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We investigate the spatial quantum properties of the light emitted by a perfectly spatially de-
generate optical parametric oscillator (self-imaging OPO). We show that this device produces local
squeezing for areas bigger than a coherence are that depends on the crystal length and pump width.
Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of
the system, that it is highly multimode for realistic experimental parameters.

PACS numbers: 42.50.Dv, 42.65.Yj, 42.60.Da

I. INTRODUCTION

Highly multiplexed quantum channels are more and
more needed as complexity increases in the quantum
communication and information protocols. They can be
obtained by coupling many single mode quantum chan-
nels [1], but also by directly using highly multimode
quantum systems. In addition, the resolution of several
problems in quantum imaging [2] requires the generation
of non-classical states of light having adjustable shapes in
the transverse plane: this is the case for superresolution
[3], or for image processing below the standard quantum
noise level [4]. For all these reasons, it is very important
to develop a source of highly multimode non classical
light (squeezed and/or entangled) of arbitrary transverse
shape.

In the continuous variable regime, where optical res-
onators are necessary to efficiently produce non-classical
states, one of the keys to successfully generate multimode
light is the ability to operate a multimode optical res-
onator. Indeed, many theoretical proposals rely on the
use of an Optical Parametric Oscillator (OPO) operated
below threshold with planar cavities [5] or with confocal
cavities [6] [7] [8] which spatially filter half of the trans-
verse modes. However, these proposals still did predict
the arising of local vacuum squeezing and image ampli-
fication. Hence, we propose here to keep the parametric
process to generate non-classical light but also to over-
come the problems encountered by the use of a full trans-
verse degenerate cavity : the self-imaging cavity [9]. This
type of resonator, used for instance to improve the power
of multimode lasers [10], is in principle able to transmit
any optical image within its spatial bandwidth.

The aim of this article is to demonstrate that the self-
imaging OPO is an excellent candidate to produce lo-
cal squeezing, image amplification and also local EPR
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beams, taking into account its physical limitations such
as the thickness of the crystal and the finite size of the
various optical beams and detectors.

The following section (section II) describes the experi-
mental configuration and develops the theoretical model,
as well as the method used to determine the squeez-
ing spectra measured in well-defined homodyne detection
schemes. In section III, the results for such quantities re-
spectively in the near field and in the far field are given,
and we investigate the generation of EPR beams. Finally,
in section IV we compute the eigenmodes of the system
and show that they are closed to Hermite Gauss modes.

II. SELF-IMAGING OPTICAL PARAMETRIC
OSCILLATOR

A. The self-imaging cavity

We consider the parametric down conversion taking
place in a self-imaging optical parametric oscillator whose
cavity has been depicted in the pioneer article of Arnaud
[9]. Such a cavity is a fully transverse degenerate one,
which implies that all the transverse modes of same fre-
quency resonate for the same cavity length. From a ge-
ometrical point of view an optical cavity is self imaging
when an arbitrary ray retraces its own path after a single
round trip. In such a cavity, in the paraxial approxima-
tion, the ABCD matrix M after one round trip is equal
to identity:

(

A B
C D

)

=

(

1 0
0 1

)

(1)

The simplest self imaging ring cavity requires three lenses
of focal length fi, i = 1, 2, 3 ([9]). As depicted in Fig(1),
the ring cavity is self-imaging provided the distances cij

of the image plane of the lens i and the objet plane of
the lens j are given by:

c12 =
f1f2

f3
, c23 =

f2f3

f1
, c31 =

f3f1

f2
(2)
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FIG. 1: Self-imaging OPO scheme in a ring cavity
configuration

Let us consider an Optical Parametric Oscillator
(OPO) whose cavity is the self-imaging one described in
Fig.1 ([7]). A type I parametric medium of length lc is
centered on the plane C located at the longitudinal coor-
dinate z=0. The OPO is pumped by a gaussian TEM00

field Ep of amplitude Ap and frequency ωp = 2ωs. Its
waist wp is located at the plane C. The OPO works in
a longitudinal degenerate operation for which signal and
idler have the same frequency ωs. We assume that for
the pump wave, all the mirrors are totally transparent,
and that for the signal field, the coupling mirror Mc has
a small transmission t, the other three mirrors being per-
fectly reflecting.

