)

∥∥∥∥
∞

sup
t∈[0,1]

dwd(t)

dt
, (23)

and we denote this condition as the critical redundancy
ratio rc = M/N . This conditions implies that the time–
warped sequencexW [m] has always more samples than
the original sequencex[n] in order to guarantee a stable
reconstruction of the signal from the inverse warping op-
erator. Then, for any sequenceWx[m], conditions under
which the discrete–time warping operator can be inverted
only depend on the kernel function and the maximum of
the derivative of the warping function.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the performances of the
proposed method. To do so, we illustrate our algorithm
with two examples

A. Example 1: warping and unwarping of a discrete time–
sequence

We illustrate, in this section, our method on a numerical
example. We consider here the shift–invariant spaceVϕa

generated by

ϕa(t) = sinc(t) cos

(
πt

2a

)2

Π[−a,a](t), (24)

where the functionΠ[−a,a](t) = 1, t < |a|, 0 otherwise.
ϕa(t) has to be seen as an approximation of the sinc
function in the sense thatlima→∞ ϕa(t) = sinc(t). This
kernel belongs to the class of windowed–sinc interpolators
[3] and is generally preferable to the sinc function since
it has a compact support and leads to a reduction of the
ringing artifacts.

For anya <∞ it is obvious thatϕa(t) verify Equ. 15
and Equ. 16, and the iterative algorithm always converges
for a stable setX .

The sequencex[n] = cos(2π50n), n = 0, . . . , 199
is first generated. The discrete–time warping operator
we use is defined by the warping functionwd(t) =
t + 0.04 sin(4πt). The warped sequencexW [m], m =
0, . . . , 319 is generated withϕ5(t) by means of Equ. 12.
Then we use Equ. 14 and Alg. 1 to recover the original
sequencex[n]. Results of the numerical simulation are
depicted in Fig. 1.

Fig. 1(a) shows the original discrete–time cosine se-
quence and Fig. 1(b) its time–frequency representation.
Fig. 1(c) shows the warped sequence and Fig. 1(d)
its time–frequency representation. The instantaneous fre-
quency of the warped sequence is cosine modulated. This
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(a) x[n]: original sequence.
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(b) |STFT(x[n])|: spectrogram of
the original sequence.
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(d) |STFT(xW [n])|: spectrogram
of the time–warped sequence.
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(f) ẇd(t): Derivative of the warp-
ing function.

Fig. 1. Numerical example of discrete–time warping operators. In
this exampleN = 200, M = 320 and a = 5. (a)(b) original cosine
sequence. (c)(d) time–warped sequence. (e) reconstruction error between
the original sequence and the sequence recovered from the warped
sequence after 45 iterations. (f) derivative of the warpingfunction.

non–linear modulation effect comes from the derivative
of the warping function represented Fig 1(f). Fig. 1(e)
shows the difference between the original sequence and
the sequence recovered with the inverse–warping operator
after 45 iterations. As seen, the maximal reconstruction
error is of the order of the round–off precision we used
(ε ≈ 2.22 10−16 in our example).
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Fig. 2. Reconstruction error versus number of iterations for different
sizes of resampling sets (M = 284, 303, 313, 350).

Fig. 2 and Fig. 3 show results of convergence. Fig 2
shows the reconstruction errorεr = 20 log ‖x[n] −
W−1(Wx)[n]‖2 as a function of the number of itera-
tions, for different sizes of resampling sets. Clearly, the
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Fig. 3. Number of iterations necessary to reachεr < −320 dB, versus
the size of the resampling set. A number of iterations equal to 500
signifies that the iterative algorithm does not converge forthe current
resampling set

reconstruction error is linearly decreasing on a dB scale
as the iterations increase. This confirms the geometric
convergence of the inverse sampling algorithm stated in
Alg. 1.

As can be seen in Fig. 2, the size of the resampling set
is critical as regards of the number of iterations needed to
reach a fixed reconstruction error bound. As an example,
one needs 10 times more iterations for a resampling set
with size M = 284 than for a set with a sizeM =
350. This is an expected result since it is well-known
that the repartition of the sampling set is related to the
conditioning of the non–uniform sampling problem, and
so to the convergence rate of the iterative reconstruction
algorithm.

