
HAL Id: hal-00349012
https://hal.science/hal-00349012v1

Submitted on 22 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual Hull Construction in the Presence of Partial
Occlusion

Li Guan, Sudipa Sinha, Jean-Sébastien Franco, Marc Pollefeys

To cite this version:
Li Guan, Sudipa Sinha, Jean-Sébastien Franco, Marc Pollefeys. Visual Hull Construction in the
Presence of Partial Occlusion. Third International Symposium on 3D Data Processing, Visualization,
and Transmission, Jun 2006, United States. pp.413-420, �10.1109/3DPVT.2006.147�. �hal-00349012�

https://hal.science/hal-00349012v1
https://hal.archives-ouvertes.fr


Visual Hull Construction in the Presence of Partial Occlusion

Li Guan Sudipta Sinha Jean-Sébastien Franco Marc Pollefeys

Department of Computer Science

The University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175, USA

{lguan, ssinha, franco, marc}@cs.unc.edu

Abstract

In this paper, we propose a visual hull algorithm, which

guarantees a correct construction even in the presence of

partial occlusion, while “correct” here means that the real

shape is located inside the visual hull. The algorithm is

based on a new idea of the “extended silhouette”, which re-

quires the silhouette from background subtraction and the

“occlusion mask” of the same view. In order to prepare the

occlusion mask, we also propose a novel concept of “ef-

fective boundary” of moving foreground objects in a video

obtained from a static camera. The accumulation of the

effective boundary through time automatically gives robust

occluder boundaries. We theoretically prove that our algo-

rithm deterministically computes the tightest, correct visual

hull in the presence of occlusion. Both synthetic and real

examples are given as a demonstration of the correctness of

the algorithm. Finally we analyze that this new algorithm is

still within the time complexity of the traditional method.

1. Introduction

A visual hull is defined as the intersection of silhouette

cones from 2D camera views, which captures all geometric

information given by the image silhouettes [1]. One basic

property is that a visual hull is the largest volume to be con-

sistent with silhouette information from all views [2]. The

actual shape is always contained inside the constructed vi-

sual hull. This is referred to as the visual hull conservation

constraint. Hence multiple view shape-from-silhouette al-

gorithms for computing the visual hull are widely used to

provide a coarse 3D shape estimate which can serve as an

initialization for more sophisticated 3D shape reconstruc-

tion algorithms, such as [3].

The visual hull conservation constraint will be violated

when an algorithm ignores the presence of occlusion in the

scene. If an object is partially occluded in a certain view,

most background subtraction algorithms [4, 5] will produce

Figure 1. The effect of occlusion on visual
hull construction is demonstrated using a
synthetic experiment. Column 1 shows the
input images and column 2 shows the ex-
tracted silhouettes. The silhouette in the
third view is incomplete due to the presence
of an occluder (a vertical pole). The result-
ing visual hull shown on the right violates the
conservation constraint.

an incomplete silhouette. When such silhouettes are used,

the construction will be incomplete too. This is illustrated

in Figure 11.

While previous visual hull methods [6, 7, 8, 9] focus on

algorithm efficiency and accuracy of the visual hull esti-

mate, they assume the silhouettes to be free of occlusion.

For obtaining correct visual hulls of objects from real video

footage, where occlusion is common (see Figure 2), this as-

sumption needs to be relaxed. Such methods can only com-

pute a correct visual hull by discarding the occluded views.

1Data from www.mpi-sb.mpg.de/departments/irg3/kungfu/index.html



While completely occluded views do not provide any in-

formation, partially occluded silhouettes are still useful for

inferring 3D shape. Hence in the rest, we focus on partially

occluded silhouettes. We also assume that the foreground

object never moves to the front of the occluders, which is

usually the case when static occluders are close enough to

the camera or the moving range of the foreground object is

not very wide.