B. Electric field operators

We will follow an operational approach [11] close to
the one developed in the confocal case [12], and in order
to keep the present article concise we give only the main
steps of the calculation. The intracavity signal field at
frequency ωs is described by a field envelope operator
B(x, z). In the self imaging resonator, at resonance, the
field can be decomposed on any transverse mode basis
(such as the Gauss-Laguerre modes for instance). The
field operator becomes :

B(x, z, t) =
∑

l

fl(x, z)al(z, t) , (3)

where al(z, t) is the annihilation operator of a photon in
mode l at the cavity position z and at time t. fl is the
amplitude of the l mode. This field obeys the standard
equal time commutation relation at a given transverse
plane at position z:

[B(x, z, t), B†(x’, z, t)] = δ(x − x’). (4)

Indeed, contrary to the confocal case [12] or to any par-
tially imaging cavity case, this operator is the same as
the one in the vacuum as no spatial filtering is induced
by the cavity. In the regime below threshold considered

here, the pump is not depleted, and fluctuations of the
pump field do not contribute, at first order to the fluctu-
ations of the signal.

The interaction Hamiltonian of the system, taking into
account the thickness of the crystal and the shape of the
pump, is given by

Hint =
i~g

2lc

∫ lc/2

−lc/2

dz′
∫ ∫

d2x′{AP (x’, z′)[B†(x’, z′, t)]2

−h.c.} , (5)

where g is the coupling constant proportional to the sec-
ond order nonlinear susceptibility χ(2).

C. Evolution equation of the field

In this section, we investigate the intracavity evolu-
tions of the signal field in the crystal plane C (near field)
and of its spatial fourier transform (far field), taking into
account the crystal thickness and the finite size of the
pump. The nonlinear interaction is supposed to be very
weak, so that the field amplitude in a single pass through
the crystal is only slightly affected. Therefore, the z de-
pendence of the operators al can be removed in Eq(5).
The longitudinal variation of the signal operator B is
due to the diffraction described in the modal functions
fl(x, z).

1. Near-field evolution

At the mid-point plane z = 0 of the crystal, designated
as the near field plane in the following, the B field evolu-
tion can be expressed as the sum of a damping and free
propagation term inside the cavity and of a parametric
interaction term :

∂B

∂t
(x, 0, t) = −γ(1 + iδ)B(x, 0, t) (6)

+g

∫ ∫

d2x”Kint(x,x”)B†(x”, 0, t) +
√

2γBin(x, 0, t)

where γ is the cavity escape rate, δ the normalized cavity
detuning of the modes, and Bin the input field opera-
tor. Kint is the integral kernel describing the non-linear
interaction. Assuming exact collinear phase matching
kp = 2ks, and neglecting walk off, this kernel associates
two points x and x” through the pump amplitude at the
average position x+x”

2 , and a function ∆(x−x”) describ-
ing the diffraction effects within the crystal.

Kint(x,x”) = Ap(
x + x”

2
)∆(x − x”) (7)

with

∆(x − x”) =
iks

4πlc

∫ lc/2

−lc/2

dz′

z′
e

iks
4z′

|x−x”|2 (8)



3

where ks = nsωs/c is the field wavenumber, and ns the
index of refraction at frequency ωs. It can be expressed
in terms of the integral sine function Si(x) =

∫ x

0
sin udu

u

∆(x − x”) =
ks

2πlc

(

π

2
− Si(

ks|x − x”|2
2lc

)

)

. (9)

In the thin crystal case (lc → 0) the function ∆(x ± x”)
tends to the usual two-dimensional distribution δ(x±x”.

