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Introduction

Let G be a complex connected linear algebraic Lie group. Denote by g its Lie algebra. The group G acts on the dual g * of g by the coadjoint action. For f ∈ g * , we denote by G(f ) its stabilizer in G; it always contains the center Z of G. One says that a linear form f ∈ g * has reductive type if the quotient G(f )/Z is a reductive subgroup of GL(g). The Lie algebra g is called quasi-reductive if it has linear forms of reductive type. This notion goes back to M. Duflo. He initiated the study of such Lie algebras because of applications in harmonic analysis, see [START_REF] Duflo | Théorie de Mackey pour les groupes de Lie algébriques[END_REF]. For more details about linear forms of reductive type and quasi-reductive Lie algebras we refer the reader to Section 1.

Reductive Lie algebras are obviously quasi-reductive Lie algebras since in that case, 0 is a linear form of reductive type. Biparabolic subalgebras form a very interesting class of non-reductive Lie algebras. They naturally extend the classes of parabolic subalgebras and of Levi subalgebras. The latter are clearly quasi-reductive since they are reductive subalgebras.. Biparabolic subalgebras were introduced by V. Dergachev and A. Kirillov in the case g = sln, see [START_REF] Dergachev | Index of Lie algebras of seaweed type[END_REF]. A biparabolic subalgebra or seaweed subalgebra (of a semisimple Lie algebra) is the intersection of two parabolic subalgebras whose sum is the total Lie algebra.

In this article, we are interested in the classification of quasi-reductive (bi)parabolic subalgebras. Note that it is enough to consider the case of (bi)parabolic subalgebras of the simple Lie algebras, cf. Remark 1.4. Introduction 1 1. Notations, definitions and basic facts 2 2. Methods of reduction 6 3. Some classes of quasi-reductive biparabolic subalgebras 9 4. Non quasi-reductive parabolic subalgebras 12 5. Explicit computations and classification 15 Appendix A.
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1.1. Let g be a complex Lie algebra of a connected linear algebraic Lie group G. Denoting by g(f ) the Lie algebra of G(f ), we have g(f ) = {x ∈ g | (ad * x)(f ) = 0} where ad * is the coadjoint representation of g. Recall that a linear form f ∈ g * is of reductive type if G(f )/Z is a reductive Lie subgroup of GL(g). We can reformulate this definition as follows:

Definition 1.1. An element f of g * is said to be of reductive type if g(f )/z is a reductive Lie algebra whose center consists of semisimple elements of g where z is the center of g.

Recall that a linear form f ∈ g * is regular if the dimension of g(f ) is as small as possible. By definition, the index of g, denoted by ind g, is the dimension of the stabilizer of a regular linear form. The index of various special classes of subalgebras of reductive Lie algebras has been studied by several authors, cf. [P03], [START_REF] Yakimova | The index of centralizers of elements in classical Lie algebras[END_REF], [START_REF] Moreau | Indice du normalisateur du centralisateur d'un élément nilpotent dans une algèbre de Lie semisimple[END_REF], [START_REF] Moreau | Indice et décomposition de Cartan d'une algèbre de Lie semi-simple réelle[END_REF]. For the index of seaweed algebras, we refer to [P01], [START_REF] Dvorsky | Index of parabolic and seaweed subalgebras of son[END_REF], [START_REF] Tauvel | Indice et formes linéaires stables dans les algèbres de Lie[END_REF], [START_REF] Tauvel | Sur l'indice de certaines algèbres de Lie[END_REF], [J06] and [J07].

Recall that g is called quasi-reductive if it has linear forms of reductive type. From Duflo's work [Du82, § §I.26-27] one deduces the following result about regular linear forms of reductive type: Proposition 1.2. Suppose that g is quasi-reductive. The set of regular linear forms of reductive type forms a Zariski open dense subset of g * . 1.2. From now on, g is a complex finite dimensional semisimple Lie algebra. The dual of g is identified with g through the Killing form of g. For u ∈ g, we denote by ϕu the corresponding element of g * . For u ∈ g, the restriction of ϕu, to any subalgebra a of g will be denoted by (ϕu)|a.

