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Abstract—Efficient propagation prediction requires a tool both
fast and accurate, which are two opposite qualities. Generally,
such a tool is fast using crude approximation, leading to
miss some propagation paths. Moreover, its accuracy is usually
validated by some comparisons to measurement. Then, only
the statistical behavior of such a tool is available, but not its
particular one for a given scene.
In this paper we propose a new optimization for finding

the propagation paths, based on the Monte Carlo techniques.
It allows a theoretical knowledge of the error due to our
approximation, so that any engineer can really choose between
faster or accurate calculations.
Our approach is compared with a Full Ray Tracing tool : This

allows to discuss about the validity of our model, and its gain in
terms of computation time. Comparisons are produced both in
narrow and wide bands.

I. INTRODUCTION

Ray tracing is an interesting technique for propagation
prediction. Based on the Uniform Theory of Diffraction [1],
a Full Ray Tracing implementation (or FRT) allows to find
all the theoretical contributions between a transmitter and a
receiver. Many confrontations with measurements have shown
that such a solution gives precise predictions [2].
Nevertheless, the problem with FRT is the computation

time, that may become very large even with a simple scene.
Indeed, the calculation consists in testing all the possible con-
tributions. By increasing the number of allowed interactions in
path computation, the combinatorial explosion of the number
of such tests leads to impracticable tools.
Of course, many optimizations exist, mainly with visibility

pre-computation, or using propagation properties [2]. More-
over, very powerful optimizations are less precise, since they
imply to miss valid propagation paths [3] [4]. Computation
time becomes certainly acceptable for an engineering use,
but two questions arise : The validity of the prediction, and
the user control on it. While the first one is established with
comparisons to measurements, the second one is generally not
available, even if the error control is the most important point
of any optimization.
In this paper, we present a new approximate approach with

error prediction account, and then compare it to a full solution.
This error control is achieved using a mathematical framework
for the optimization purpose. Our solution is a two pass

one, with an oracle construction, followed by a ray tracing
computation guided by the oracle.
In the second section, we present our approach, based on

Monte Carlo techniques. So, we recall the Monte Carlo basis,
and then detail our two pass implementation.
The purpose of the third section is to compare this new

approach with a full one. We propose some test scenes,
and discuss about the number and the importance of the
missed paths with a wide band approach, and the narrow band
differences. Next, we show the computation times, which are
drastically reduced with our approximate solution.
As a conclusion, we discuss about our approach capacity to

tend to the full solution, and about future works.

II. THE MONTE CARLO APPROACH

Monte Carlo techniques are used in many research fields,
from nuclear computations to financial simulations. The basis
of these techniques is the ability to compute the estimation
of integral functions. Of course, this is useful when such
functions are non computable in a reasonable time, as it is
the case in visibility computations.
This section begins with a short presentation of the Monte

Carlo principles, followed by implementation details.

A. Monte Carlo principles

The main idea of Monte Carlo integration [5] is to use
random sampling for evaluating the following integral :

I =

∫

Ω

f(x)dx (1)

It is done by computing the estimate :

FN =
1

N

N
∑

i=1

f(Xi)

p(Xi)
(2)

where the N independent random values X1, ...,XN are
sampled using a convenient density function p.
The convergence rate mainly depends on the number of

samples N . The standard deviation is

σ[FN ] =
1

√

N
V

[

f

p

]

(3)



where V denotes the variance. Then, dividing σ by a factor
2 necessitates 4 times more samples, and a fine calculation
requires a large number of samples.
To deal with this problem, many variance reduction tech-

niques have been developed. In this paper we use mainly one,
the stratified sampling. It consists in partitioning the domain Ω
into several non-overlapping regions – or strata – Ω1, ...,Ωn.
Then, the work is done on each stratum Ωi by sampling ni

random variables, according to some given density function
pi. This technique greatly reduces the variance on Ω, which
becomes the sum of the variances for every stratum.

B. Implementation
Our implementation is quite easy to understand. It is based

on a two pass process.
1) Oracle Construction: The first step consists in exploring

the visible part from a given transmitter, using Monte Carlo
techniques, by sampling each face and each dihedron. The
samples are produced using a stratified strategy, by fixing ni =
1. It is similar to a ray launching strategy, but without the
reception part.
A sample is a primary ray, that can be reflected or diffracted

a given number of times. The reflection is obtained by search-
ing the first face intersecting by the primary ray. The diffrac-
tion is more difficult to control: in a ray launching strategy,
the diffracting edges are found by testing the intersection of a
primary ray with cylinders. But their size must depend on the
parameterization of the oracle. Since we search to obtain as
many paths as possible, we used the discrete tube technique
[6]. This solution allows to quickly find all the edges included
into the n first Fresnel ellipsoids. In order to miss the minimum
of edges, the number of ellipsoids directly depends on the
number and on the lengths of the primary rays.
Then, each reflection or diffraction fact is stored on the cor-

responding face or dihedron. We do not keep the localization
of diffraction or reflection, but the history of faces or dihedra
that have been used to bounce on the current object.
Notice that the final user may specify either the total number

of samples, or the standard deviation.
2) Propagation: The propagation step looks like a classical