In the thick crystal case, the parametric interaction
mixes the operators at different points of the transverse
plane, over areas of finite extension given by the spatial
extension of the kernel Kint. This extension is charac-
terized by the width of the sine function, which define a
coherence length :

lcoh =

√

λlc
πns

. (10)

When |x − x”| ≫ lcoh, ∆ and therefore the kernel Kint

take negligible values, there is no coupling between these
two positions. On the other hand, when |x − x”| ≪ lcoh

the coupling mixes the fluctuations. Thus, we can define
lcoh as the quantum resolution of our system.

Because of the finite size of the pump, the kernel will
take negligible values for x + x” > wp. Therefore, we
can define the number of transverse modes excited by the
parametric process inside the cavity, as the ratio between
the size of the pump, and the area defined by lcoh.

b =
w2

p

l2coh

(11)

This definition relies on the classical imaging properties
of the system. We will show in the last section of this
article show that it is consistent with the computation of
the eigenmodes of the system.

2. Far-field evolution

Let us introduce the spatial Fourier transform of the
signal field envelope operator ([12])

B̃(q, z, t) =

∫

d2x

2π
B(x, z, t)e−iq·x (12)

Equation (6) becomes:

∂B̃

∂t
(q, 0, t) = −γ(1 + i∆)B̃(q, 0, t) + (13)

g

∫

d2q”K̃int(q,q”)B†(q”, 0, t) +
√

2γB̃in(q, 0, t) ,

where the coupling Kernel K̃int(q,q”) is the Fourier
transform of the kernel (7) with respect to both argu-
ments. Straightforward calculations show that

K̃int(q,q’) = Ãp(q + q’)sinc[
lc

2ks
|q − q’

2
|2] (14)

where Ãp is the spatial Fourier transform of the Gaussian

pump profile, i.e. Ãp(q) =
w2

p

2 Ap exp (−|q|2 w2

p

4 ).
The sinc term in the coupling kernel of Eq. (14) is

the Fourier transform of the ∆ terms in Eq. (7)), and
correspond to the limited phase-matching bandwidth of
the nonlinear crystal. For a thin crystal, phase match-
ing is irrelevant and there is no limitation in the spatial
bandwidth of down-converted modes, whereas for a thick
crystal, the cone of parametric fluorescence has an aper-
ture limited to a bandwidth of transverse wavevectors
∆q ≈ 1/lcoh ∝ 1/

√
λlc. In the self imaging geometry, the

cavity ideally transmits all the Fourier modes, so that the
spatial bandwidth is only limited by the phase matching
along the crystal. Finally, we have to notice that in the
far field configuration the Ãp(q + q’) couples different
q-vectors modes within the finite width of the pump.

D. Input/output relation

In order to calculate the noise spectrum of the outgoing
field, an input/output method is used. The input field is
supposed to be in a coherent state and the fluctuations
at the output can be inferred. The relation linking the
outgoing fields Bout(x, t) to the intracavity and input
fields at the cavity input/output port[13] is:

Bout(x, t) =
√

2γB(x, t) − Bin(x, t) (15)

The evolution equation of the field, either in the near or
in the far field can be solved in the frequency domain by
introducing:

Bin/out(x, Ω) =

∫

dt√
2π

Bin/out(x, t)e−iΩt

which lead to the input/output relation, linking
Bin(x, Ω) and Bout(x, Ω).

In the case of a thin crystal in the near field[8], this
relation describes an infinite set of independent optical
parametric oscillators. In this case the squeezing spec-
trum can be calculated analytically. More generally, this
relation in near field links all points in the transverse
plane within the coherence area. In order to get the in-
put/output relation, we have to inverse the input/output
relation by using a numerical method used in [12].

