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Abstract

Video indexing technique is crucial in multimedia applications. In the case of HD (High Definition) Video, the
principle of scalability is of great importance. The wavelet decomposition used in the JPEG2000 standard provides
this property. In this paper, we propose a scalable descriptor based on objects. First, a scalable moving object
extraction method is constructed. Using the wavelet data, it relies on the combination of a robust global motion
estimation with a morphological color segmentation at a low spatial resolution. It is then refined using the scalable
order of data. Second, a descriptor is built only on the objects found at the previous step. This descriptor is based on
multiscale histograms of wavelet coefficients of moving objects.
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1. Introduction

Created in march 2002, the DCI (Digital Cinema
Initiative, LLC [1]) is the joint venture of six Amer-
ican cinema majors. Its primary purpose is to es-
tablish voluntary specifications for an open architec-
ture for digital cinema that ensures a uniform and high
level of technical performance, reliability and quality
control. The specifications make JPEG2000 [2] the
digital cinema compression standard. Besides, using
JPEG2000 is studying for video archiving [3], to con-
serve cultural patrimony with the greater compromise
quality/compression possible. Nowadays, data coded
with this standard constitute databases of audio-visual
content so large that access to digital content requires
the development of automatic methods for processing
and indexing multimedia documents. One of the key
features consists in extracting meaningful information
allowing organizing the multimedia content for easy
manipulation and/or retrieval tasks. A variety of meth-
ods [4, 5] have recently been developed to fulfill this
objective, mainly using global features of the multime-
dia content such as the dominant color in still images
or video key-frames. Object-based video indexing still
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remains a challenge as extraction of semantic objects
from video is an open problem. Moreover, it is clear that
the precision requirements and complexity constraints
of object extraction methods are strongly application
dependent. In the context of digital libraries contain-
ing compressed video, an effective object indexing from
compressed video still remains a challenge.
The first step in object-oriented indexing is the fore-
ground object-extraction. Several approaches have been
proposed in the past, and most of them can be roughly
classified either as intra-frame segmentation based or
as motion segmentation based methods. In the former
approach, each frame of the video sequence is inde-
pendently segmented into regions of homogeneous in-
tensity or texture, using traditional image segmentation
techniques [6], while in the latter approach, a dense mo-
tion field is used for segmentation and pixels with ho-
mogeneous motion field are grouped together [7]. Since
both approaches have their drawbacks, most object ex-
traction tools combine spatial and temporal segmenta-
tion techniques [8, 9]. Challenge resides in applying
this scheme without decompressing the video, as the
low-level content descriptors, such as coefficients in the
transform domain, can be efficiently re-used for the con-
tent analysis task [10].

In the case of the MJPEG2000, one difficulty is that
the standard does not provide motion descriptors and so
they have to be estimated. The ME (Motion Estimation)
problem in the wavelet domain has largely been studied
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in the literature [11]. In the case of the RI (rough in-
dexing) paradigm [10] we are working in, the only data
available are those contained in the compressed stream,
which means that the wavelet basis is not analysis-
oriented. From the scalability point of view, only part
of the stream and not the entire stream can be available.
Then, initially, only low resolution wavelet coefficients
are avalaible, i.e the ones of the base layer. The deci-
mation operation in the DWT (Discrete Wavelet Trans-
form) makes it shift-variant. Hence, the BM (Block
Matching) can be very inefficient in the wavelet do-
main. The low-band signal is usually smooth and the
difference in the low-band coefficients between the orig-
inal and the shifted signal is small. However, there is a
big difference between the high-band coefficients of the
shifted signal and those of the original signal. Such phe-
nomena will happen frequently around the image edges.
The signal difference in the high-pass signal depends on
the amount of shift and the analysis filters for the DWT.
The prediction errors of the high-band signal makes it
difficult to estimate the motion vectors in the wavelet
domain when the conventional block-matching is used.
Several motion estimation methods in the wavelet do-
main have been developed [12, 13]. Among these,
direct band-to-band motion estimation of the wavelet
coefficients is not efficient because of the shift-variant
property of the DWT. There is another approach that
performs the motion estimation for only low-band sig-
nal, where the motion compensation of the high-band
signal is performed with the motion vectors found in the
corresponding low-band signal. In order to overcome
the shift-variant property, a low-band-shift method has
been proposed [12]. It consits in decomposing the ref-
erence image not with the DWT but with the ODWT
(Overcomplete Discrete Wavelet Transform). The deci-
mation no longer occurs in the reference image and the
BM becomes more efficient. In this paper, we present
a method for estimating motion in the scalable wavelet
domain that uses only low LL resolution information.
The method is based on both BM ME and GM (Global
Motion) Estimation. This estimation will serve both for
GM Estimation and Indexing of HD Video.
A second step in object-oriented indexing consists of
defining a global feature on the object effectively found.
Following the rough indexing paradigm, this feature has
to be defined in the wavelet domain. Several indexing
techniques in the wavelet domain exist for JPEG2000
compressed still images. Among them, we can cite
the histogram-based techniques. A histogram is com-
puted for each subband and comparison is made sub-
band by subband [14]. The main disadvantage of such
a technique is that it works only with limited camera

