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Abstract

The Keller-Segel system describes the collective motion ofcells that are attracted by a chemical
substance and are able to emit it. In its simplest form, it is aconservative drift-diffusion equa-
tion for the cell density coupled to an elliptic equation forthe chemo-attractant concentration.
This paper deals with the rate of convergence towards a unique stationary state in self-similar
variables, which describes the intermediate asymptotics of the solutions in the original variables.
Although it is known that solutions globally exist for any mass less 8π , a smaller mass condition
is needed in our approach for proving an exponential rate of convergence in self-similar variables.

Key words: Keller-Segel model, chemotaxis, drift-diffusion, self-similar solution, intermediate
asymptotics, entropy, free energy, rate of convergence, heat kernel
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1. Introduction and main results

In its simpler form, the Keller and Segel system reads





∂u
∂t
= ∆u− ∇ · (u∇v) x ∈ R

2 , t > 0 ,

−∆v = u x ∈ R
2 , t > 0 ,

u(·, t = 0) = n0 ≥ 0 x ∈ R
2 .

(1)

Throughout this paper, we shall assume that

n0 ∈ L1
+
(R2, (1+ |x|2) dx) , n0 logn0 ∈ L1(R2, dx) , and M :=

∫

R2
n0(x) dx< 8π . (2)
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These conditions are sufficient to ensure that a solution in a distribution sense exists globally in
time and satisfiesM =

∫

R2 u(x, t) dx for any t ≥ 0 , see [9, 7, 4]. In dimensiond = 2 , the Green
kernel associated to the Poisson equation is a logarithm andwe shall consider only the solution
given byv = − 1

2π log | · |∗u . Such a non-linearity is critical in the sense that the system is globally
invariant under scalings. To study the asymptotic behaviour of the solutions, it is therefore more
convenient to work in self-similar variables. Define the rescaled functionsn andc by

u(x, t) =
1

R2(t)
n

(

x
R(t)

, τ(t)

)

and v(x, t) = c

(

x
R(t)

, τ(t)

)

(3)

with R(t) =
√

1+ 2t andτ(t) = logR(t) . The rescaled system is





∂n
∂t
= ∆n− ∇ · (n (∇c− x)) x ∈ R

2 , t > 0 ,

c = − 1
2π

log | · | ∗ n x ∈ R
2 , t > 0 ,

n(·, t = 0) = n0 ≥ 0 x ∈ R
2 .

(4)

Under Assumptions (2), it has been proved in [4] that

lim
t→∞
‖n(·, · + t) − n∞‖L1(R2) = 0 and lim

t→∞
‖∇c(·, · + t) − ∇c∞‖L2(R2) = 0

where (n∞, c∞) is the unique solution of

n∞ = M
ec∞−|x|2/2

∫

R2 ec∞−|x|2/2 dx
= −∆c∞ , with c∞ = −

1
2π

log | · | ∗ n∞ .

Moreover,n∞ is smooth and radially symmetric. The uniqueness has been established in [2].
As |x| → +∞, n∞ is dominated bye−(1−ǫ)|x|2/2 for anyǫ ∈ (0, 1), see [4, Lemma 4.5]. From the
bifurcation diagram of‖n∞‖L∞(R2) as a function ofM, it follows that

lim
M→0+

‖n∞‖L∞(R2) = 0 . (5)

Under the assumption that the mass of the initial data is small enough, we first obtain es-
timates of the time decay rate of theLp-norms of the solutionu of (1). Similar bounds have
been obtained in several papers on Keller-Segel models suchas [12, 11, 6] (also see references
therein). The interested reader may refer to [1, 13] for recent results relating the parabolic-
parabolic and the parabolic-elliptic Keller-Segel systems. Nevertheless none of these previous
works deals with (1). See Remark 2 below for more details. In asecond step we prove the
convergence ofn(t) to n∞ in the weighted Sobolev spaceH1(e|x|

2/4dx) ast → +∞ . Finally, we
establish our main result, an exponential rate of convergence ofn(t) to n∞ in L2(n−1

∞ ):

Theorem 1. There exists a positive constant M∗ such that, for any initial data n0 ∈ L2(n−1
∞ dx)

of mass M< M∗ satisfying(2), the rescaled Keller-Segel system(4) has a unique solution n∈
C0(R+, L1(R2)) ∩ L∞((τ,∞) × R

2) for anyτ > 0 . Moreover, there are two positive constants, C
andδ , such that ∫

R2
|n(t, x) − n∞(x)|2 dx

n∞(x)
≤ C e− δ t ∀ t > 0 .