E. Homodyne detection scheme in the near field
and far field

In the following sections we calculate the noise spec-
trum at the output of the OPO as a function of the de-
tected transverse mode selected by an homodyne detec-
tion scheme [14]. By mixing it with a coherent Local
Oscillator (LO) of various shape on a 50% beamsplit-
ter (reflection and transmission coefficients r = 1√

2
and

t = 1√
2
), one can measure the fluctuations on any trans-

verse mode of the output of the self imaging OPO, by
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measuring the photocurrents difference. The two identi-
cal detectors of different size and position are supposed to
have a perfect quantum efficiency. All the fields are evalu-
ated at the beam-splitter location, and the z-dependence
is omitted in the following.

We use two different configurations : near-field (x-
position basis) and far-field (q-vector basis). The com-
plete detection scheme is schematically shown in Fig.
2 and 3. In the near-field configuration, the imaging
scheme is composed of a two-lens afocal system (focal
length f ) which images the crystal/cavity center plane C
onto the detection planes D and D’(near field planes). In
the far field configuration, a single lens of focal length f

transforms its focal object plane C into the image focal
detection plane D. Any image in the object plane C is
tranformed into its fourier transform in the plane D (far
field plane).

FIG. 2: Balanced homodyne detection scheme in the
near field. Two matching lenses of focal f are used to

image the cavity center C at the detection planes D and
D’

FIG. 3: Balanced homodyne detection scheme in the far
field. A matching lens of focal f is used to obtain the far
field image of the object plane C at the detection planes

D and D’

For near-field imaging, the local oscillator can be ex-
pressed as αL(x, z) = |αL(x, z)|eiϕL(x,z). The difference
photocurrent is a measure of the quadrature operator:

EH(Ω) =

∫

det

dx
[

Bout(x, Ω)α∗
L(x) + Bout+(x,−Ω)αL(x)

]

(16)

where det is the image of the photodetection region at
the crystal plane C, and assumed to be identical for the
two photodetectors. The quantum efficiency of the pho-
todetector is assumed to be equal

For far-field imaging, the lens provides a spatial Fourier
transform of the output field Bout(x, Ω), so that at the

location of plane D the field Bout
D (x, Ω) is:

Bout
D (x, Ω) =

2π

λf
B̃out(

2π

λf
x, Ω) (17)

In this plane, Bout
D (x, Ω) is mixed with an intense station-

ary and coherent beam αD
LO(x) = 2π

λf α̃LO(2πx
λf , Ω), where

αL(x) has a gaussian shape, with a waist wLO. The ho-
modyne field has thus an expression similar to the near
field case, where functions of x are now replaced by their
spatial Fourier transforms:

EH(Ω) = (18)
∫

det

dq[B̃out(q, Ω)α̃∗
LO(q) + B̃out+(q,−Ω)α̃LO(q)]

In near- and far-field, the fluctuations δEH(Ω) of the
homodyne field around steady state are characterized by
a noise spectrum:

V (Ω) =

∫ +∞

−∞
dΩ′〈δEH(Ω)δEH(Ω′)〉 = N + S(Ω) (19)

where EH is normalized so that N gives the mean photon
number measured by the detector

N =

∫

det

dx|αL(x)|2 (20)

N represents the shot-noise level, and S is the normally
ordered part of the fluctuation spectrum, which accounts
for the excess or decrease of noise with respect to the
standard quantum level (S=0). One should note that
there is a complete equivalence between a setup with a
finite and flat local oscillator and infinite detectors, and
a flat and infinite local oscillator combine with finite size
detectors. We will often use the configuration with finite
size photodetectors in the following.

III. NON-CLASSICAL PROPERTIES

We expose here the main properties of the fields emit-
ted by the sub-threshold self-imaging OPO. We will first
consider the squeezing in the near-field in a very similar
manner as what was done for a confocal OPO. Then we
will study the far field properties and demonstrate local
EPR correlations.

