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Abstract

The Keller-Segel system describes the collective moticret$ that are attracted by a chemical
substance and are able to emit it. In its simplest form, ité®m@servative drift-dfusion equa-
tion for the cell density coupled to an elliptic equation fbe chemo-attractant concentration.
This paper deals with the rate of convergence towards a arstptionary state in self-similar
variables, which describes the intermediate asymptofitteecsolutions in the original variables.
Although it is known that solutions globally exist for any ssdess 8, a smaller mass condition
is needed in our approach for proving an exponential rateriergence in self-similar variables.

Key words: Keller-Segel model, chemotaxis, driftfflision, self-similar solution, intermediate
asymptotics, entropy, free energy, rate of convergence keznel
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1. Introduction and main results

In its simpler form, the Keller and Segel system reads

%zAU—V-(UVV) xeR?, t>0,
—AV=u xeR%, t>0, (1)
uGt=0)=ny>0 x e R2.

Throughout this paper, we shall assume that

noe LY(R% A+ x?)dxX), nologny e LY(R% dx), and M::fno(x)dx<8n. (2)
R2
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These conditions are fiicient to ensure that a solution in a distribution sense exilstbally in
time and satisfied = [,, u(x,t)dxfor anyt > 0, see [P[[7[]4]. In dimensioth= 2, the Green
kernel associated to the Poisson equation is a logarithnvanshall consider only the solution
given byv = —% log|-|*u. Such a non-linearity is critical in the sense that the syssglobally
invariant under scalings. To study the asymptotic behanabthe solutions, it is therefore more
convenient to work in self-similar variables. Define thecaded functions andc by

u(x, t) = Rz_(t) (R(t) T(t)) and v(xt) = C(R(t) T(t)) 3)
with R(t) = V1 + 2t andr(t) = logR(t). The rescaled system is
%:An—V-(n(Vc—x)) xeR?,t>0,
C=_%|og|.|*n XGRZ,t>O, (4)
n(t=0)=ny >0 xeR?.

Under Assumptiond]2), it has been proved]n [4] that
tIim N, - + 1) — NwllLywzy =0 and tIim||Vc(-,- +1) = VCull2mz) = 0

where ., C) is the unique solution of

QC=—1X?/2 1
= —-ACsx, With Cw=-—=—1l0g]| |* Ns .
o gl-|

N = 722 =
o M2 dx

Moreover,n,, is smooth and radially symmetrlc The uniqueness has beablisged in [[R].
As | — +oo, N, is dominated bye@-9X*/2 for anye € (0,1), see [}, Lemma 4.5]. From the
bifurcation diagram ofin. |l ~(r2) as a function oM, it follows that

liMm [INell«@2 =0.
M40+” llLo®z) = 0 (5)

Under the assumption that the mass of the initial data islsenalugh, we first obtain es-
timates of the time decay rate of thé-norms of the solutionu of ({ll). Similar bounds have
been obtained in several papers on Keller-Segel models&@, [|6] (also see references
therein). The interested reader may referﬂoﬂ, 13] for mecesults relating the parabolic-
parabolic and the parabolic-elliptic Keller-Segel systerNevertheless none of these previous
works deals with |]1) See Remaﬂ< 2 below for more details. seeond step we prove the
convergence ofi(t) to n., in the weighted Sobolev spate-(eX*/4dx) ast — +oo. Finally, we
establish our main result, an exponential rate of convergem(t) to n, in L2(n:}):

Theorem 1. There exists a positive constant Much that, for any initial datage L?(nztdx)
of mass M< M* satisfying(E), the rescaled Keller-Segel systéﬂ) has a unique solution &
COR™, LY(R?)) N L=((1, o) x R?) for anyr > 0. Moreover, there are two positive constants, C
andé, such that q
X
Nt X) - Ne(X)>?——= <Ce° Vt>0.
[ Int9 -noo? S5 < >

As a function of M § is such thatimy_o, 6(M) =1
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Remark 1.As it has been proved irﬂ[, , 3], the conditibh< 8 is necessary and ficient for
the global existence of the solutions fff (1) under Assunmpf®). The extra smallness condition
in Theorenﬂl appears at two levels in our proof:

1. We first prove a uniform decay estimate of the solutioeroMthe method of the trap.
Our estimates and the version of the Hardy-Littlewood-3®b(HLS) inequality we use
require thatM < M; for some positive, explicit constai; . This question is dealt with
in Section[p.