As a function of M ,δ is such thatlimM→0+ δ(M) = 1 .
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Remark 1.As it has been proved in [7, 4, 3], the conditionM ≤ 8π is necessary and sufficient for
the global existence of the solutions of (1) under Assumption (2). The extra smallness condition
in Theorem 1 appears at two levels in our proof:

1. We first prove a uniform decay estimate of the solution of (1) by themethod of the trap.
Our estimates and the version of the Hardy-Littlewood-Sobolev (HLS) inequality we use
require thatM < M1 for some positive, explicit constantM1 . This question is dealt with
in Section 2.

2. Rates of convergence in self-similar variables are givenby thespectral gapof a linearised
operator, denoted byL , which is associated to (4). This gap is estimated by a perturbation
method, which gives two further restrictions onM . See Sections 4 and 5.

The first occurrence of an extra smallness condition, in the proof of the sharp time decay of the
Lp norms, is not surprising. It appears in several similar estimates as for example in [12, 11, 6]
and references therein. On the other hand, the estimate of the spectral gap of the linearised
operatorL is rather crude. See Remark 4 for more comments in this direction.

Under a smallness condition for the mass, we shall also obtain a uniqueness result for the
solutions of (4), see Section 5. For sake of simplicity, we shall speak ofthesolution of (4), but,
in the preliminary results,thesolution has to be understood asa solution of the system which is
achieved as a limit of an approximation procedure, as in [9, 4].

Our results are actually stronger than the ones stated in Theorem 1. We can indeed consider
any solution of (4) as in [4]:

n ∈ C0(R+, L1(R2)) ,

n logn , n |x|2 ∈ L∞(R+, L1(R2)) ,

2∇
√

n+ x
√

n−
√

n∇c ∈ L1(R+, L2(R2)) ,

and prove alla priori estimates by standard but tedious truncation methods that we shall omit in
this paper.

2. Decay Estimates of u(t) in L∞(R2)

In this section we consider the Keller-Segel system (1), in the original variables.

Lemma 2. There exists a positive constant M1 such that, for any mass M< M1 , there is a
positive constant C= C(M) such that, if u∈ C0(R+, L1(R2))∩ L∞(R+loc ×R

2) is a solution of(1)
with initial datum n0 satisfying(2), then

‖u(t)‖L∞(R2) ≤ C t−1 ∀ t > 0 .

Proof. The result of Lemma 2 is based on themethod of the trap,which amounts to prove
thatH(t ‖u(·, t)‖L∞(R2) ,M) ≤ 0 wherez 7→ H(z,M) is a continuous function which is negative on
[0, z1) and positive on (z1, z2) for somez1, z2 such that 0< z1 < z2 < ∞ . Sincet 7→ t ‖u(·, t)‖L∞(R2)

is continuous and takes value 0 att = 0, this means thatt ‖u(·, t)‖L∞(R2) ≤ z1 ≤ z0(M) for any
t ≥ 0, whereH(z0(M),M) = supz∈[z1,z2] H(z,M) ≥ 0 . See Fig. 1.
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Fix somet0 > 0 . By Duhamel’s formula, a solution of (1) can be written as

u(x, t0+ t) =
∫

R2
N(x− y, t) u(y, t0) dy+

∫ t

0

∫

R2
N(x− y, t− s) ∇ · [u(y, t0 + s)∇v(y, t0 + s)

]

dy ds

(6)
whereN(x, t) = 1

4πt e−|x|
2/(4t) denotes the heat kernel. Next observe that

∫ t

0

∫

R2
N(x−y, t−s) ∇·[u(y, t0 + s)∇v(y, t0 + s)

]

dy ds=
∑

i=1,2

∫ t

0

∂N
∂xi

(·, t−s)∗
[(

u
∂v
∂xi

)

(·, t0+s)
]

ds .