A. Squeezing in the near field

As the self imaging cavity does not exert any spatial fil-
tering on the fields, the non-classical properties are very
similar to those observed in the single pass configura-
tion. We will here show the main squeezing predictions
for such a device, taking into account the thickness of
the crystal. The corresponding calculations are avalaible
upon request to the authors.
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Let us first consider the case of the thin crystal approx-
imation, where no characteristic length is introduced in
the model. We consider a thin crystal self-imaging OPO
pumped by a gaussian beam. We look at the output
quantum fluctuations with a pixel-like detector whose po-
sition is varied. In figure 4, the squeezing is plotted as
a function of the detector distance from the optical axis
for different mean powers of the pump (Ap = 1 corre-
sponding to the threshold on the axis). The squeezing is
maximum when the detection is centered on the pump
beam, and tends to zero far from the center. Figure 4
shows that the squeezing increases with the total pump
power and depends critically on its local value. Hence,
any transverse position on the crystal acts as an indepen-
dent OPO.

s
x

y

0

FIG. 4: Quantum noise at zero-frequency normalized
to the shot noise, for a pixel like detector located in the
near field plane, as a function of the pixel distance from

the origin s, normalized to the waist of the pump
(s = ρ

wp
) and for different pump values

The same behavior is observed in a configuration closer
to actual experimental scheme using a circular detector
whose radius ∆ρ can be varied. Like in the previous
case, the curves in figure 5 are crucially dependent on
the pump power.

In a more general realistic study, we have to take into
account the finite size of the crystal. For a thick crystal,
the coherence length lcoh introduced in equation (10) has
to be taken into account. On transverse size smaller than
this coherence length, fluctuations are mixed inside the
crystal.
In a first step, we consider a quasi plane pump for which
its waist wp, considered as infinite, is much larger than
the coherence area and can excite many modes. The de-
tector is centered with respect to the optical axis and its
size can be changed. As shown in figure 6, the squeezing
is maximum when its size is larger than the coherence
area, and the noise tends to shot noise for a pixel like

Ds
x

y

0

FIG. 5: Quantum noise at zero-frequency, normalized
to the shot noise, in the thin crystal case, for a circular

detector in the near field plane, as a function of the
radius of the detector normalized to the pump waist

∆s = ∆ρ
ωp

detector, whose size becomes smaller than the coherence
length. At the scale of the coherence area, the OPO can
be considered as locally single mode and the local fluctu-
ations are mixed. In regions smaller than the coherence
area independent modes having their own fluctuations
cannot be excited. For large detectors, several coherence
area can be excited, the OPO can be considered as mul-
timode, and the squeezing is maximum. The coherence
length sets the limit between single mode and multimode
operation.
In a second step, we have to consider a more realistic
case for which the pump waist wp is finite. In figure 7,
we represent the quantum noise as a function of the de-
tector size for different pump waist (normalized to the
coherence length). For detectors smaller than the coher-
ence area, the quantum noise goes to shot noise whatever
the size of the pump is. As explained in the last para-
graph, at that scale the OPO can be considered as locally
single mode and no squeezing can be obtained. For detec-
tors whose size is close the coherence area one, squeezing
is obtained. Nevertheless this squeezing degrades for a
given pump waist when the size of the detector increases.
For a given pump size, when the detector becomes larger
than the excited surface, vacuum fluctuations are cou-
pled to the detected signal and the squeezing degrades.
In the same way, for a given detector size, the squeezing
decreases with the waist of the pump. In fact a finite
pump size limits the number of excited modes. Increas-
ing the pump size, increase the number of excited modes
and improve the squeezing.
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FIG. 6: Quantum noise at zero-frequency, normalized
to the shot noise, in the thick crystal case, as a function
of the detector radius (scaled to lcoh).The detector in

centered on the pump beam
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FIG. 7: Quantum noise at zero-frequency, normalised to
the shot noise, in the thick crystal case, as a function of
the radial size of the detector scaled to lcoh, plotted for

several values of the parameter b =
wp

2

lcoh2

B. Entanglement in the far field

In the far field, the analysis has to be performed not
in crystal plane (near field plane) but in its Fourier plane
(far field plane). Squeezing can be observed in the far
field when using a symmetric detector. Indeed, contrary
to the near-field case, in the far field configuration the
down conversion process couples two symmetric k vec-
tors. Thus in order to recover the squeezing one needs
a symmetric detector relative to the optical axis of the
imaging system. The results obtained are therefore the
same as those in the confocal cavity, both with a plane
pump and with a finite pump. Corresponding calcula-
tions are also available upon request to the authors.