Full Ray Tracing (FRT) solution. The only difference is that
we do not explore all the combinations of faces and dihedra,
but only those predicted by the oracle. Then, at a given
reception location, for each history stored into each face or
dihedron, we compute the corresponding path that may add
some propagation information.
Since we do not explore all the theoretically possible paths,

then the computation time is really reduced. We obtain a better
ratio between the combinations that lead to a valid path, and
those that are explored for nothing.
Notice that this technique is different from Tan’s one [7],

mainly in two points:
• We can use standard deviation to ensure a given precision,
• We do not use a sphere around a given receiver. In fact,
the receiver location does not have any importance in the
first step.

C. Error control
As detailed in the next subsection, the oracle construction

can be computed with either a number of primary rays or a
maximum standard deviation. With this last solution, the oracle
must decide itself when to stop the computations.
With a classical Monte-Carlo approach, this is usually

implemented in the following way. The computation is made
two times, with the same number of samples. The results are
compared, in order to verify that their difference is under a
given precision. If it is the case, then the calculation is stopped.
In the other case, then these two results is merged into one,
and another Monte Carlo simulation is made with the same
number of samples (i.e. twice the initial number). This process
is repeated until the convergence is ensured.
In our oracle construction, the main question is how to

compare the results. In fact, the results is the set of faces and
dihedra visible from the transmitter, after some reflection and
diffraction. So, the convergence of the Monte-Carlo process
can be established by comparing these sets: our tests have
shown that this can be obtained quickly, and allow an auto
parameterization of the oracle construction.
In the ideal case, the computation leads to two identical

sets of faces and dihedra. Of course, this do not imply that
we obtain all the desired faces and dihedra. Nevertheless, this
solution ensure that this kind of error have a small probability
to arise.

III. COMPARISON WITH FULL SOLUTION

The comparison of our proposed solution with a Full Ray-
Tracing is made with three different test scenes. We give here
some results in narrow bands, by comparing the number of
covered receivers, and the mean number of paths at each
receiver locations. Then, in wide band we propose some
comparisons of the power delay profil for some receivers.
All the computation made with the presented solution are

performed with a mean of 1024 primary rays for each face
or dihedron, and 32 diffracted rays at each diffraction points.
The computation was performed on a Pentium IV at 2.6 Mhz,
with 512 Mo of RAM, under Linux.

A. The test scenes
The first scene – scene A – represents a small part of the

campus at the Poitiers University, in France. It contains 194
faces and 206 dihedra. As it can be observed on the FIG. 1,
it is a classical suburban scene, with a poor building density.
As depicted in FIG. 2, the scene B is a classical downtown

environment, with only 1352 building faces, and 1956 dihedra.
The transmitter is below the rooftop at a street corner.
The last scene – scene C – is an extended view of the scene

B, with 4038 building faces and 5999 dihedra, as it is shown
in FIG. 3.

B. Narrow band results
Clearly, a good computation of the coverage area for

these three scenes requires to process many reflections and



Fig. 1. The test scene A, for 1 diffraction and 2 reflections

Fig. 2. The test scene B, for 1 diffraction and 2 reflections

Fig. 3. The test scene A, for 1 diffraction and 2 reflections

diffractions. Then, with a full ray-tracing implementation, the
computation time becomes very large and can not be achieved.
Since, with a FRT, the computation times are very impor-

tant, we sometimes used an accelerated version base on a
visibility graph construction – the italic computation times
–. For information, the real time with 2 reflections and 0
diffraction for the test scene B is estimated to more than 218
minutes, and to more than 4926 hours with 3 reflections.