This paper makes two contributions. First of all, in or-

der to deal with partial static occlusions, a new algorithm

is introduced as an extension to traditional shape-from-

silhouette visual hull method. Images where occlusions oc-

cur are not simply discarded. With the help of an occlusion

mask, the non-occluded part of the silhouette can still be

used. The traditional method can be proved as a special

case of our approach. Secondly, based on a novel concept

of effective boundary, an automatic occlusion mask extrac-

tion algorithm is described, which uses spatiotemporal cues

as well as silhouette accumulation.

In Section 2, we describe the automatic procedure to

compute the occlusion mask for each camera view. We

present the new visual hull algorithm in Section 3. We val-

idate our approach and evaluate its effectiveness in Section

4 followed by our conclusions in Section 5.

2. Occlusion Mask Extraction

An occlusion mask is a view-dependent binary image.

For every pixel, 1 denotes that an occluder is on the view-

ing direction and 0 otherwise. It can be considered as a part

of the camera configuration, similar to the calibration pa-

rameters. Generally, regions outside of the camera window

belong to the occlusion mask. But as long as the 3D object

being constructed is guaranteed to be seen by all cameras,

we can crop the occlusion mask to just the camera window

size.

If only static occluders are considered, an occlusion

mask can be precalculated. Automatic occluder segmen-

tation has been studied before. N. Apostoloff et.al. [10]

recently analyzed occlusions in spatiotemporal volumes us-

ing “T-junctions” and introduced a learning framework to

improve occlusion detection. The T-junction—a photomet-

ric profile shaped like a “T”, which is formed where the

edge of an object occludes the change in intensity of an-

other object, is a natural indicator of occlusion [11]. An

example is shown inside the right circle in Figure 2. How-

ever there could be problems in two situations, both related

to pixel colors. First, when the occluder and background

have similar colors, T-junctions cannot be reliably detected

for the occluder boundary (see the left circle in Figure 2).

Secondly, when a moving object has stripe-like textures, in

the spatiotemporal volume, T-junctions are detected due to

the texture illusion, where no occlusions really exist (refer

Figure 2. T-junction detection failure due to
similar color. Top: workers are walking to-
wards the right. Bottom: The horizontal line
of pixels in the top image stacked over time.
The two circles indicate occlusions. The right
one is a T-junction. But no T-junction is de-
tected for the left one, since the colors of the
occluder and the background are similar.

to Figure 3).

Other methods have been tried to bypass these problems.

G. Brostow et.al. [12] use moving foreground object silhou-

ettes as “active brushes” to delineate the underlying layers

of the scene. The union of silhouette pixels from the whole

sequence forms the Cumulated Silhouette Image (refer to

Figure 4). Edges in this binary image are categorized into

two types: (1) the occluder boundaries; (2) boundaries that

between regions where the moving objects have been pro-

jected onto and regions from where only the background has

been seen. We call the second type Phantom Boundaries.

In Figure 4, the roughly horizontal envelope of the workers’

helmets is an example of a Phantom Boundary (there is no

such edge in the original image).

A further analysis reveals that in the Cumulated Silhou-

ette Image, what contributes to the final image boundary

is the foreground silhouette boundary in every frame. For

most of the time, the object is occluded by the occluder,

therefore the foreground object boundary coincides with the

occluder boundary. But at the Phantom Boundary, the fore-

ground object boundary has nothing to do with the occluder.

So for the purpose of acquiring the occluder boundary, we

should not accumulate the foreground silhouette or its com-

plete boundary, but only part coincides with the occluder

boundary. Therefore we introduce the idea of an Effective

Boundary.



Figure 3. T-junction detection failure due to
texture illusion. Left: the leftmost worker is
turning his body around. Right: The verti-
cal line of pixels in the left image changing
with time. The circle indicates a T-junction
caused by stripe-like T-shirt texture “inter-
secting” with the collar and helmet, where
there is no real occlusion.

Figure 4. Cumulated Silhouette Image of the
“construction site” video sequence. The
binary boundaries are occlusion bound-
aries, except for the roughly horizontal curve
at the top—the Phantom Boundary, above
which foreground moving objects (the walk-
ing workers) have never reached.