operations. To reduce complexity and improve the ro-
bustness to illumination changes, [15] proposes model-
ing the histograms using a generalized Gaussian den-
sity function. Other indexing techniques are texture-
oriented [16]. In this work, we propose an histogram-
based index that is defined not on the whole image but
only on the wavelet coefficients of the object.
The paper is organized as follows. In section 2, the
notion of Scalable descriptor is precised. The general
framework of our approach is summarized in section 3.
Section 4 describes the spatio-temporal object extrac-
tion we designed and section 5 the object-based descrip-
tor we propose. Section 6 pesents the results based on
retrieval tests. Finally, section 7 concludes our work.

2. Scalable Indexing of Video Content

In video coding, scalability is the ability for a sin-
gle codestream to be sent to different users with differ-
ent processing capabilities and network bandwidths by
selectively transmitting and decoding the related part
of the codestream. Two recent standards for motion
pictures compression, H264 and JPEG2000 , present
this property; the coded signal allows the easy extrac-
tion of sub-bitstreams corresponding to a reduced spa-
tial resolution (spatial scalability), a reduced temporal
resolution (temporal scalability), a reduced quality for
a given spatio-temporal resolution and/or for a reduced
flow (SNR scalability).
A new challenge in Content-Based Video Retrieval
(CBVR) is to design scalable descriptors that suit scal-
able coded streams. Two cases can be distinguished,
following the descriptor is computed at the encoder or
the decoder end. At the encoder end, the aim is to em-
bed the descriptor in the coded stream. The descriptor
has then to be hierarchically structured in a base layer,
which concentrates the most relevant information, and
refining layers, which contains more detailed informa-
tion. At the decoder end, the aim is to compute an de-
scriptor with the only available data, i.e. the transmitted
part of the stream. The descriptor has to follow the scal-
able hierarchy of the codestream to allow comparison
between videos transmitted at different resolutions.
This paper proposes a scalable descriptor responding to
the JPEG2000 decoder-end case. The main difficulty is
that the construction should be made in only one direc-
tion from low resolution to high resolution.
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Figure 1: General Scheme of object-Based Scalable Video Indexing

3. General Scheme of Object-Based Scalable Video
Indexing

3.1. Notations

Before describing the proposed general framework
of the object-based scalable indexing, the notations and
abbreviations used in the following of the paper are
presented.