The advantage of the self imaging cavity is that it does
not couple the two symmetrical k vectors. Therefore one
expects correlations between two symmetrical areas in

the far field, as it will be shown in the following.
In order to characterize the correlation level between

symmetrical parts of the beam, we compare the quadra-
ture field fluctuations on two symmetrical pixels. In or-
der to get this quantities, we use the homodyne detection
scheme (figure 8) proposed in [14], where two symmet-
rical sets of two detectors measure a quadrature of the
field at two symmetrical positions.

FIG. 8: Homodyne detection scheme for the
measurement of the quadrature components of the
output field on two symmetrical pixels: pixel 1 and

pixel 2

Let us consider a pixel-like detector with finite detec-
tion area ∆ρj , according to equation 18 the detected field
quadrature is given by :

E
(j)
φL

(Ω) =

∫

∆ρj

dq
[

B̃out(q, Ω)|αL(q)|e−iφL+

B̃out+(q,−Ω)|αL(q)|eiφL

]

(21)

where we have introduced explicitly the phase of the lo-
cal oscillator. To compare the fluctuations of the field
quadrature measured in two symmetrical pixels j = 1
and j = 2, we compare the sum and the difference of
these quantities.

E
(±)
φL

(Ω) = E
(1)
φL

(Ω) ± E
(2)
φL

(Ω) (22)

In order to evaluate the degree of correlation or anti-
correlation, we introduce the corresponding fluctuations
spectra:

V
(±)
φL

(Ω) =

∫ +∞

−∞
dΩ′〈E(±)

φL
(Ω)E

(±)
φL

(Ω′)〉 (23)

Straightforward calculations show that:

V
(−)
φL

(Ω) = V
(+)
φL+π/2(Ω) (24)

It results that the correlation between E
(1)
φL

and

E
(2)
φL

is the same that the anticorrelation between
the corresponding orthogonal quadrature components

E
(1)
φL+π/2andE

(2)
φL+π/2. In order to calculate (23), we de-



7

velop the expression, so as:

V
(±)
φL

(Ω) =

∫ +∞

−∞
dΩ′〈E(1)

φL
(Ω)E

(1)
φL

(Ω′)〉

+

∫ +∞

−∞
dΩ′〈E(2)

φL
(Ω)E

(2)
φL

(Ω′)〉

±
∫ +∞

−∞
dΩ′〈E(1)

φL
(Ω)E

(2)
φL

(Ω′)〉

±
∫ +∞

−∞
dΩ′〈E(2)

φL
(Ω)E

(1)
φL

(Ω′)〉 (25)

The terms
∫ +∞
−∞ dΩ′〈E(i)

φL
(Ω)E

(i)
φL

(Ω′)〉 correspond to the
result of the fluctuation spectra of a homodyne detection
scheme using a single pixel. The other terms are cross
correlation terms, so that:

V −
φL

(Ω) = V +
φL+π/2(Ω) (26)

When these variances are bellow one, EPR beams are
obtained at the output of the self-imaging cavity. One
should note that these variances correspond to the fluctu-
ation spectrum obtained performing a homodyne detec-
tion in the far field with symmetric detectors : the usual
connection between squeezing and quantum correlations
is exhibited, both side of the same phenomenon[15]. More
specifically, the spatial entanglement in the far field arise
from the correlations between the modes aq ∼ eiq.x and
a−q ∼ e−iq.x. As aq and a−q are EPR entangled beams,
it is well know that the combination of modes:

aq + a−q√
2

∼ cos(q.x)

aq − a−q√
2

∼ sin(q.x) (27)

will be squeezed with respect to two orthogonal quadra-
ture components. The modes proportional to cos(q.x)
are the even modes: using an even detection scheme it is
possible to see squeezing, as already found in the previ-
ous section. Note that if we use an odd detection scheme
(symmetrical detectors with an odd local oscillator), it
will be also possible to see squeezing in the far field, but
on the orthogonal quadrature.