2. Rates of convergence in self-similar variables are giyethespectral gapof a linearised
operator, denoted hy , which is associated tﬂ(4). This gap is estimated by a geation
method, which gives two further restrictions bh. See Sectiond 4 affi 5.

The first occurrence of an extra smallness condition, in thefof the sharp time decay of the
LP norms, is not surprising. It appears in several similamestis as for example iﬂlleﬂ, 6]
and references therein. On the other hand, the estimateecfpbctral gap of the linearised
operator is rather crude. See Remdtk 4 for more comments in this érect

Under a smallness condition for the mass, we shall also robtainiqueness result for the
solutions of [k), see Secti¢h 5. For sake of simplicity, wallsspeak otthe solution of [4), but,
in the preliminary resultghe solution has to be understoodasolution of the system which is
achieved as a limit of an approximation procedure, aE iﬂ][g, 4

Our results are actually stronger than the ones stated inr?émﬂ.. We can indeed consider
any solution of [(4) as if]4]:

ne CO(R", LY(R?) .
nlogn, n|x? e L°(R*, LY(R?),
2V+y/n+ x yn- ynvece LY(R", L?(R?)) ,

and prove alk priori estimates by standard but tedious truncation methods thahall omit in
this paper.

2. Decay Estimatesof u(t) in L*(R?)
In this section we consider the Keller-Segel systﬁ’n (Lhénariginal variables.

Lemma 2. There exists a positive constant; iduch that, for any mass M My, there is a
positive constant G C(M) such that, if ue CO(R*, LY(R?)) N L=(R}_x R?) is a solution of([l)
with initial datum ry satisfying(ﬂ), then

lu®)ll-@zy <Ct' ¥t>0.

Proof. The result of Lemme[|2 is based on timethod of the trapwhich amounts to prove
thatH(t[[u(:, t)ll =&z » M) < 0 wherez — H(z M) is a continuous function which is negative on
[0, z) and positive onZy, ) for somez;, z such that (< z; < 2> < oo Sincet = t{u(:, )l g2

is continuous and takes value Otat 0, this means that|u(-, )l «rz) < z1 < 2(M) for any

t > 0, whereH (z(M), M) = sup,,, ,, H(z M) > 0. See Figf[]1.



Fix somety > 0. By Duhamel’s formula, a solution oﬂ(l) can be written as

t
u(x to+t) = fRZ N(x-y, t) u(y, to) dy+fof]RZ N(x—y,t—9) V-[u(y,to + S) VV(y, to + S)] dy ds
(6)

whereN(x,t) = 2 e/ denotes the heat kernel. Next observe that

ffN(x y,t=9) V-[u(y, to + 5) VV(Y, to + 9)] dyds_Zf ON (. t-9)= [( )\:)(~,t0+s)]ds.

i=1,2

TakingL® norms in [B) with respect to the space variable, we arrive at

U to + Dlleqey < — UG ) +Zf”%( t-9+[(U ) to+ 9]
, 1o L) < 72 UG o)llaee) 24 Jo llax ax )0

We now consider the convolution term. By Young's inequadityd because of the expression for
the kerneN, we can bound it using, = [[ON/dX; (-, 1)ll - &z by

ds.
L (R2)

oN
fo —( t— )« [( )( to+9)] e ds
v
_( t—s )LU(RZ) ( 6)(')( to+9) e ds
_ _ g3 [y 2Yy,.
_K(,fo(t 9@ (u6xi)(,t0+s) b ds

where Yo + 1/p = 1. To enforce integrability later, we impose< 2. On the one hand
ov
H(U &)( to+9)

with 1/p+ 1/q = 1/p, by Holder’s inequality, whereas, on the other hand,

ov
< U, to + 9)llLe(r2) &(',to +9)
|

Le(R?) LI(R2)

C
< SHLs

LA(R2)