The wavelet transform used in the JPEG2000 stan-
dard leads to a multiscale representation. We denote K
the total number of decomposition layers. k is the con-
sidered level with k = 0 the original image and k = K
the lowest resolution level. At a given level k, a wavelet
frame is a combination of four subbands obtained by
combination of a Low-pass and a High-pass filtering

of the image being decomposed; the four subbands are
conventionally noted as LLk, LHk, HLk and HHk. These
subbands are grouped in LFk = {LLk} -the set of Low
Frequendy subbands- and HFk = {LHk,HLk,HHk} -the
set of High Frequency Subbands at a given level k.
Given this, Wk

t is the wavelet frame at instant t and level
k, S k

t is the result of a color segmentation, Mk
t is the mo-

tion mask, Vk
t is the set of Motion Vectors (MVs) of the

whole frame WK
t . Let Ok

i,t = {O
k
t,i, i = 1..n(k)}, where

n(k) is the number of objects at level k, be the set of
wavelet coefficients representing object i in the wavelet
frame at instant t and level k and let Ot,i = {Ok

t,i, k =
K..0} be the multiscale representation of wavelet coeffi-
cients of object i in wavelet frame at instant t.
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3.2. Principle

Our approach in terms of video indexing is led by
the RI paradigm we defined in [17]. It can be ex-
pressed as a general approach for indexing videos from
a compressed stream whatever the compression basis is:
MPEG, H.26x (DCT) or JPEG2000 (wavelets). In this
paper, we focus on the JPEG2000 standard, that is, on
the DWT (Discret Wavelet Transform) domain. Here,
9/7 Daubechies wavelets are used for lossy compres-
sion. The scalable streams are supposed not contain-
ing ROI (Region of Interest) option of JPEG2000. The
global scheme of our scalable solution is depicted in Fig
1.
The JPEG2000 coder is supposed to use K levels of de-
composition, k = 0 being the original image and k = K
the lowest resolution level (In practice K = 4). The
scheme of Fig 1 depicts both: scalable object Extraction
(in grey) and computation of a scalable object descrip-
tor. Scalable object extraction starts at the lowest level
of the resolution in the wavelet pyramid (k = K) with
motion estimation between wavelet frame at t (Wk

t ) and
t − dt (Wk

t−dt). Rough MVs are determined and “mo-
tion masks”- in which moving foreground objects are
contained- are extracted. In parallel, a morphological
color segmentation is carried out. Color segmentation
maps S k

t and motion masks Mk
t are merged. This pro-

cess is fulfilled independently for each pair of wavelet
frames (Wk

t ,W
k
t−dt), leading to extraction of Objects

Ok
t = {O

k
t,i}. To ensure object temporal continuity of ob-

ject masks, an object matching is fulfilled for each Ok
t,i

by back projection of Ok
t,i to Ok

t−dt,i object plan with esti-
mated motion vectors. Hence, the set of objects is being
available at the lowest level of wavelet pyramid and can
be used for descriptor computation. For higher resolu-
tion levels of the pyramid k = K − 1,K − 2, . . . , 0 the
extraction process starts with the projection of the object
mask Ok

t , of the segmentation map of the whole frame
S k

t and of the motion vectors Vk
t to WK−1

t resulting re-
spectively in Ô(

tk−1), Ŝ k−1
t and V̂k−1

t (see blocks motion
projection and Rough Color projection in Fig 1). The
extraction of object Ok

t with k ∈ [K − 1 . . . , 0] consists
of refinement of projected color segmentation map Ŝ k−1

t
restricted to the projected object area Ôk−1

t : Ŝ k−1
t ∩ Ôk−1

t .
This refinement is done by Markov random field (MRF)
modeling on the areas Ŝ k

t ∩ Ôk
t and Ŝ k−1

t ∩ Mk
t , where

Mk
t is the motion mask detected in Wk−1

t . The mo-
tion projection is adaptive to the type of region MVs
Vk

t belong to: either object area Ok
t or background area

Ōk
t . The refinement of motion vectors is done for all

blocks. Global ME is done in order to extract new
motion mask at level k, Mk

t . Hence, for each level of

wavelet decompositionWk
t , k = K−1,K−2, . . . , 0 object

masks Ok
t,i are available. The scalable wavelet descriptor

is then calculated on these masks (see block histogram
computation). The object-based video retrieval can then
be performed.

4. Scalable Object-Extraction in the JPEG2000
Wavelet Domain

Scalable Object-Extraction in the JPEG2000 Wavelet
Domain follows the general principles we have previ-
ously developped [10]. This section summarizes the
approach and presents minor changes that have been
added to improve the quality of results.