2.1. Effective Boundary of a Moving Object

From T-junction analysis we know that occlusion hap-

pens when the general motion of a foreground object is sud-

denly prohibited by the occluder. This can be observed only

for the silhouette edges perpendicular to which the motion

vector has a non-zero component, but not for the silhou-

ette edges parallel to the motion. The Cumulated Silhou-

ette Image also reveals that it is the latter silhouette edges

that cause the Phantom Boundaries (most of the motions in

the sequence are horizontal, which is parallel to the top of

the helmets), while the actual occluder boundaries are con-

tributed by the former ones. We now define the Effective

Boundary as the “frontal parts” of the moving object sil-

houette in both the motion and its reverse direction (since

the detection via reverse motion is also valid), see Figure 5.

Figure 5. Effective Boundary of a synthetic
moving object silhouette denoted in thick
black curves. Note that the silhouette could
be concave.

Now, to obtain the occlusion mask for a certain cam-

era view, we take a short video sequence with objects mov-

ing around in the view. We then accumulate the Effective

Boundaries as valid candidates for occluder boundaries and

call this accumulation the Cumulated Occluder Boundary

Image (an idea similar to the Cumulated Silhouette Image).

Specifically, after background subtraction, we obtain a

moving object silhouette for every frame. Here, the subtrac-

tion does not have to be very accurate, because we assume

after the information accumulation over time, we can can-

cel out the effect of random noise. Then we compute the

Motion History Image (MHI) [13], an image whose pixel

intensity is a function of the recency of motion in a se-

quence, as shown in Figure 6. From there, we can get the

motion direction of the objects by averaging the gradients

of pixels in the rectangle boxes, which are the bounding

boxes of connected non-zero pixel regions above a certain

size (for Figure 6, the minimum size is 100 pixels). Then

we can accumulate the Effective Boundary over time. Fig-

ure 7 shows the Effective Boundary accumulation over the

“construction site” sequence. The accumulation is robust

to noise. Even though some pixels might be falsely labeled

as occluder boundary during the accumulation, they will be

discarded and will not show up in the final occluder bound-

ary image, as long as they have ever been or will ever be

occupied by some foreground silhouette in the whole video

sequence. This is because occluder pixels are guaranteed

not to be occupied by foreground objects. In other words, if

a pixel has ever been occupied during the video sequence,

it is definitely not an occluder pixel. For example, in Fig-

ure 7(b) (frame 100), there are some false accumulations

above the wooden post, but they are occupied by some fore-

ground silhouette between frame 101 and 274, so they are

eliminated in Figure 7(c) (frame 274).

After processing the whole video sequence, we can fur-

ther refine the occluder boundary by the Cumulated Silhou-

ette Image, because boundary connectivity in this image is

always preserved, despite of the Phantom Boundary prob-



Figure 6. Using MHI to determine motion di-
rections. The dark blobs are moving silhou-
ettes. The long line segments indicate the
motion direction of the blobs in rectangles.
The tiny line segment array shows the local
gradient field.

Figure 7. The Occluder Boundaries accumu-

lation over time at frame 5, 100 and 274 re-
spectively. No Phantom Boundary exists in
the final image.

(a) (b)

(c) (d)

Figure 8. (a) the Cumulated Occluder Bound-
ary Image after the final frame. (b) bound-
aries of the Cumulated Silhouette Image, as
in Figure 4. Different intensities indicate the
connectivity. (c) choosing final boundaries
from (b) using pixel voting from (a). No Phan-
tom Boundary here. (d) final occlusion mask
by flood-filling.

lem. The idea is to use boundary pixels in the Cumulated

Occluder Boundary Image to vote for boundaries in the

Cumulated Silhouette Image. Since the Phantom Bound-

ary should have few votes from the Cumulated Occluder

Boundary Image (if some, mainly are due to noise), after

thresholding, we can discard the Phantom Boundary from

the Cumulated Silhouette Image and get a connected oc-

cluder boundary image as shown in Figure 8(c). To compute

the occlusion mask from this image, we randomly choose a

pixel that is not on the boundary as a seed and flood-fill the

image. If the resulting mask overlaps with regions that a

foreground object has ever reached, we discard the result,

otherwise we keep it. We repeat this process until no more

non-boundary pixels in the image can be used as a seed.