Fig 3 shows the number of iterations needed to reach
the error boundεr < −640 dB, as a function of the
size of the resampling set. In this example, a number of
iterations equal 500 iterations signifies that the iterative
algorithm does not converge for the current resampling
set. BelowM = 280 the resampling set is not stable
and the iterative algorithm does not converge. Between
M = 280 andM = 318 the resampling set iscritically
stableand a small perturbation of a stable set may give an
unstable set. AfterM = 318, the resampling set is stable
and the number of iterations needed to reach the fixed
error bound is globally decreasing. This result speaks in
favour of large values forM for practical applications.
However, the size of the resampling set cannot be set as
large as wanted for computation burden reasons and a
trade–off has to be found between converging rate and
computation cost.

B. Example 2: separation of close time–frequency com-
ponents

In this example we consider a signal made of two close
time–frequency components. Letx[n] be the sequence
generated by the sum of two close cosine frequency
modulated componentsx1[n] andx2[n] where

x1[n] = exp (2iπ (5 cos(0.01 n) + 0.10 n)) , (25)

x2[n] = exp (2iπ (5 cos(0.01 n) + 0.115 n)) , (26)

and wheren = 0, . . . , 2000. The spectrogram of the
sequencex[n] is given in Fig. 4(a). The two components
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(a) Spectrogram of the original
sequencex[n].
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(c) “Lower” extracted component
xh1
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(d) “Upper” extracted component
xh2

[n].
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Fig. 4. Example of separation of two close frequency modulated signals
based on the proposed time–varying filtering method.

are very close and have constructive and destructive inter-
ferences on the spectrogram which leads to a “poor” rep-
resentation of the time–frequency content. The extraction
task illustrated at Fig. 5 consists to separate the “upper”
and the “lower” component into two signals. For this
purpose, we choose the warping functionw(t) = ϕ−1(t)
such that
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x[n]

W−1(Wx[n] ∗ h1[n]) W−1(Wx[n] ∗ h2[n])

x1[n]
x2[n]

e(t)

Fig. 5. Illustration of the extraction task based on time–warping
operators. Top: Received signalx[n]. Bottom–left: “lowpass” filtered
signal. Bottom–right: “highpass” filtered signal.

ϕ(t) = 5 cos(0.01 n) + 0.11 n, (27)

to generates the warping operator.
In Fig. 4(b), the spectrum of the sequenceWx[n]

is shown. In the warped domain, both components are
well–separated as the energy of the spectrum falls to
zeros around the normalized frequency 0.0707 Hz. Thus,



components can be separated by means of frequency filter.
To do so, we first multiply the spectrum of the Fig. 4(b)
by the frequency windowŝh1(f), ĥ2(f) given by

ĥ1(f) =

{
1, if f ∈ [0.0707, 0.5],

0, else.
(28)

ĥ2(f) =

{
1, if f ∈ [0, 0.0707],

0, else.
(29)

Then we recover signalsxh1
[n] and xh2

[n], the esti-
mates of respectivelyx1[n] and x2[n], by means of the
inverse local harmonic Fourier with

xh1
[n] = x[n]

ϕ−1(t)
∗

(
F−1ĥ1(f)

)
[n], (30)

xh2
[n] = x[n]

ϕ−1(t)
∗

(
F−1ĥ2(f)

)
[n]. (31)

Thenxh1
[n] contains the extracted “upper” component

as xh2
[n] contains the extracted “lower” component.

Spectrograms of the filtered sequencesxh1
[n] andxh2

[n]
are shown in Fig. 4(c) and Fig. 4(d). The error of the
extraction procedureεxi

= xi[n] − xhi
[n], i = 1, 2 be-

tween the “true” component and the extracted component
are shown Fig. 4(e) and Fig. 4(f).