TakingL∞ norms in (6) with respect to the space variable, we arrive at

‖u(·, t0 + t)‖L∞(R2) ≤
1

4πt
‖u(·, t0)‖L1(R2) +

∑

i=1,2

∫ t

0

∥
∥
∥
∥
∥

∂N
∂xi

(·, t − s) ∗
[(

u
∂v
∂xi

)

(·, t0 + s)
]
∥
∥
∥
∥
∥

L∞(R2)
ds .

We now consider the convolution term. By Young’s inequalityand because of the expression for
the kernelN, we can bound it usingκσ = ‖∂N/∂xi (·, 1)‖Lσ (R2) by

∫ t

0

∥
∥
∥
∥
∥

∂N
∂xi

(·, t − s) ∗
[(

u
∂v
∂xi

)

(·, t0 + s)
]
∥
∥
∥
∥
∥

L∞(R2)
ds

≤
∫ t

0

∥
∥
∥
∥
∥

∂N
∂xi

(·, t − s)
∥
∥
∥
∥
∥

Lσ(R2)

∥
∥
∥
∥
∥

(

u
∂v
∂xi

)

(·, t0 + s)
∥
∥
∥
∥
∥

Lρ (R2)
ds

= κσ

∫ t

0
(t − s)−(1− 1

σ
)− 1

2

∥
∥
∥
∥
∥

(

u
∂v
∂xi

)

(·, t0 + s)
∥
∥
∥
∥
∥

Lρ(R2)
ds

where 1/σ + 1/ρ = 1 . To enforce integrability later, we imposeσ < 2 . On the one hand
∥
∥
∥
∥
∥

(

u
∂v
∂xi

)

(·, t0 + s)
∥
∥
∥
∥
∥

Lρ(R2)
≤ ‖u(·, t0 + s)‖Lp(R2)

∥
∥
∥
∥
∥

∂v
∂xi

(·, t0 + s)
∥
∥
∥
∥
∥

Lq(R2)

with 1/p+ 1/q = 1/ρ , by Hölder’s inequality, whereas, on the other hand,
∥
∥
∥
∥
∥

∂v
∂xi

(·, t0 + s)
∥
∥
∥
∥
∥

Lq(R2)
≤ CHLS

2π
‖u(·, t0 + s)‖Lr (R2)

with 1/r − 1/q = 1/2 , by the HLS inequality. Here∇v is given by the convolution ofu with
the functionx 7→ −xi/(2π|x|2) andCHLS denotes the optimal constant for the HLS inequality.
Collecting all these estimates and using the fact that‖u(·, t)‖L1(R2) = M for anyt ≥ 0, we arrive at

‖u(·, t0 + t)‖L∞(R2) −
M
4πt

≤ κσ CHLS

π
M

1
p+

1
r

∫ t

0
(t − s)−(1− 1

σ
)− 1

2 ‖u(·, t0 + s)‖
2− 1

p−
1
r

L∞(R2)
ds

=
κσ CHLS

π
M

1
p+

1
r

∫ t

0
(t − s)

1
σ
− 3

2 (t0 + s)
1
p+

1
r −2

[

(t0 + s) ‖u(·, t0 + s)‖L∞(R2)

]2− 1
p−

1
r ds .

Now taket0 = t , and multiply the inequality by 2t to get

2t ‖u(·, 2t)‖L∞(R2) −
M
2π

≤ 2κσ CHLS

π
M

1
p+

1
r t

∫ t

0
(t − s)

1
σ
− 3

2 (t + s)
1
p+

1
r −2

[

(t + s) ‖u(·, t + s)‖L∞(R2)

]2− 1
p−

1
r ds .

4



Observe that for anyt > 0 we have

sup
0≤s≤t

(t + s) ‖u(·, t + s)‖L∞(R2) ≤ sup
0≤s≤t

2s ‖u(·, 2s)‖L∞(R2) =: ψ(t) ,

whereas1
σ
− 3

2 = −
1
p −

1
r and

t
∫ t

0
(t − s)

1
σ
− 3

2 (t + s)
1
p+

1
r −2ds =

σ

2− σ .