The final occlusion mask is shown in Figure 8(d).

The Effective Boundary is updated online, so that one

can keep processing the video until a good occluder mask

is obtained. This is robust to errors in silhouette extrac-

tion. We have implemented an OpenCV real-time version

which works well with fairly low resolution video. When

the occluder color is similar to the background, it is hard to

manually segment the occluder. Our algorithm works well

in this case, as long as the moving object color differs from

that of the background and the occluder. More results are

shown in Section 4.3 as well as the supplemental video.

3. Main Algorithm

Once given the silhouette of the object and the occlusion

mask of the camera, we need to determine whether the ob-

ject has been occluded in the view or not. Table 1 lists the

notations we use in this paper.

Table 1. Symbol Definition

P object of interest in 3D scene

O occluder in 3D scene

SP
k silhouette of the 3D object P in kth view

SO
k silhouette of the occluder O in kth view

H visual hull

∂x boundary of a 2D region x

Ck(x) viewing cone of the 2D area x from kth view

Rk(X) silhouette of the 3D object X in kth view

3.1. Occlusion Detection

The silhouettes of the occluder can be considered as

view-dependent information for each camera, denoted by

SO
k . For every image frame, we first extract the silhouette

SP
k of the active object P (note that due to occlusion, SP

k

may be incomplete). Then using SP
k and SO

k , we can per-



(a) Unoccluded (b) Occluded

Figure 9. Object-occluder configuration. The
dark boundaries in both figures indicate the
boundary of the extended silhouettes ∂SE

k .

(a) (b) (c)

Figure 10. Assume that the ellipse is Rk(P ),
and the rectangle is SO

k . (a) and (b) show two
special cases that Rk(P ) is equal to SE

k . (c)
Rk(P ) ⊆ SE

k . The sector region is actually
being occluded. In all images, the this solid
outline is ∂SE

k

form occlusion detection to determine if an occlusion oc-

curs in that frame as follows.

Fact No. 1: If SP
k and SO

k do not share boundaries, there

is no occlusion in kth view, as shown in Figure 9(a). To

express it in a formal way:

When ∂SP
k

⋂

∂SO
k = ∅, there is no occlusion in the

view; we now define a new term extended silhouette as SE
k ,

and this means (1) when an occlusion is detected in kth

view, SE
k is the union of the silhouette of the object and that

of the occluder; (2) while there is no occlusion happening in

the image, SE
k is equal to that of the object only. Speaking

of both configurations in Figure 9, SE
k is the region outlined

by the thick boundary.

SE
k =

{

SP
k when ∂SP

k

⋂

∂SO
k = ∅,

SP
k

⋃

SO
k otherwise.

(1)

The worst case happens when two objects in 2D are

tangential with each other in the view, but no occlusions

behind. However in order to preserve the visual hull

conservation constraint, we have to bear this case, since

we cannot know the situation behind the occluding area SO
k .

Fact No. 2: Rk(P ) ⊆ SE
k , where Rk(P ) is the “real

silhouette” of object P without occlusion. In other words,

Rk(P ) − SP
k is the part of the object being occluded.

Fact No. 2 shows that “real silhouette” of P is contained

in the “extended silhouette” in every view. Rk(P ) = SE
k ,

as a special case, happens (1) when there is no occlusion in

this view, namely ∂SP
k

⋂

∂SO
k = ∅, or (2) SO

k is completely

enveloped by SP
k , which is expressed as SO

k ⊂ SP
k . As

shown in the first two cases of Figure 10.

3.2. Main Algorithm

Here is the main algorithm for the construction of visual

hull in the presence of occluders.