(wto+9

H = U to + ey

with 1/r — 1/q = 1/2, by the HLS inequality. Her&v is given by the convolution ofi with
the functionx — —x;/(27|x/?) andCy s denotes the optimal constant for the HLS inequality.
Collecting all these estimates and using the fact|tb@1t)|| 12y = M for anyt > 0, we arrive at

u(, to + )|~ - —
(-, to + t)ll e r2) ot

ac -3-1
< fTMSy f (t— 97972 ju, to+s)||LJR2;ds
U’C 1,1 _ 2,1,%
=pr+rf(t—s)v Hto+ 97T 2|(to + I to+ ey | * dis.
v/
Now takety = t, and multiply the inequality byt2to get

M
2t Ju(-, 20l @2y — P

1

2k, C t 2-1_1
< Sne ”LSM%*%tf(t—s)%*%(t+s)%*%*z[(us)||u(-,t+s)||Lm<Rz>] " ds.
T 0
4



Observe that for any> 0 we have

sup(t + s) [lu(-, t + 9)llomz) < sUP2s [u(-, 29|l ~(rz) =: ¥(1) ,

O<s<t O<s<t

whereast — 2 = -1 _1and
Ca p T

(o

t
tf(t—s)%’%(t+s)%+%’2ds = -
0 2—0'

From Duhamel’s formula[[6), it follows thate CO(R*, L*(R?) andy is continuous. Hence we
have

Lo ., 1

2«5 Chis M+ ’
b 2-0

N

MO < o+ Coly)' with Co=

Consider the functiokl(z, M) = z-Cy Z—-M/(2r), so thatH (4(t), M) < 0 and notice that > 1.
For M > 0O fixed,z ~ H(z M) achieves its maximurhi(z(M), M) = %2 (Co0)¥/-9 — M at
z = 70(M) = (Co )Y@, For M small enough, as we shall see belé¥(z(M), M) > 0. Since
¥ is continuous ang(0) = 0 theny(t) < z(M) for anyt > 0. This provides al.* estimate on
¢ which is uniformint > 0.

H(2(M),M)
H(z, M)
0 z0(M) z

20(Mo(p))

M
o
Mo(p) H(z, My(p))

2

Figure 1: Themethod of the tra@mounts to prove thai(z M) < 0 implies thaiz = (t) is bounded byy(M) as long
asH(zp(M), M) > 0,i.e. forM < Mop(p). For somep > 4, the plots of the functions — H(z M) with M < M(p) and

z+— H(z Mp(p)) are shown above.

Recall that the exponents, p, p, g andr are related by

1419, l<o<?2,
o P

1,1_1

P+q P’ p’q>2’
1_1_1

F—a—z, r>1.

For the choicer = 4/3, q = 4, it is known, see[[§0], that the optimal constant in the HLS
1,1
inequality isCh s = 2+/7. As a consequence, we hallg = “7; M?*4 5Z with o = % )

The exponenp > 4 still has to be chosen. A tedious but elementary computatimws that
there existdVio(p) such thatH(zo(M), M) > 0 if and only if M < Mo(p) and SUR(4 1) Mo(P) =
limp— 10 Mo(p) =~ 0.822663 . O

A simple interpolation argument then gives the followingaitary.
5



Corollary 3. For any mass M< M; and all p € [1, =], there exists a positive constant€
C(p, M) with limy_o, C(p, M) = 0, such that, if u is a solution ofl]) as in Lemm4]2,

t <Cct®® viso0
U®llLpzy < )

Remark 2.Similar decay rates for thie? norms of the solutions to global Keller-Segel systems
have been obtained in a large number of previous referebaealways in slightly dferent situ-
ations. For instance, i|ﬁ|12], the authors consider a péiaparabolic Keller-Segel system with
small and regular initial data. More recently, [h [6] a pavlidyparabolic Keller-Segel system is
considered for small initial data and spatial dimengion 3. On the other hand, a parabolic-
elliptic system is treated irL_[Ill] where the equation for¢hemo-attractant is slightly filerent
from ours.