From Duhamel’s formula (6), it follows thatu ∈ C0(R+, L∞(R2) andψ is continuous. Hence we
have

ψ(t) ≤ M
2π
+C0

(

ψ(t)
)θ with C0 =

2κσ CHLS

π
M

1
p+

1
r

σ

2− σ , θ = 2− 1
p
− 1

r
.

Consider the functionH(z,M) = z−C0 zθ−M/(2π) , so thatH(ψ(t),M) ≤ 0 and notice thatθ > 1 .
For M > 0 fixed,z 7→ H(z,M) achieves its maximumH(z0(M),M) = θ−1

θ
(C0 θ)1/(1−θ) − M

2π at
z = z0(M) = (C0 θ)1/(1−θ). For M small enough, as we shall see below,H(z0(M),M) > 0 . Since
ψ is continuous andψ(0) = 0 thenψ(t) < z0(M) for anyt ≥ 0 . This provides anL∞ estimate on
ψ which is uniform int ≥ 0 .

0 z

H(z,M)

H(z0(M),M)

H(z,M0(p))

z0(M)

z0(M0(p))

−

M0(p)
2π

−

M
2π

Figure 1: Themethod of the trapamounts to prove thatH(z,M) ≤ 0 implies thatz = ψ(t) is bounded byz0(M) as long
asH(z0(M),M) > 0, i.e. for M < M0(p). For somep > 4, the plots of the functionsz 7→ H(z,M) with M < M(p) and
z 7→ H(z,M0(p)) are shown above.

Recall that the exponentsσ , ρ , p , q andr are related by





1
σ
+

1
ρ
= 1 , 1 < σ < 2 ,

1
p +

1
q =

1
ρ
, p , q > 2 ,

1
r −

1
q =

1
2 , r > 1 .

For the choicer = 4/3 , q = 4 , it is known, see [10], that the optimal constant in the HLS
inequality isCHLS = 2

√
π . As a consequence, we haveC0 =

4κσ√
π

M
1
p+

1
4 σ

2−σ , with σ =
4p

3p−4 .
The exponentp > 4 still has to be chosen. A tedious but elementary computation shows that
there existsM0(p) such thatH(z0(M),M) > 0 if and only if M < M0(p) and supp∈(4,+∞) M0(p) =
limp→+∞ M0(p) ≈ 0.822663 . �

A simple interpolation argument then gives the following corollary.
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Corollary 3. For any mass M< M1 and all p ∈ [1,∞] , there exists a positive constant C=
C(p,M) with limM→0+ C(p,M) = 0 , such that, if u is a solution of(1) as in Lemma 2,

‖u(t)‖Lp(R2) ≤ C t−(1− 1
p ) ∀ t > 0 .

Remark 2.Similar decay rates for theLp norms of the solutions to global Keller-Segel systems
have been obtained in a large number of previous references,but always in slightly different situ-
ations. For instance, in [12], the authors consider a parabolic-parabolic Keller-Segel system with
small and regular initial data. More recently, in [6] a parabolic-parabolic Keller-Segel system is
considered for small initial data and spatial dimensiond ≥ 3 . On the other hand, a parabolic-
elliptic system is treated in [11] where the equation for thechemo-attractant is slightly different
from ours.

Remark 3.The rates obtained in Corollary 3 are optimal as can easily bechecked using the
self-similar solutions (n∞, c∞) of (4) defined in Section 1. This is the subject of the next section.

3. Lp and H1 estimates in the self-similar variables

Consider now the solution (n, c) defined in the introduction by (3) and solving (4). By Corol-
lary 3 we immediately deduce that, for anyp ∈ (1,∞] ,

‖n(t)‖Lp(R2) ≤ C1 ∀ t > 0 (7)

for some positive constantC1 . A direct estimate gives

2π ‖∇c(t)‖L∞ ≤ sup
x∈R2

∫

R2

n(t, y)
|x− y| dy≤ sup

x∈R2

∫

|x−y|≥1

n(t, y)
|x− y| dy

︸                      ︷︷                      ︸

≤M

+ sup
x∈R2

∫

|x−y|≤1

n(t, y)
|x− y| dy

︸                      ︷︷                      ︸

≤
(

2π p−1
p−2

) p
p−1 ‖n‖Lp(R2)

where the last term has been evaluated by Hölder’s inequality with p > 2 . Hence we obtain

‖∇c(t)‖L∞(R2) ≤ C2 ∀ t > 0 . (8)

Lemma 4. In (7) and (8), the constants C1 and C2 depend on M and are such that

lim
M→0+

Ci(M) = 0 i = 1 , 2 .