Algorithm 1 General Visual Hull Construction Algorithm

1: Occlusion mask extraction for every camera view;

2: Camera calibration;

3: To form “extended silhouette” SE
k of P in view k, k ∈

[1, n], n is the number of camera views, according to

silhouette boundary overlapping;

4: To construct visual hull Hwith occluder with all ex-

tended silhouettes, i.e. Hwith occluder =
⋂

Ck(SE
k ),

k ∈ [1, n].

4. Algorithm Performance Analysis

In this section, we first analyze the correctness of the al-

gorithm, for which we prove that the constructed visual hull

satisfies the visual hull constraint of conservation—the real

object is completely located inside the visual hull. Then

we compare the shape of our visual hull with the one con-

structed with traditional method without occlusion and an-

alyze the time complexity of the algorithm. Finally some

examples are demonstrated.

4.1. Correctness of the Algorithm

Theorem 1: Hwith occluder preserves the conservation.

Proof:

Let’s denote Hwithout occluder as the occlusion-free vi-

sual hull, for which we have

Hwithout occluder =
⋂

k∈[1,n]

Ck(Rk(P )) (2)

We also have for the result of our algorithm

Hwith occluder =
⋂

k∈[1,n]

Ck(SE
k ) (3)

According to Fact No. 2 in Section 3, Rk(P ) ⊆ SE
k ,

for all k ∈ [1, n], we have Ck(Rk(P )) ⊆ Ck(SE
k ). And

since the intersection of all pair-wise smaller sets is also

smaller than the intersection of all the pair-wise larger sets,

we always have Hwithout occluder ⊆ Hwith occluder.



Because Hwithout occluder has already been preserving

the constraint of conservation, Hwith occluder preserves the

constraint as well.

End of proof @

4.2. Shape Comparison with Hwithout occluder

Theorem 1 shows that the tightest Hwith occluder we can

get is Hwithout occluder, and this only happens when SE
k =

Rk(P ) for all k ∈ [1, n], as special cases discussed in Fact

No. 2 in Section 3. But Theorem 1 does not give us an

upper bound of Hwith occluder.

We now analyze how much extra volume is added to pre-

serve correctness in the presence of occlusion.

Define the “n−1 hull with respect to kth view”, denoted

by Hn−1
k , as follows.

Hn−1
k =

⋂

j∈[1,n],j 6=k

Cj(S
E
j ) (4)

Basically, it represents the visual hull constructed

with n − 1 views (all n views except the kth) and then

re-projected onto kth view.

Theorem 2: Rk(P ) ⊆ Rk(Hn−1
k ) for all k ∈ [1, n].

Proof:

From Theorem 1 (Section 4.1) and Equation (4), it fol-

lows that Hn−1
k preserves the visual hull conservation con-

straint.

So Rk(P ) ⊆ Rk(Hn−1
k ) is always true.

End of proof @

This means that the re-projection of the n− 1 hull to kth

view contains the silhouette of the object in kth view.

Fact No. 2 in Section 3 tells us that for the first two

configurations, Rk(P ) = SE
k .

So in either of the following cases:

• No occlusion in the view, as shown in Figure 11(a);

• The occluder is completely contained within the object,

as shown in Figure 11(b).

the following is true

Hwith occluder = Hwithout occluder (5)

This means we have fully recovered the occluded parts for

our visual hull.

The first condition also means that the traditional visual

hull algorithm without the presence of the occluder (see Fig-

ure 9(a)) is a special case of our algorithm. For Figure 11(c),

the rectangle SO
k is separated into three parts. Part 1 con-

tributes to preserving the correctness. Part 3 does not af-

fect Hwith occluder, because the corresponding region in 3D

(a) (b) (c)

Figure 11. Three general configurations of a
scene from kth view. Let the larger ellipse
represent Rk(Hn−1

k ), the smaller SP
k , the rect-

angle SO
k . (a) no occlusion (b) SO

k completely
contained in SP

k . (c) partial occlusion, the

most common case.

has already been outside of Hn−1
k . Therefore, the only part

adding extra volume to Hwith occluder due to occlusion, is

part 2. We can express this as follows.