In order to ascertain the inseparable character of this
physical state, Duan et al.[16] have shown one needs to
make two joint correlation measurements on non com-
muting observables on the system. They have shown that
in the case of gaussian states there exists a criterion of
separability in terms of the quantity S12, that we will call
’separability’, and is given by:

S12(Ω) =
1

2
(V −

φL
(Ω) + V +

φL+ π
2

(Ω)) (28)

The suddicient Duan criterion for inseparability is given
by:

S12(Ω) < 1 (29)

First, we can perform a joint correlation measurement
using two split detectors of same but variable size as de-
picted in Figure 9. Figure 10 shows the evolution of the
separability at zero frequency S12(0) = S12 for different
b parameters, in function of the detector radius scaled to
lcohf = λf/2πwp [12]. Notice that results are the same as
a local squeezing measurement using a circular detector
of variable radius ∆ρ centered on the optical axis.

FIG. 9: Detection scheme for the inseparability
measurement

1

25

FIG. 10: Inseparability at zero-frequency, and at
resonance, as a function of the radial amplitude of the
detector ∆ρ(scaled to the coherence area lcohf) , in the

finite pump regime and far field approach and for
different values of b.

Fig. 11 shows the results obtained in the case of two
symmetrical pixels (pixel of size equal to the coherence
length lcohf , for different b values, in function of the dis-
tance between the two pixels ρ.

IV. PIXEL-BASED MODEL FOR THE
SELF-IMAGING OPO

We have so far described the non-classical properties
of the self-imaging OPO using detection based geometry,
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pixel 1

pixel 2

FIG. 11: Inseparability at zero-frequency, and at
resonance, as a function of the distance between the two
pixels ρ (scaled to the coherence area lcohf , in the finite
pump regime and far field approach and for different

values of b.

very appropriate to describe actual experiments. How-
ever, it is known that any input/output system can be de-
scribed by eigenmodes : for instance in the case of mode-
locked pulses of light incident on a non-linear cristal, it
has been shown that independent modes could be found,
either using the Schmidt decomposition in the single pho-
ton regime [17] or diagonalising the coupling matrix in
the continuous wave regime [18]. We propose here to use
the same technique to exhibit the eigenmodes of the sys-
tem and give a more precise value of the number of modes
involved in the process.

Let us pixelize the transverse space with pixels much
smaller than lcoh and develop the OPO equations onto
the pixel operators. To simplify the system, we can first
consider a one dimension pixelization. Let L be the size
of the pixelized zone, and N the number of pixels. The
pixel i is defined as the zone of size L

N near the abscissa

xi = i L
N , with i ranging from −N/2 to N/2. The pixel

operator is therefore :

Bi =

∫

Si

dxB(x) (30)

The pixel size must be chosen small enough to ensure
the constant value of Ap and Kint on every pixel. In this
case, the Kernel can be written as :

Kint(i, j) = Kint(xi,xj) (31)

and the evolution equation (6) at zero frequency then
becomes :

− γBi +
gL

N

∑

j

Kint(i, j)B
†
j +

√

2γBin
i = 0 (32)
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0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of the mode

C
ou

pl
in

g 
m

at
rix

 e
ig

en
va

lu
e

960 970 980 990 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of the mode

(b)

FIG. 12: a) Coupling Matrix Kint between two points
of the crystal b) Spectrum of this matrix.