Proof. This result can easily be retraced in the above computations. Details are left to the reader.
�

With K = K(x) = e|x|
2/2, let us rewrite the equation forn as

∂n
∂t
− 1

K
∇ · (K ∇n) = −∇c · ∇n+ 2n+ n2 . (9)

We are now interested in the bounds satisfied by the functionn(t) in the weighted spacesL2(K)
andH1(K) .

6



Proposition 5. For all masses M∈ (0,M1), there exists a positive constant C such that, if n is a
solution of (9) with initial data n0 ∈ L2(K) satisfying(2), then

‖n(t)‖L2(K) ≤ C ∀ t > 0 .

Proof. We multiply the equation (9) byn K and integrate by parts to obtain

1
2

d
dt

∫

R2
|n|2 K dx+

∫

R2
|∇n|2 K dx= −

∫

R2
n∇c ·∇n K dx+2

∫

R2
n2 K dx+

∫

R2
n3 K dx . (10)

As in [8, Corollary 1.11], we recall that for anyq > 2 andε > 0 , there exists a positive constant
C(ε, q) such that

∫

R2
n2 K dx≤ ε

∫

R2
|∇n|2 K dx+C(ε, q) ‖n‖2Lq(R2) .

This estimate, (7) and (8) give a bound of the right hand side of (10), namely
∣
∣
∣
∣
∣
−

∫

R2
n∇c · ∇n K dx+ 2

∫

R2
n2 K dx+

∫

R2
n3 K dx

∣
∣
∣
∣
∣
≤ ε

∫

R2
|∇n|2 K dx+C

up to the multiplication ofε by a constant that we omit for simplicity, from which we deduce
that,

1
2

d
dt

∫

R2
|n|2 K dx+ (1− ε)

∫

R2
|∇n|2 K dx≤ C .

We finally use the classical inequality, which is easily recovered by expanding the square in
∫

R2 |∇(n K)|2 K−1 dx≥ 0 , namely

∫

R2
|n|2 K dx≤ 1

2

∫

R2
|∇n|2 K dx

as in [8] to obtain a uniform bound ofn(t) in L2(K) . �

Next we deduce a uniform bound inH1(K) .

Corollary 6. Under the assumptions of Proposition 5, there exists T> 0 and C> 0 such that

‖n(t)‖H1(K) ≤ C max
{

1,
√

T√
t

}

∀ t > 0 .

Proof. Sincen is a classical solution of (9), it also solves the corresponding integral equation,

n(t, x) = S(t) n0(x) −
∫ t

0
S(t − s) (∇c · ∇n)(s) ds+

∫ t

0
S(t − s) (2n+ n2)(s) ds

whereS(t) is the linear semi-group generated by the operator−K−1∇·(K ∇·) on the spaceL2(K) .
Then

‖n(t)‖H1(K) ≤ ‖S(t) n0‖H1(K)+

∫ t

0
‖S(t−s) (∇c·∇n)(s)‖H1(K) ds+

∫ t

0
‖S(t−s) (2n+n2)(s)‖H1(K) ds

7



Using‖S(t) h‖H1(K) ≤ κ (1+ t−1/2) ‖h‖L2(K) for someκ > 0 , and (8), we obtain

1
κ

(

‖n(t)‖H1(K) − ‖S(t) n0‖H1(K)

)

≤
∫ t

0

(

1+ 1√
t−s

)

‖(∇c · ∇n)(s)‖L2(K) ds+
∫ t

0

(

1+ 1√
t−s

)

‖(2n+ n2)(s)‖L2(K) ds

≤
∫ t

0

(

1+ 1√
t−s

)

‖∇c‖L∞(R2)‖∇n‖L2(K) ds+
∫ t

0

(

1+ 1√
t−s

) (

2‖n‖L2(K) + ‖n‖L∞(R2)‖n‖L2(K)