Sextra
k = (Rk(Hn−1

k ) − Rk(P ))
⋂

SO
k (6)

And it will add to Hwith occluder amount of

Ck(Sextra
k )

⋂

Hn−1
k (7)

Since we do not know the shape behind the occluder in

advance, there is no way to decrease the area of part 2 in

Figure 11(c). The best we can get for each view is the ex-

tended silhouette as we defined. Therefore, we claim that

our approach gives the tightest visual hull in the presence of

occlusion. In some cases, Ck(Sextra
k ) may be significantly

large, but this is the smallest visual hull which satisfies the

conservation constraint in the presence of occlusion.

Note that the region between the large and small ellipses

in Figure 11 is the amount of redundancy we have carved

away by using the partially occluded view, instead of dis-

carding the view and using only n−1 views to get the visual

hull as the traditional method does. And this illustrates the

original idea why we want to use partially occluded views—

to use as much information as we have to get a better repre-

sentation of the 3D shape.

This algorithm also works when multiple views have oc-

clusion. However as the degree of occlusion increases, less

information is available in all the views. Hence to preserve

the conservation constraint, the visual hull may be larger

than Hwithout occluder. Since we use SE
k instead of SP

k , our

algorithm has the same time complexity as the traditional

method.

4.3. Examples

4.3.1 Synthetic Kung Fu Data

This example takes input data as those shown in Figure 1.

The result is displayed in Figure 12. Figure 12(a) shows



(a) Hwith occluder (b) Hn−1 (c) Hwithout occluder

Figure 12. (a) visual hull Hwith occluder with our
approach. (b) occlusion-free visual hull Hn−1

k

with only 3 occlusion-free views. It is larger
than that in (a). (c) Hwithout occluder. It is a little
bit smaller than (a).

the result of our algorithm. Comparing with Figure 1, the

occluded part (the dark red region) is correctly recovered.

Hn−1
k in Figure 12(b) only uses the occlusion-free view 1,

2 and 4, and is fatter than our visual hull in Figure 12(a)

(especially see the chest part), meaning that our method ob-

tains a tighter visual hull representation. Because this is

a synthetic data set, we are able to get the foreground sil-

houettes without occluder, thus construct Hwithout occluder,

as shown in Figure 12(c). The difference between Figure

12(c) and our result (Figure Hwith occluder) is displayed as

the dark green part in Figure 12(c). As one can see, there

is little region marked dark green, meaning in this example,

the visual hull constructed from our method is very close to

the optimal (occlusion-free) situation.

4.3.2 Lab Data and Effective Boundary Accumulation

Taken from a lab camera network setting of PointGrey

DragonFly 640x480 color cameras working at 15 fps, we

apply the “effective boundary” algorithm in advance to ob-

tain occlusion masks for all views. Row 3 of Figure 13

shows frame 17, 124, 409 and 522 in the video sequence

(609 frames in total) of view 4. The similar colors of the oc-

cluder and background make manual segmentation difficult

for this data set. But our automatic algorithm works well

with a moving hand whose color is distinguishable from that

of the background and the occluder. Figure 13(m) shows

SE
k of the same SP

k in Figure 13(h). In order to get no seam

at the shared boundary between occlusion mask and SP
k ,

we dilate the occlusion mask 2 pixels outwards and take the

union of it with SP
k . Figure 13(n) shows two visual hulls.

The one on the left is constructed with only three occlusion-

(a) view 1 (b) view 2 (c) view 3 (d) view 4

(e) silhouette 1 (f) silhouette 2 (g) silhouette 3 (h) silhouette 4

(i) frame 17 (j) frame 124 (k) frame 409 (l) frame 522

(m) extended sil. (n) Hn−1 v.s. our result

Figure 13. Row 1 is the 4 camera views. Row
2 is the silhouette images from background
subtraction. Row 3 is the process to ac-
quire occlusion mask for (d). (m) is the ex-
tended silhouette for view 4. (n) Hn−1

k and
Hwithoccluder of our algorithm. Note that our
visual hull preserves the correct topology.

free views. The one on the right is constructed with all ex-

tended silhouettes from four views using our proposed al-

gorithm. Of the two, only the right one preserves the two

holes in the object. This shows that to preserve the right

topology, we had better not discard the partially occluded

view during construction.