4.1. Scalable Motion Estimation in the Wavelet Domain

The goal of ME here is twofold. Firstly, despite the
wavelet pyramid is not a very suitable representation for
ME, we need to estimate global, ie camera, motion in
the sequence as precise as possible. Second, for ob-
ject Extraction, we need to precisely label areas in the
wavelet frame which do not follow the Global Camera
Motion and hence are supposed to contain objects of in-
terest. First, a BM is fulfilled on the Y-component of the
LL subband of the Kth level of the decomposition. Sec-
ond, the GM is estimated using a robust estimator which
allows outlier rejection. Signal is then synthesized (ie,
the LL subband is computed) going down the pyramid
level by level. MVs at a current level are initialized us-
ing MVs predicted from the previous level according to
the results of the GME (see Fig. 2). BM is performed at
the current level to refine the MVs found at a previous
level and is followed by a GME.
Block Matching To fulfill BM, a backward prediction is
used. A full search is made in a fixed-size window. The
comparison criterion used in each block is the MAD
(Mean of Absolute Differences (1)) on the luminance
channel of the LL subband.

MAD (dx, dy) =
1
N

∑
N

|Lc (x, y) − Lr (x + dx, y + dy) |

(1)
where N is the number of pixels in the block, (dx, dy)
the displacement considered and Yc and Yr are the lu-
minance values of the LL subband for the current im-
age and the reference one. The search precision is of 1
pixel. Indeed, the 9/7 Daubechies basis is not designed
for BM purpose, and, due to aliasing, a more precise
search gives worse results.

Global Motion Estimation The GM, supposed to be
equivalent to the Global Camera Motion, is assumed to
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follow an affine 6-parameters model described by:dx(x, y) = a1 + a2x + a3y
dy(x, y) = a4 + a5x + a6y

(2)

where (x, y) is the position of the pixel in the cur-
rent frame and (dx, dy) is the MV pointing from cur-
rent position to position of the pixel in the previ-
ous image. The parameter vector to estimate is θ =
(a1, a2, a3, a4, a5, a6)T .
In [18], we proposed to use the Tukey robust least-
square estimator. The robustness of the method is based
on an efficient outlier rejection three phases scheme. We
adapt this scheme to the particular case of motion esti-
mation in the wavelet domain. The first phase consists
of an explicit rejection of the first row and column on
the border of the image. The second phase is the re-
jection of the blocks having a low HF activity. For a
block in the current image, the standard deviation vec-
tor σk = (σk

LH , σ
k
HL, σ

k
HH)T of the coefficients of the

block in each subband is computed and compared to a
given threshold. If criterion (3) is verified, the block
corresponds to a flat region. Hence, BM has a strong
probability of failing to find the real MV. This is why
we do not consider these blocks as reliable for estimat-
ing the GM Model (GMM).

σk < Tk <=>


σk

LH < T k
LH

σk
HL < T k

HL

σk
HH < T k

HH

(3)

The threshold Tk is adaptative with the level k of the
pyramid to take into account the influence of the noise:
at high resolution, main part of the noise is found in the
HF subbands, whereas at lower resolution, signal has
been low-passed filtered and noise reduced.
The third phase is related to the use of a robust Tukey
bi-weight estimator. This allows assigning weights to
block vectors expressing their relevance to the estimated
model.

Outlier Caracteristic Function Determination The
next step consists in determining for each MV v ∈ Vk

t
the value of the Outlier Caracteristic Function fo(v).
fo(v) = 0 indicates that v is a “non outlier” and fo(v) = 1
means that v is an “outlier”. For MVs resulting from the
3rd phase of the GME rejection scheme, relevance to the
estimated model is given by an associated weight w(v);
the thresholding of these weights determines the status
of the vector v (4).

fo(v) =
{ 0 if w(v) > Tw

1 else (4)

not Corrected

BMLevel k−1

Initialization

GME

...