)

ds

≤ C2

∫ t

0

(

1+ 1√
t−s

)

‖∇n(s)‖L2(K) ds+ (2+C1)
∫ t

0

(

1+ 1√
t−s

)

‖n(s)‖L2(K) ds

with C1 defined in (7) andC2 in (8). Hence, for anyτ > 0 fixed, we have

1
κ
‖n(t + τ)‖H1(K) ≤

(

1+ 1√
t

)

C1 +C3

∫ t

0

(

1+ 1√
t−s

)

‖n(s+ τ)‖H1(K) ds (11)

with C3 = max{C2, 2+C1} . Let

H(T) = sup
t∈(0,T)

∫ t

0

(

1+ 1√
t−s

)

‖n(s+ τ)‖H1(K) ds .

If we chooseT > 0 such that 1
2κ = C3

∫ T

0

(

1 + 1√
T−s

)

ds = C3
(

T + 2
√

T
)

, that is, T =
( √

1+ (2κC3)−1 − 1
)2

, then an integration of (11) on (0,T) gives

1
κ

H(T) ≤ C1

∫ T

0

(

1+ 1√
T−s

) (

1+ 1√
s

)

ds+C3

∫ T

0

(

1+ 1√
T−s

)

H(T) ds

=

(

π + 4
√

T + T
)

C1 +
1
2κ

H(T) ,

that is
H(T) ≤ 2

(

π + 4
√

T + T
)

κC1 .

Injecting this estimate into (11), we obtain

1
κ
‖n(t + τ)‖H1(K) ≤

(

1+ 1√
t

)

C1 +C3 H(T) ≤
(

1+ 1√
t

)

C1 + 2
(

π + 4
√

T + T
)

κC1 C3

for anyt ∈ (0,T) . This bounds‖n(T + τ)‖H1(K) for anyτ > 0 , and thus completes the proof with
C given by the right hand side of the above inequality att = T . �

We shall actually prove thatn(t) can be bounded not only inH1(K) but also inH1(n−1
∞ ) .

However, in order to prove that, we need a spectral gap estimate, which is the subject of the next
section.

4. A spectral gap estimate

Introducef andg defined by

n(x, t) = n∞(x)(1+ f (x, t)) and c(x, t) = c∞(x)(1+ g(x, t)) .
8



By (4), (f , g) is solution of the non-linear problem





∂ f
∂t
− L(t, x, f , g) = − 1

n∞
∇ · [ f n∞ ∇ (g c∞)

]

x ∈ R
2 , t > 0 ,

−∆(c∞ g) = f n∞ x ∈ R
2 , t > 0 ,

(12)

whereL is the linear operator given by

L(t, x, f , g) =
1

n∞
∇ · [n∞ ∇ ( f − g c∞)

]

.

The conservation of mass is replaced here by
∫

R2 f n∞ dx= 0 .

Lemma 7. Letσ be a positive real number. For any g∈ H1 ∩ L1(R2) such that
∫

R2 g dx= 0, we
have ∫

R2

(

|∇g|2 + |x|
2

4σ2
|g|2

)

dx≥ 2
σ

∫

R2
|g|2 dx .

Proof. The Poincaré inequality for the Gaussian measuredµσ(x) = e−|x|
2/(2σ) dx is given by

σ

∫

R2
|∇ f |2 dµσ ≥

∫

R2
| f |2 dµσ ∀ f ∈ H1(dµσ) such that

∫

R2
f dµσ = 0 .

The result holds withg = f e−|x|
2/(4σ) . Notice that forσ = 1, the second eigenvalue of the

harmonic oscillator inR2 is 2 , thus establishing the optimality in both of the above inequalities.
The caseσ , 1 follows from a scaling argument. �

Proposition 8. Consider a stationary solution n∞ of (4). There exist a constant M2 ∈ (0, 8π)
and a functionΛ = Λ(M) such that, for any M∈ (0,M2) ,Λ(M) > 0 and

∫

R2
|∇ f |2 n∞ dx≥ Λ(M)

∫

R2
| f |2 n∞ dx ∀ f ∈ H1(n∞ dx) such that

∫

R2
f n∞ dx= 0 .