4.3.3 Real Office Data

As shown in Figure 14, this example deals with cluttered

office scene, where quite a few occluders are in the pres-

ence, e.g. a chair, a lamp and a table. Except in view 3, the

person is always partially occluded and thus not valid for

traditional construction method. The left visual hull shows

that the person is hardly recognizable in real environment if

not using the “extended silhouettes”. In comparison on the

right, our algorithm computes a correct visual hull. Consid-

ering the number of cameras and complexity of the scene,

the construction is fairly effective.



Figure 14. 3 out of 4 views have partial occlusion, which is very common in indoor scenes.

5. Conclusion

In this paper, we extend the traditional shape-from-

silhouette visual hull algorithm to work in static partial oc-

clusion situations. We are not using silhouettes obtained

from background subtraction directly, but using an Ex-

tended Silhouette combining both foreground object silhou-

ette and occlusion information in that view. We also provide

a novel method to automatically and robustly detect and

segment static occluders using a new concept—Effective

Boundary of a moving foreground object in the scene. We

also prove that the constructed visual hull contains the ac-

tual 3D object and it is the smallest one that we can get

using binary deterministic silhouette representation. More-

over, the time complexity of the construction is the same as

the traditional method.

Acknowledgments

We acknowledge the support of a Packard Fellowship

for Science and Technology, the NSF CAREER award IIS

0237533 and the US National Library of Medicine contract

N01LM33514 (3D Telepresence for Medical Consultation).

References

[1] B. G. Baumgart. Geometric modeling for computer vision.

Technical Report Artificial Intelligence Laboratory Memo

AIM-249, Stanford University, 1974.

[2] A. Laurentini. The Visual Hull Concept for Silhouette-Based

Image Understanding. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 94(16), 1994.

[3] O. Faugeras and R. Keriven. Variational principles, surface

evolution, PDE’s, level set methods and the stereo problem.

IEEE Transactions on Image Processing, 98(7):336—344,

1998.

[4] C. Stauffer, W. Grimson. Adaptive background mixture mod-

els for real-time tracking. In Proc. CVPR, 1999.

[5] A. Elgammal, D. Harwood, and L. Davis. Non-parametric

Model for Background Subtraction. In Proc. ICCV FRAME-

RATE Workshop, 1999.

[6] M. Potmesil. Generating octree models of 3D objects from

their silhouettes in a sequence of images. Computer Vision,

Graphics and Image Processing, 87(40):1—20, 1987.

[7] G. K. M. Cheung, T. Kanade, J-Y. Bouguet and M. Holler. A

real time system for robust 3D voxel reconstruction of human

motions. In Proc. CVPR, 00(2):714—720, 2000.

[8] C. R. Dyer. Volumetric Scene Reconstruction from Multiple

Views. Foundations of Image Understanding, L. S. Davis, ed.,

Kluwer, Boston, 2001.

[9] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and

L.McMillan. Image Based Visual Hulls. In In Proc. Siggraph,

2000.

[10] N. Apostoloff and A. Fitzgibbon. Learning spatiotemporal

T-junctions for occlusion detection. In Proc. CVPR, 2005.

[11] P. Favaro, A. Duci, Y. Ma, and S. Soatto. On Exploiting Oc-

clusions in Multiple-view Geometry. ICCV, 2003.

[12] G. Brostow and I. Essa. Motion Based Decompositing of

Video. ICCV, 1999.

[13] J. Davis. Hierarchical Motion History Images for Recogniz-

ing Human Motion. IEEE Workshop on Detection and Recog-

nition of Events in Video, Canada, 2001.