BM Result

Level k

Projection

Correction

Re−
estimation

Figure 2: Motion Vectors projection using outlier information

For MVs that have been rejected during phases 1 or
2, no relevance to the GMM has been estimated. Nev-
ertheless, we cannot consider that these blocks are part
of a moving object. Hence we make a second pass on
these blocks, in order to determine if they follow GM
or not. We cannot use the MVs resulting from BM (be-
cause, as said previously, they are not reliable). Hence
we use directly the MAD criterion of the BM (1). The
MAD is computed for the MV estimated by the BM
(MAD(dx, dy)) and for the MV computed thanks to the
GMM found (MAD(dxm, dym)). If the absolute differ-
ence between these two MAD values is less than a given
threshold TMAD, then the corresponding MV is marked
as “non outlier” (5). Indeed, in this case, there is a
strong probability that the BM has failed to estimate the
real MV as the corresponding region is of low HF activ-
ity.

C(v) = |MAD(dx, dy) − MAD(dxm, dym)|

fo(v) =
{ 0 if C(v) < TMAD

1 else
(5)

Thus constructed, “outlier” MVs correspond to blocks
having their own motion whereas “non outlier” MVs
correspond to blocks containing background samples
and are well described by the GMM.

MV projection After all motion vectors have been
estimated and marked at the top of the pyramid, it is
necessary to obtain motion information at higher reso-
lution levels. Thus we project and refine MVs. Here,
two cases are distinguished following the MV is “out-
lier” or “non outlier” (Fig. 2). In case 1 (“outlier”), the
MV estimated at level k is projected and 2p blocks at
level k − 1 are considered to correspond to the block of
level k, here p is the subsampling factor (Note that we
use a diadic subsampling as in JPEG2000, so p = 2). In
case 2 (“non outlier”), the only one block at level k − 1
corresponds to the block at level k. Its size is 2p the size
of that one of level k and estimated vector is approxi-
mated by the value found using the model. These two
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Figure 3: Dissymetric structural element used in uncertainty area de-
termination

cases of projection are depicted in Fig. 2.
MVs corresponding to case 1 have to be accurately re-
estimated. Indeed, in this category, one finds the blocks
containing the edges of the moving objects.
In case 2, approximating by the model helps regulariz-
ing the MVs of the background. It also compensates the
artefacts introduced by the shift-variance of the wavelet
transform. Due to this ME process at a current pyramid
level a new motion mask Mk

t is obtained composed of
“outliers” blocks.

4.2. Scalable Morphological Color Segmentation

To obtain precise object shape, we propose improv-
ing Motion Masks by merging with a fine color-based
segmentation. First a morphological color segmentation
is applied to LLK subband. This segmentation is su-
perimposed on previously computed motion masks by
majority vote. This result is then projected using data
contained in the wavelet pyramid.
Rough Projection and uncertainty area. First, the ob-
ject mask Ok

t and the segmentation mask S k
t is roughly

projected on the immediate higher resolution level (k −
1) using the location principle of wavelets. This leads
to block effects and therefore results in a wrong assign-
ment of pixels on the borders of the objects. Second,
an uncertainty region is defined in which pixels will be
assigned according to a refined criterion at the current
level of the pyramid. We define the uncertainty area
as the difference between dilation and erosion of the
rough projected object shape by a 4-connected dissy-
metric structuring element (Fig. 3). This dissymetry
allows to compensate the one due to rough projection.

Refinement using Markov random field style mod-
eling. The main idea here is to take advantage of the
specific information contained in the High Frequency
subbands, i.e. the information on horizontal (LH), ver-
tical (HL) and diagonal (HH) contours. We use this
information in a Markov random field model. Using
MAP criterion and assuming that color distribution in-
side each segmented region follows a Gaussian law, we
come to the classical form of the problem [19] consist-
ing of minimizing the sum of potential functions. We

explicit here the potentials. U1 is linked to the color
values.