Remark 3.The rates obtained in Corollaﬂ' 3 are optimal as can easilgheeked using the
self-similar solutionsi{.,, ) of @) defined in Sectioﬂ 1. This is the subject of the nextisac
3. LPand H! estimatesin the self-similar variables

Consider now the solutiom(c) defined in the introduction by](3) and solvirlg (4). By Corol-
lary 3 we immediately deduce that, for apye (1, o] ,

INM®llpgey <C1 Vt>0 @)
for some positive consta@l; . A direct estimate gives

2 [[Ve(t)llL- < sup nt.y) dy < supf nt.y) dy+ sup nty) 4

xeR2 Jr2 [X— Y| xeR2 Jx—yi>1 X — Y xeR? Jix—yl<1 1X =Wl

P
=\ <(27 5) P Inllpeey
where the last term has been evaluated by Holder’s inagweith p > 2. Hence we obtain

||VC(t)|||_oo(R2) <C, Vt>0. (8)

Lemmad. In (ﬂ) and (E), the constants Cand G depend on M and are such that

lim G(M)=0 i=1,2.
M—0,

Proof. This result can easily be retraced in the above computatioeisils are left to the reader.

[l
With K = K(x) = €4¥°/2, let us rewrite the equation foras
on 1 5
E—Rv-(KVn)_—Vc-Vn+2n+n . 9

We are now interested in the bounds satisfied by the funaiigrin the weighted spacds’(K)
andH(K).
6



Proposition 5. For all masses Me (0, M;), there exists a positive constant C such that, if nis a
solution of () with initial data ny € L2(K) satisfying(@), then

”n(t)”LZ(K) <C Vt>0.

Proof. We multiply the equatiorﬂQ) by K and integrate by parts to obtain

1d

= nP? Kdx+ [ |Vn? Kdx= —f nvc-vn de+2f
2 dt Jp2 R2 R2

n? de+f n® Kdx. (10)
R2 R2

Asin [E, Corollary 1.11], we recall that for amy> 2 ande > 0, there exists a positive constant
C(e, g) such that

f n? Kdx < sf IVNZ K dx+ C(e, ) IINl[Fy gz, -
R2 R2

This estimate,[{7) and](8) give a bound of the right hand sid@), namely

'—f nVc-Vanx+2f nZde+f n® K dx
R2 R2 R2

up to the multiplication ok by a constant that we omit for simplicity, from which we deduc
that,

<e | VNP Kdx+C
RZ

39[ |n|2de+(1—s)f IVn2 Kdx<C.
Zdt R2 R2

We finally use the classical inequality, which is easily remred by expanding the square in
Je2 IV(NK)2Kdx> 0, namely

1
Inf? K dx < —f IV K dx
R2 2 R2

asin @] to obtain a uniform bound oft) in L?(K). O

Next we deduce a uniform bound it'(K) .
Corollary 6. Under the assumptions of Propositiﬂn 5, there exists @and C > 0 such that
Nl < C max{l, V—;} Vt>0.
Proof. Sincenis a classical solution oﬂ(g), it also solves the corresjrapohtegral equation,

t t
n(t, X) = S(t) no(x) — fo S(t-19s)(Vc-Vn)(s) ds+ fo S(t— ) (2n+n?)(s) ds

whereS(t) is the linear semi-group generated by the operakor' V-(K V-) on the spac&?(K) .
Then

t t
IOl < ISE) Nollrige + f IS(t—9) (Ve V)(9llusgo ds+ f IS(t—9) 2+ M) (Slhieqo ds
0 0



Using|IS(t) hilw:) < « (1 + t2) Ihlli2(c) for somex > 0, and [B), we obtain
% (IN@®)llr0) = 1ISE®) Nollrey)
< fot (1+ %S)H(VC. VN)(9)lliz) ds+ fot (1+ %s)||(2n + 1)z ds
< fot (1+ %s)||VC||Lm<Rz)||Vn||Lz<K) ds+ fot (1 + %)(ZIInHwK) + Nl Inllzg ) ds

t t
1 1
sszo(1+—\/t__s)||Vn(s)||Lz(K) ds+ (2+C1)f0(1+—‘/t__s)||n(s)||Lz(K)ds

with C; defined in[[7) an€, in (@). Hence, for any > 0 fixed, we have

1 t
ZlIn(t+ lhgq < (1+ %) O+ csfo (1+ <) In(s+ Dl ds (11)

with C3 = maxC,, 2 + C4}. Let
t

H(T) = su (1+ L)Hn s+ 1) ds.
( ) te(O,}lz')) 0 Vs ( )Hl(K)

If we chooseT > 0 such that = C; fOT(l + ﬁ)ds = C3(T + 2VT), thatis, T =

(V1+(2Cs)t- 1)2 , then an integration of (1) on (U) gives

1 T 1 L T .
;H(T)sclfo (1+ﬁ)(1+73)ds+C3f0 (1+T_S)H(T)ds
=(7r+4\/f+T)C1+iH(T),
2k

that is
H(T) < 2(x+4VT +T) kCy .