Moreover,limM→0+ Λ(M) = 1 .

Proof. We defineh =
√

n∞ f =
√
λ e−|x|

2/4+c∞/2 f with λ = M
(∫

R2 e−|x|
2/4+c∞/2 dx

)−1
. By

expanding the square, we find that

λ |∇ f |2 n∞ = |∇h|2 + |x|
2

4
h2
+

1
4
|∇c∞|2 h2

+ h∇h · (x− ∇c∞) − 1
2

x · ∇c∞ h2 .

An integration by parts shows that
∫

R2
h∇h · x dx= −

∫

R2
h2 dx .

Another integration by parts and the definition ofc∞ give
∫

R2
h∇h · ∇c∞ dx=

1
2

∫

R2
h2 (−∆c∞) dx=

1
2

∫

R2
h2 n∞ dx≤ 1

2
‖n∞‖L∞(R2)

∫

R2
h2 dx .

9



Recall that by (5), limM→0+ ‖n∞‖L∞(R2) = 0 . On the other hand, we have

1
2

∫

R2
x · ∇c∞ h2 dx≤ σ2 − 1

σ2

∫

R2

|x|2

4
h2 dx+

1
4

σ2

σ2 − 1

∫

R2
|∇c∞|2 h2 dx

for anyσ > 1 . Hence it follows from Lemma 7 that

λ

∫

R2
|∇ f |2 n∞ dx≥





2
σ
− 1−

σ2 ‖∇c∞‖2L∞(R2)

4(σ2 − 1)
− 1

2
‖n∞‖L∞(R2)





︸                                                  ︷︷                                                  ︸

≤Λ(M)

∫

R2
h2 dx

︸     ︷︷     ︸

=λ
∫

R2 | f |2 n∞ dx

.

The coefficientΛ(M) is positive for anyM < M2 with M2 > 0, small enough, according to (5), (8)
and Lemma 4. Notice that for each given value ofM < M2, an optimal value ofσ ∈ (1, 2) can
be found. �

We shall now consider the case of an initial datan0 such thatn0/n∞ ∈ L2(n∞), which is a
slightly more restrictive case than the framework of Section 3. Indeed, there exists a constant
C > 0 such that for anyx ∈ R

2 with |x| > 1 we have|c∞+M/(2π) log |x|| ≤ C, see [4, Lemma 4.3],
whencen∞ K = ec∞ behaves likeO(|x|−M/(2π)) as|x| → ∞ . If (n, c) is a solution of (4), then

∂n
∂t
− n∞ ∇ ·

(

1
n∞
∇n

)

= (∇c∞ − ∇c) · ∇n+ 2n+ n2 .

Corollary 9. Under the assumptions of Theorem 1, if M< M2, then any solution of(4) is
bounded in L∞(R+, L2(n−1

∞ dx)) ∩ L∞((τ,∞),H1(n−1
∞ dx)) for anyτ > 0 .

Proof. The uniform bound inL2(n−1
∞ dx) follows from (10), up to the replacement ofK by

1/n∞ , which is straightforward. As for the bound inL∞((τ,∞),H1(n−1
∞ dx)) , one can observe

that the linear semi-groupS(t) generated by the self-adjoint operator−n∞ ∇·
(

1
n∞
∇n

)

on the space

L2(n−1
∞ ) , with domainH2(n−1

∞ ), satisfies‖S(t) n0‖H1(n−1
∞ dx) ≤ κ√

t
‖n0‖L2(n−1

∞ dx) for someκ > 0 , see
for instance [5, Theorem VII.7]. The estimate then follows as in Corollary 6. �

5. Proof of Theorem 1

This Section is devoted to the proof of our main result. If we multiply equation (12) byf n∞
and integrate by parts, we get

1
2

d
dt

∫

R2
| f |2 n∞ dx+

∫

R2
|∇ f |2 n∞ dx=

∫

R2
∇ f · ∇ (g c∞) n∞ dx+

∫

R2
∇ f · ∇(g c∞) f n∞ dx .