U1 = (l − µ)tΣ−1(l − µ) (6)

with Σ the covariance matrix of color vectors of LL sub-
band and µ is the mean color vector. Hence, U1 is the
direct translation of the Gaussian law assumption. U2 is
the clique potential:

U2 =
∑
c∈C

(1 − δ(x, xc) + (2δ(x, xc) − 1)|HF|cn)α (7)

Here, C designates the set of all cliques of size 2
(we work in 8-connexity) and c designates one clique,
x is the label to found, xc is the label linked to the
clique.|HF|cn designates the normalized value of the high
frequency coefficient associated with clique c, i.e. for
an horizontal (respectively vertical, diagonal) clique we
will use HL (respectively LH,HH) coefficient. α is
a coefficient that must be fixed experimentally. The
term (1 − δ(x, xc))α will privilege labels x conducting
to homogeneous regions in terms of labels. The term
(2δ(x, xc)− 1)α penalizes the configuration of two iden-
tical labels in a clique if the HF coefficient indicates that
there is a contour and de-penalize the configuration of
two different labels in a clique if the HF coefficient indi-
cates that there is no contour. In this work we do not use
a classical stochastic optimization method (e.g. ICM)
but we consider the minimization of the energy as a de-
terministic region-growing method. We can justify this
as the uncertainty area to assign is very narrow and thus
the stochastic optimization would be costlier for a insuf-
ficient difference in the result.

5. Scalable Object-Based Descriptor

After the previous object-extraction step, a video is
now represented as a set of objects, ie, a multiscale
description of objects of interest is associated to each
frame of the video (see Fig 4). Even if the amount of in-
formation available has been reduced, objects keep be-
ing meaningfull and can lead to an interpretation of high
semantic level.

5.1. Descriptor Computation
The proposed descriptor is based on the normalized

histograms of the objects’ wavelet coefficients. For a
frame in a video, the scalable descriptor of Object Oi,
Hi, is given by (8) (in the following, subscript t is omit-
ted).

Hi = {(hk
LL,i, h

k
HF,i), k ∈ [0..K]} (8)

For each object, two histograms are computed at
each resolution level of the wavelet pyramid. hk

LL,i =
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Figure 4: Multiscale representation of an object

hk
LL,i(O

k
i , lLL) is the normalized YUV-joint histogram of

the LL subband, ie, hk
LL,i(O

k
i , lLL) is the probability of

appearance of the color lLL = (YLL,ULL,VLL)T in the
object Ok

i . hk
HF,i = hk

HF,i(O
k
i , lHF) is the YUV-joint his-

togram of the mean HF subband with lHF defined as:

l =


1
3 (|LHY | + |HLY | + |HHY |)

1
3 (|LHU | + |HLU | + |HHU |)
1
3 (|LHV | + |HLV | + |HHV |)


On the one hand, we choose to make a distinction be-
tween LF and HF subbands as they are of different phys-
ical meaning. On the other hand, only one histogram is
used for the HF subbands in order to be more robust to
object rotations.

5.1.1. Quantization
In order to make rapid comparisons, histograms are

uniformly quantized. In histogram quantization, crucial
point is the choice of class width as it may result in a
over-smoothed, correct, or under-smoothed represen-
tation of the corresponding distribution. Moreover, a
compromise has to be found. On the one hand, the
histogram quantization has to be sufficiently general to
apply to an object whatever the object is. On the other
hand, it has to be adapted to the object in order to give
it a relevant description.

In statistics, a well-known rule of Sturges [20] relates
the number of bins C to the sample size N :

C = 1 + log2(N) (9)

In this work we consider all vectors of wavelet coef-
ficient picked-up in the object area at each level as a
single statistical sample. Thus the number of classes of
each level of pyramid will be

Ck = 1 + log2(card(Ok
i )) (10)

Knowing the data range ∆, bin width b is propor-
tionnally related to C: b = ∆

C . Theoretical analysis
[21] shows that the resulting bin width provides an
over-smoothed histogram which better corresponds to
unknown Probability Density Function (pdf).