Inter. Classical FRT With oracle
Comp. Time Mean PN Comp. Time Mean PN

1R 0D 2”93 2.73 2”31 2.73
2R 0D 3’21 4.36 5”20 3.90
3R 0D 2h19’31” 5.84 8”46 4.64
4R 0D 11”24 4.73
0R 1D 16”87 11.90 13”45 11.90
1R 1D 17’36” 52.89 1’31” 44.74
2R 1D 3h 18’ 122.22 4’35” 83.94
3R 1D 9’22” 109.41

TABLE I
NARROW BAND RESULTS FOR THE SCENE A : THE COMPUTATION TIMES

AND THE MEAN PATH NUMBERS

Inter. Classical FRT With oracle
Comp. Time Mean PN Comp. Time Mean PN

1R 0D 9”71 3.06 3”58 3.06
2R 0D 51’04” 5.85 6”04 5.60
3R 0D 11”41 7.04
4R 0D 19”03 8.17
0R 1D 16”17 11.90 13”14 11.80
1R 1D 1h 09’ 49” 62.61 1’35” 56.60
2R 1D 6’08” 116.08
3R 1D 18’59” 171.32

TABLE II
NARROW BAND RESULTS FOR THE SCENE B : THE COMPUTATION TIMES

AND THE MEAN PATH NUMBERS

Inter. Classical FRT With oracle
Comp. Time Mean PN Comp. Time Mean PN

1R 0D 22”73 3.12 4”83 3.12
2R 0D 7”74 5.13
3R 0D 12”74 6.47
4R 0D 19”82 7.83
0R 1D 1’34” 14.71 15”89 14.71
1R 1D 2’30” 53.10
2R 1D 11’46” 113.17

TABLE III
NARROW BAND RESULTS FOR THE SCENE C : THE COMPUTATION TIMES

AND THE MEAN PATH NUMBERS

The results are respectively presented in the table I, II and
III for the test scene A, B and C. The number of receiver
locations is 15158 for the scene A, 8983 for scene B, and
8024 for the scene C.
Clearly, the computation times are drastically reduced, even

with a small number of interactions. The mean number of com-
puted paths is not so reduced. This is verified by comparing
the coverage area obtained. Moreover, since we obtain almost
all the main paths, the full path loss is not very different. For
instance, with the test scene A, the total path losses for the 5



receiver locations depicted in FIG. 1 – where Rx1 and Rx2
are in LOS, and Rx3, Rx4 and Rx5 in NLOS – are 64, 76,
107, 112 and 99 dB with the FRT, and 64, 80, 109, 114 and
99 dB with the oracle method.
The computation with a FRT implementation are often

impossible to obtain, due to the very long time needed.
Nevertheless, the results presented show that our solution is
faster and valid in term of number of paths obtained.
As a general conclusion on the narrow band results, it

is shown that the Monte Carlo construction produces an
important computation time optimisation, without missing
too many paths. Moreover, the missed contributions generaly
imply small faces or dihedra, and so are neglictable in the final
results.

C. Wide band results
The results presented here are produced only with the

scene test A, since the results are roughly the sames with
the other scenes. They are computed with the same receiver
locations than those presented in the previous section, since
they illustrate LOS and NLOS configurations. The FIG. 4
shows the impulse responses at Rx1, and the FIG. 5 at Rx3,
for the FRT algorithm and the oracle one. It seems obvious
that the two curves are very similar, which is in accordance
with the narrow band results.

Fig. 4. Power Delay profi les at Rx1: Red line for FRT, and dark line for
Oracle construction

Fig. 5. Power Delay profi les at Rx3: Red line for FRT, and dark line for
Oracle construction

The Delay Spread parameter is one of the most popular
for characterizing the channel impulse response. The table IV
shows such Delay Spread results for two reflexions and one
diffraction, with both the FRT and the oracle method. These
results seem to be different even if the impulse responses are
very closed.

Rx All paths Dynamic of 15 dB
FRT Oracle FRT Oracle

1 235.89 167.89 226.58 96.12
2 128.06 169.18 48.55 78.02
3 528.65 464.51 561.94 474.17
4 670.96 648.67 687.69 672.79
5 430.36 364.84 445.14 365.28

TABLE IV
DELAY SPREAD RESULTS IN NANO SECONDS

This can be explained by the fact that the delay spread
parameter is very sensible to the low variations of the impulse
response. Furthermore, one can note that, as it is shown in the
litterature, the considered dynamic for the impulse response
computation play an important role in the determination of
the Delay Spread. Thus, we constate a difference of about 80
ns for the RX2 location between when we use a dynamic of
15 dB, which is the recommanted value by the IUT.

IV. CONCLUSION
We have presented here a propagation prediction tool, with

an oracle construction based on Monte Carlo techniques. It
allows to control the trade-off between the rapidity and the
accuracy of the calculations. We have shown some results and
discussed about them, showing the reduction of the computa-
tion times and the low prediction error obtained, compared to
a full ray tracing software.
Of course, many aspect can be improved: The first one

is the computation time, which may be reduced using some
visibility precomputation from the receiver locations. The
second problem concerns the missed paths, due to the Monte
Carlo approach. A solution may be to perform the oracle
construction using 3D volume propagation with a discrete
approach. Nevertheless, this may imply to find too much
contribution, and so to increase the global computation times.
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