Injecting this estimate intd (L1), we obtain
1
2 In(t + 1)l < (1+ %) C1+CsH(T) < (1 + %f) Ci+2(n+4VT +T) kCiCa
K

for anyt € (0, T) . This bound$in(T + 7)|l41ky for anyr > 0, and thus completes the proof with
C given by the right hand side of the above inequalityatT . O

We shall actually prove thai(t) can be bounded not only iH(K) but also inH(n2).
However, in order to prove that, we need a spectral gap ejmaich is the subject of the next
section.

4. A spectral gap estimate

Introducef andg defined by

Nn(x,t) = N (X)(L + f(x 1)) and  c(xt) = co(X)(1+9(x1)) .
8



By (E), (f, g) is solution of the non-linear problem

ﬁ—[(t,x,f,g)=—iV-[fnwV(ng)] xeR?, t>0,
ot Neo (12)

-A(C ) = fNe xeR?, t>0,

where/L is the linear operator given by

L% .9 = =V [V (T -ga)]

oo

The conservation of mass is replaced herqﬂ@yf Ne dx=10.

Lemma 7. Leto be a positive real number. For anygH* n L*(R?) such thatf,, gdx= 0, we

have )
X 2) 2[ 2
Vg2 + — |gi2) dx> 2 | |gi? dx.
\[1;2( g 40'2g o Rzg

Proof. The Poincaré inequality for the Gaussian measirdx) = e”X*/@7) dxis given by
Uf V2 duy > f If2 du, V f e HY(dus) such thatf fdu,=0.
R? R2 R?

The result holds witlg = f e/(42) . Notice that for = 1, the second eigenvalue of the
harmonic oscillator irR? is 2, thus establishing the optimality in both of the abowegmalities.
The caser # 1 follows from a scaling argument. O

Proposition 8. Consider a stationary solution.nof (E). There exist a constant Me (0, 8r)
and a functiomA = A(M) such that, for any Me (0, M), A(M) > 0 and

IVf]? Ne dX > A(M)f Ifl°ne dx V f e HY(n.dX) suchthat [ fn,dx=0.
R2 R2 R2
Moreoverlimy_o, A(M) = 1.

Proof. We defineh = Ao f = Vae /4 /2 f with A = M ([, e*‘x|2/4+°°°/2dx)_l. By

expanding the square, we find that

i

AIVEPne = |VhP? + 2

1 1
h? + 7 [VCol?h? + hVh - (X = VCy) — 5 X Ve, h?.
An integration by parts shows that

hvh-xdx=- | hdx.
R2 R2

Another integration by parts and the definitionoaf give

hVvh- Ve dx:lf h2(—Acm)dx=}f h? Nee dxs}||nm||Lm(Rz)f h? dx.
R2 2 Jre2 92 R2 2 R2



Recall that byﬂS), lin—0, [INwllL=®2) = 0. On the other hand, we have

1 -1 |X|2 1 o2
- - Ve h? dx < h? dx+ = fvahZ
ZLzX C dx < 7 e a = Vel = dX

for anyo > 1. Hence it follows from Lemmf 7 that

2 2
2 g ||VCOO||L00(]R2) 1
A ViPnedx>|=-1- ———2 — = [Nl h?dx .
fRz' | —{a ir-n 2l fR

~————
<A(M) =/1£§2|f\2noo dx

The codficientA(M) is positive for anyM < M, with M, > 0, small enough, accordingtﬂ (SEI (8)
and Lemme[l4. Notice that for each given valueMbf< M,, an optimal value of- € (1, 2) can
be found. O

We shall now consider the case of an initial dagasuch thaty/n., € L?(n.), which is a
slightly more restrictive case than the framework of Setfo Indeed, there exists a constant
C > 0 such that for any € R? with |x| > 1 we havec.,+M/(2r) log|x| < C, see [h Lemma4.3],
whencen,, K = > behaves lika(]x"™/) as|x| — 0. If (n, ¢) is a solution of [(4), then

1
@—an-(—Vn)z(ch—Vc)-Vn+2n+n2.
ot n

00

Corollary 9. Under the assumptions of Theordin 1, if # My, then any solution off) is
bounded in E°(R*, L2(nZ! dX)) N L*((r, o), HY(nZt dX)) for anyr > 0.