As stated in section 5.1, the considered descriptor is
composed of YUV-joint histograms. Thus defined, C is
the number of bins in the 3D space YUV. The next step
consists in computing the marginal bin width for Y, U
and V components. If CY (respectively CU , Cv) is the
marginal number of bins for component Y (resp. U, V),
then C is expressed as follows :

C = CY ∗CU ∗CV (11)

Based on the fact that human vision is less sensitive to
small variations of U and V components than of Y com-
ponent, we decide to take CU = CV =

1
2CY which leads

to CY = (4C)
1
3 . Given the data range on each compo-

nent, marginal class width, bY , bU and bV , are deduced.
Obviously, such a choice is not completely adapted to
the inherent pdf of wavelet coefficients of an object.
Nevertheless it seems to be sufficiently well adapted to
allow reliable comparisons.

5.2. Similarity Metrics

In this paper, two metrics have been used: the his-
togram intersection and the Bhattacharrya coefficient
[22]. Histogram intersection has been introduced by
Swain [23] and largely used in computer vision. Given
two histograms, the histogram intersection for a sub-
band S B = LL,HF is:

dS B( fi, f j) = Σlmin(hS B( fi, l), hS B( fi, l)) (12)

The Bhattacharrya coefficient is defined as

ρS B( fi, f j) = Σl

√
hS B( fi, l) ∗ hS B( f j, l) (13)

As there are two histograms associated to one level, we
define the similarity metrics as the combination of the
similary metrics of each histogram. That is, for his-
togram intersection:

dk = α1dk
LL + (1 − α1)dk

HF with α1 ∈ [0, 1] (14)

and for Battacharrya coefficient:

ρk = α2ρ
k
LL + (1 − α2)ρk

HF with α2 ∈ [0, 1] (15)
8



Figure 5: Low Resolution Motion Mask Extraction

Figure 6: Superposition of Motion Mask and Color Segmentation

6. Results

6.1. Object Extraction

In this section, results of Object Extraction are pre-
sented. Fig. 5 shows the Motion Mask Wk

t,i obtained at
the lower resolution level. Fig. 6 is Ok

t,i the result of
the fusion of Motion Mask and color Segmentation S k

t,i.
Then Fig. 7 shows the result of projection of this ex-
traction at a higher resolution level. Even if not all the
objects have been recovered, a significant part of them
is available and no noisy information on backround has
been added.

6.2. Object-Based Video Clip Retrieval

The test corpus we use for Video retrieval is consti-
tuted of 25 clips. Each clip has six copies made by ge-
ometrical transformations: rotation of 10 and 190 de-
grees, horizontal flip, resizing by factor 2 and 4, and
croping. For a given original clip, aim is to retrieve all
the transformed versions and uniquely those versions. It

Figure 7: Projection of the result at Higher Resolution

Figure 8: ROC Curves

is a reduced problem of copy detection.
For the original clip, the selection of the best segmented
objects in one frame is manually determined. To com-
pare to another clip, comparison of the corresponding
histogram to all histograms of the other clip is fulfilled.
Distance to this other clip is defined as the best score
found.
The ROC curves are given in Fig. 6.2. Our descriptor
shows promising results. For both measure, the adjonc-
tion of the measure on histograms HF (α1,2 = 0.5) im-
proves the quality of recall and precision in comparison
to the use of LF histograms only.

7. Conclusion

This paper presents a complete method for extraction
and design of a scalable object-based descriptor in the
JPEG2000 wavelet domain. First, the extraction of ob-
ject is achieved using the direct information obtained
by wavelet transformation. A difficulty is that the ap-
proach is made from low resolution to higher resolu-
tions, adapting to the scalable codestream. So, only a
rough extraction can be expected. Second, a descriptor
is build on object wavelet histogram thus extracted.
Even if the overcomplete scheme is done under the
rough indexing paradigm, quality of the results shows
to be sufficiently refined to allow a quite precise de-
scription. The adjonction of a HF wavelet histogram
in comparison to the LF histogram alone conducts to an
improvement of recall/precision results. All these re-
sults are really promising.
The next step of our research will be to work on a larger

9



Data Base and to test the descriptor with different types
of queries.
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