To solve these N coupled equations, one must find the
eigenvectors and eigenvalues of the matrix Kint(i, j). The
K matrix and its spectrum are represented on figure 12.
Its diagonalization gives a set of eigenmodes with cor-
responding eigenvalues. Some of these eigenmodes are
represented on figure 13, they are very close to Hermite-
Gauss polynomials shapes whose characteristic waist is
imposed, in our case, by the pump waist.

These modes form a basis of uncorrelated modes of
the emitted light. Indeed, let us call Ck the eigenmode
of eigenvalue λk. As Kint(i, j) is both self-adjoint and
real, λk and Ck components are all real. In this basis,
equation 32 can be rewritten as set of equations, one per
mode :

− γCk +
gL

N
λkC†

k +
√

2γCin
k = 0 (33)

These equations can again be decoupled, using the
quadrature operators :

Ck+ = Ck + C†
k (34)

Ck− = −i(Ck − C†
k) (35)

The final set of equations is now given by
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FIG. 13: Shape of the eigenvectors of matrix Kint

(green) for the two highest positive (top) and negative
(bottom) eigenvalues compared to the one of the pump

(blue)

− γCk+ +
gL

N
λkCk+ +

√

2γCin
k+ = 0 (36)

−γCk− − gL

N
λkCk− +

√

2γCin
k− = 0 (37)

In this basis, using the input/output relations 15, we
can calculate the squeezing properties of the modes Cout

k± ,
in the near field of the z = 0 plane. Using the same
method as in [18], the fluctuations at zero frequency of
the quadratures of the eigenmode Cout

k± , normalized to
the shot-noise level, are given by :

Vk± = Λ±
k =

1 ∓ r λk

λmax

1 ± r λk

λmax

(38)

where r is the pump power normalized to the thresh-
old and λmax = maxk Λk the highest eigenvalue of Kint.
λmax is of special interest since it is related to the pump
power at threshold and Cmax is the corresponding las-
ing mode. One can see in the previous equation that for
each mode whose eigenvalue is different from zero one
of its two variances is bellow one, implying that it is
non-classical. However, for eigenvalues very small com-
pared to λmax, the squeezing is negligible. Thus one can
compute the number of relevant mode of the system, for
instance using a threshold eigenvalue (about 10% of the
maximum eigenvalue). Another possibility is to calculate
the cooperativity [17], defined from the eigenvalues of the
matrix.

κ =
(
∑

λ2
k)2

∑

λ4
k

(39)

The obtained number of modes is very close to the one
defined in equation (11) in a 1D case. For example, using
typical experimental values (1 cm long crystal of index 2
and a 300 µm at 1064 nm), we find b =

wp

lcoh
= 7.5 and

κ = 6.8. This means that in the 2D case, our self-imaging
OPO can potentially excite 50 modes.

One should note that from these eigenmodes it is pos-
sible to find the noise properties of the pixel operators
Bout

i after the cavity, in the near field of the crystal, by
inverting the Kint matrix, which gives :

Bout
i± =

∑

k

VikCout
k± =

∑

k

VikΛ±
k Cin

k± (40)

=
∑

kj

VikVjkΛ±
k Bin

j± (41)

Using these expressions, we can calculate the measured
fluctuations of the quadratures on a detector with an
arbitrary shape :

Vdet± =

∑

ij∈det < Bout
i± Bout

j± >
∑

i∈det < (Bout
i± )2 >

(42)

These numerical simulations show the exact same results
as the analytical results presented in section III.

We thus have shown two ways of solving the problem,
each having different physical significance. Indeed, in the
approach of section III we have seen that the system has
a coherence area that defines the smallest mode having
non-classical properties. This is relevant of quantum
imaging applications as it gives which pixel size one
can address with quantum techniques. In the present
section we have shown that a proper description of the
system consists of an eigenmodes decomposition, modes
that have Hermite-Gauss shape and whose squeezing
decreases with the mode number. However, these modes
shape are complex to measure experimentally.
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