(13)
The first term of the right hand side can be estimated as follows. By the Cauchy-Schwarz in-
equality, we know that

∫

R2
∇ f · ∇ (g c∞) n∞ dx≤ ‖∇ f ‖L2(n∞ dx) ‖∇(g c∞)‖L2(n∞ dx) .
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By Hölder’s inequality, for anyq > 2 we have

‖∇(g c∞)‖L2(n∞ dx) ≤ M1/2−1/q ‖n∞‖1/qL∞(R2)
‖∇(g c∞)‖Lq(R2) .

The HLS inequality with 1/p = 1/2+ 1/q then gives

‖∇(g c∞)‖Lq(R2) ≤
1
2π

(∫

R2

∣
∣
∣
∣ ( f n∞) ∗ 1

| · |

∣
∣
∣
∣

q
dx

) 1
q

≤ CHLS

2π
‖ f n∞‖Lp(R2) .

By Hölder’s inequality,‖ f n∞‖Lp(R2) ≤ ‖ f ‖L2(n∞ dx) ‖n∞‖
1/2
Lq/2(R2)

, from which we get
∫

R2
∇ f · ∇(g c∞) f n∞ dx≤ C∗ ‖ f ‖L2(n∞ dx) ‖∇ f ‖L2(n∞ dx) (14)

whereC∗ = C∗(M) := CHLS (2π)−1 M1/2−1/q ‖n∞‖1/2Lq/2(R2)
‖n∞‖1/qL∞(R2)

goes to 0 asM → 0 .
As for the second term in the right hand side of (13), usingg c∞ = c − c∞ and the Cauchy-

Schwarz inequality, we have
∫

R2
∇ f · ∇(g c∞) f n∞ dx ≤ ‖∇c− ∇c∞‖L∞(R2) ‖ f ‖L2(n∞ dx) ‖∇ f ‖L2(n∞ dx)

≤
(

‖∇c‖L∞(R2) + ‖∇c∞‖L∞(R2)

)

‖ f ‖L2(n∞ dx) ‖∇ f ‖L2(n∞ dx) .

We observe that∇(g c∞) = ∇c−∇c∞ is uniformly bounded since‖∇c‖L∞(R2) ≤ C2(M) by (8), and
‖∇c∞‖L∞(R2) is also bounded byC2(M), for the same reasons.

∫

R2
∇ f · ∇(g c∞) f n∞ dx≤ 2C2(M) ‖ f ‖L2(n∞ dx) ‖∇ f ‖L2(n∞ dx) . (15)

Moreover, according to Lemma 4, we know that limM→0+ C2(M) = 0 .
By Proposition 8,‖ f ‖L2(n∞ dx) ≤ ‖∇ f ‖L2(n∞ dx) /

√
Λ(M) with limM→0+ Λ(M) = 1 . Collect-

ing (14) and (15), we obtain

1
2

d
dt

∫

R2
| f |2 n∞ dx≤ − [

1− γ(M)
]
∫

R2
|∇ f |2 n∞ dx with γ(M) :=

C∗(M) + 2C2(M)
√
Λ(M)

.

We observe that limM→0+ γ(M) = 0 . As long asγ(M) < 1 , we can use again Proposition 8 to get

1
2

d
dt

∫

R2
| f |2 n∞ dx≤ − δ

∫

R2
| f |2 n∞ dx with δ = Λ(M)

[

1− γ(M)
]

. (16)

Using a Gronwall estimate, this establishes the decay rate of ‖ f ‖L2(n∞ dx) =

∥
∥
∥
∥

n−n∞√
n∞

∥
∥
∥
∥

L2(R2)
.

If n1 andn2 are two solutions of (4) inC0(R+, L1(R2)) ∩ L∞((τ,∞) × R
2) for any τ > 0 ,

Inequality (16) also holds forf = (n2 − n1)/n∞. As a consequence, if the initial condition is the
same, thenn1 = n2 , which proves the uniqueness result and concludes the proofof Theorem 1.

�

Remark 4.Proposition 8 and (14) rely on rather crude estimates of the spectral gap of the linear
operatorL , defined onL2(n∞) , with domainH2(n∞) . The operator has been divided in two
parts which are treated separately, one in Proposition 8, the other one in (14). It would probably
be interesting to study the operatorL as a whole, trying to obtain an estimate of its spectral gap
in L2(n∞) without any smallness condition.
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