Proof. The uniform bound irL?(n;*dx) follows from (19), up to the replacement &f by
1/n., which is straightforward. As for the bound ir°((r, o), H}(nz2 dX)), one can observe
that the linear semi-grou®(t) generated by the self- adjointoperatmr V. (i Vn) on the space
L2(nz) , with domainH?(n7}!), satisfied|S(t) Mol ax < 5 Inoll (2 ay) for somex > 0, see
for instance [[6, Theorem VI1.7]. The estimate then followsraCorollary[. O

5. Proof of Theorem

This Section is devoted to the proof of our main result. If watiply equation ) byf N,
and integrate by parts, we get

Ld |f|2n dx+f IV N, dx = f V-V (gCo) Neo dx+f V- V(gGo) f N dx.
2 dt R2 R2

(13)
The first term of the right hand side can be estimated as fslldBy the Cauchy-Schwarz in-
equality, we know that

fz Vi-V(9C) Neo dX < IV Tllizn, gy IV(9 Co)llizgne ay -
R

10



By Holder’s inequality, for any > 2 we have
V(G C)llizn, g < MY YOIl oy 1909 Collagey -
The HLS inequality with 1p = 1/2 + 1/q then gives

1 a )i C
“V(g Coo)“Lq(RZ) < Z (jl;z | (f noo) * ﬁ | dX) < '24;8 ”f noo”Lp(RZ) .

By Holder’s inequality|lf nell g2y < Il 2(n. ax ||nm||ié,22(R2) , from which we get

f V- V(gCo) f N dX < ColIfllzgn, ax IV Fll2n, ax (14)
R2

whereC, = C.(M) := Cy.s (2r)"t MY/2-1/d ||nw||ié/22( , ||nm||iﬁoq(R2) goesto0ad — 0.
As for the second term in the right hand side pf| (13), uging = ¢ — ¢, and the Cauchy-

Schwarz inequality, we have

f Vf. V(gc.) fne dx
R2

IA

(IVC = VCoollL=m2) I fllLzgny, dx IV FllLz(n., dx

IA

(IVClL ) + IVCllo@2)) I liz, ag 1V Flliz, dg -

We observe thalt(g ¢..) = Vc— Vc., is uniformly bounded sincgvcl| «gz) < C2(M) by (E), and
IVCollL~(r2) is also bounded b§>(M), for the same reasons.

|71 9@ T dxs 2CaM) Il an 17 e, 00 (15)
R

Moreover, according to Lemrrﬂa 4, we know thatlimy, C2(M) = 0.
By Proposition[B/| fll.zg. ax < IV fllzn. ax / VAMM) with limy_o- A(M) = 1. Collect-
ing ([14) and [(15), we obtain

1d . C.(M) + 2Cy(M)
—— f12ne dx< —[1—y(M f Vi?n, dx with y(M):= ——~—~_———="7
5ai ). [L-y(M)] | IVl ¥(M) e
We observe that lim_o- y(M) = 0. As long asg/(M) < 1, we can use again Propositﬁn 8toget
1d fPne dx< =6 | [fPne dx with §=A(M) [1-y(M)] . (16)
2dt Jpe R2
Using a Gronwall estimate, this establishes the decay fatlp_ 4y = % L)

If n; andn; are two solutions of[[4) iCO(R*, LY(R?)) N L®((r, «0) x R?) for anyr > 0,
Inequality (1) also holds fof = (n; — n;)/n.. As a consequence, if the initial condition is the
same, them; = ny, which proves the uniqueness result and concludes the pfd’(bfeorenﬂl.

O

Remark 4.Pr0positiorﬂ3 anﬂ4) rely on rather crude estimates ofpleetsal gap of the linear
operatorL, defined onlL?(n,,), with domainH?(n,,). The operator has been divided in two
parts which are treated separately, one in Propoﬂiorea)ulhler one in@4). It would probably
be interesting to study the operatfras a whole, trying to obtain an estimate of its spectral gap
in L?(n.,) without any smallness condition.
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