As can be seen, the components are well–separated and
the destructive interferences terms are suppressed. The
SNR of the extracted components calculated by

SNR = 10 log10

(
‖xi[n]‖2

‖xi[n] − xhi
[n]‖2

)
, i = 1, 2,

(32)
is 31.41 dB for both which confirms a globally good
performance of the extraction procedure. The error of
separation is smaller in the middle of the signal than
in the sides of the signal : as is also the case in linear
time–invariant filtering this side–effect is due to the filter
functionsĥ1(f) and ĥ2(f) that have a smoothing effect
on the amplitude of the extracted sequencesxh1

[n] and
xh2

[n].

V. CONCLUSION

We have established a new coherent framework to
extend the class of warping operators to the case of
discrete–time sequences and defined conditions under
which such operators are invertible.

We have first considered the original discrete signal as
a sampling procedure in a shift–invariant space and shown
that any discrete–time warping operator can be written as
a weighted resampling of the original signal.

Before giving stability conditions on the resampling set,
we have shown that any discrete–time warping operator
can be inverted by an efficient iterative algorithm with
geometric convergence.

Finally, we have illustrated, on a first example, the
performances of the method on numerical examples and
showed that the error of reconstruction of the inverse
discrete–time warping operator is of the order of the
round–off precision after few iterations. The second ex-
ample showed that this class of transformation allows for

the extraction of close time–frequency components. This
has been done by means of a linear time–invariant filter,
that has been applied in the warped domain.

We have already shown that time–warped spaces, can
be used for efficient non–stationary denoising purpose [4].
We think that this new definition of the class of discrete–
time warping operators can be useful for multi–stages
signal denoising algorithms and separation of components
with non–linear instantaneous frequency laws. Another
issue is the definition of a new class of time–varying filter
based on the demodulation properties of the time–warping
operator.

VI. A PPENDIX: CONVERGENCEPROOF OF THE

ITERATIVE ALGORITHM

Theorem 1:[11] Let ϕi in W0(L
1
w) and letP be a

bounded projection fromLp
ν ontoV p

ν (ϕ). Then there exist
a densityγ > 0 such that anyf ∈ V p

ν can be recovered
from its samples{f(xj) : xj ∈ X} on anyσ–dense set
X = {xj , j ∈ J} by the iterative algorithm

f (0) = PQf (33)

f (n) = PQ(f − fn−1) + fn (34)

Then iteratesfn converges tof uniformly and in the
W (Lp

ν) and Lp
ν norms. The convergence is geometric,

that is,

‖f−f (n)‖Lp
ν
≤ C‖f−f (n)‖W (Lp

ν) ≤ C′‖f−f (n)‖Lp
ν
αn,
(35)

for someα = α(γ) < 1.

The task is now to define suitable operatorsP andQ
in order to design the iterative algorithm. In Theo. 1, the
quasi–interpolantQ have to be generated from a suitable
partition of the unity [11]. An efficient possibility [12] is
to define thevoronoi domainVi as

Vi = {n : |nk − n| < |ni − n|, k 6= i} . (36)

Then, the quasi–interpolant operatorQ can be defined by

Qf =
∑

i

f(ni)χVi
, (37)

whereχVi
is the characteristic function ofVi.

In Theo. 1, the projection operatorP has to be bounded
operatorP : L2(R) → Vϕi

. In [11], gives a formulation,
in Lp

ν , of a suitable class of operators:

P : f →
∑

k

〈f, ϕ̃i(.− k)〉ϕi(.− k), (38)

whereϕ̃i is the dual ofϕi. Since the interpolation kernel
ϕi verify the exact interpolation condition defined in
Equ. 10, then for anyf ∈ L2(R) the operatorP can
be expressed by

Pf =
∑

k

〈
∑

n

f(n)ϕi(.− n) + fϕ⊥

i
, ϕ̃i(.− k)

〉
ϕi(.−k),

(39)



wherefϕ⊥

i
∈ Ker(P). Simplifying and rewriting Equ. 39

leads to

Pf =
∑

n

f(n)
∑

k

〈ϕi(.− n), ϕ̃i(.− k)〉ϕi(.− k)

=
∑

n

f(n)
∑

k

δ[n− k]ϕi(.− k)

=
∑

n

f(n)ϕi(.− n) (40)

Finally, gathering Theo. 1, Equ. 37 and Equ. 40 leads to
the reconstruction algorithm presented in Sec. III.
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