Denote by π the set of simple roots with respect to a fixed triangular decomposition

g = n + ⊕ h ⊕ n -
of g, and by ∆π (respectively ∆ + π , ∆ - π ) the corresponding root system (respectively positive root system, negative root system). If π ′ is a subset of π, we denote by ∆ π ′ the root subsystem of ∆π generated by π ′ and we set ∆ ± π ′ = ∆ π ′ ∩∆ ± π . For α ∈ ∆π, denote by gα the α-root subspace of g and let hα be the unique element of [gα, g-α] such that α(hα) = 2. For each α ∈ ∆π, fix xα ∈ gα so that the family {xα, h β ; α ∈ ∆π, β ∈ π} is a Chevalley basis of g. In particular, for non-colinear roots α and β, we have [xα, x β ] = ±(p + 1)x α+β if βpα is the source of the α-string through β.

We briefly recall a classical construction due to B. Kostant. It associates to a subset of π a system of strongly orthogonal positive roots in ∆π. This construction is known to be very helpful to obtain regular forms on biparabolic subalgebras of g. For a recent account about the cascade construction of Kostant, we refer to [TY04b, §1.5] or [TY05, §40.5].

For λ in h * and α ∈ ∆π, we shall write λ, α ∨ for λ(hα). Recall that two roots α and β in ∆π are said to be strongly orthogonal if neither α + β nor αβ is in ∆π. Let π ′ be a subset of π. The cascade K π ′ of π ′ is defined by induction on the cardinality of π ′ as follows:

(1) K(∅) = ∅, (2) If π ′ 1 ,. . . ,π ′ r are the connected components of π ′ , then

K π ′ = K π ′ 1 ∪ • • • ∪ K π ′ r , (3) If π ′ is connected, then K π ′ = {π ′ } ∪ KT where T = {α ∈ π ′ | α, ε ∨ π ′ = 0} and ε π ′ is the highest positive root of ∆ + π ′ . For K ∈ K π ′ , set ΓK = {α ∈ ∆K | α, ε ∨ K > 0} and Γ 0 K = ΓK \ {εK } .
Notice that the subspace

K∈Γ K
gα is a Heisenberg Lie algebra whose center is gε K .

The cardinality kπ of Kπ only depends on g; it is independent of the choices of h and π. The values of kπ for the different types of simple Lie algebras are given in Table 1; in this table, for a real number x, we denote by [x] the largest integer ≤ x.

For π ′ a subset of π, we denote by E π ′ the set of the highest roots εK where K runs over the elements of the cascade of π ′ . By construction, the subset E π ′ is a family of pairwise strongly orthogonal roots in ∆ π ′ . For the convenience of the reader, the set Eπ, for each simple Lie algebra of type π, is described in the Tables 2 and3. We denote by E π ′ the subspace of h * which is generated by the elements of

E π ′ . A ℓ , ℓ ≥ 1 B ℓ , ℓ ≥ 2 C ℓ , ℓ ≥ 3 D ℓ , ℓ ≥ 4 G2 F4 E6 E7 E8 ℓ + 1 2 ℓ ℓ 2 ℓ 2 2 4 4 7 8
Table 1. k π for the simple Lie algebras.

A ℓ , ℓ ≥ 1: 3. E π for the exceptional Lie algebras.

α1 α2 α ℓ-1 α ℓ {εi = αi + • • • + α i+(ℓ-2i+1) , i ≤ ℓ + 1 2 } B ℓ , ℓ ≥ 2 : α1 α2 α ℓ-1 α ℓ > {εi = αi-1 + 2αi + • • • + 2α ℓ , i even, i ≤ ℓ} ∪ {εi = αi, i odd, i ≤ ℓ} C ℓ , ℓ ≥ 3: α1 α2 α ℓ-1 α ℓ < {εi = 2αi + • • • + 2α ℓ-1 + α ℓ , i ≤ ℓ -1} ∪ {ε ℓ = α ℓ } D ℓ , ℓ even, ℓ ≥ 4: α1 α2 α ℓ-2 α ℓ α ℓ-1 {εi = αi-1 + 2αi + • • • + 2α ℓ-2 + α ℓ-1 + α ℓ , i even, i < ℓ -1} ∪ {εi = αi, i odd, i < ℓ} ∪ {ε ℓ = α ℓ } D ℓ , ℓ odd, ℓ ≥ 5: α1 α2 α ℓ-2 α ℓ α ℓ-1 {εi = αi-1 + 2αi + • • • + 2α ℓ-2 + α ℓ-1 + α ℓ , i even , i < ℓ -1} ∪ {εi = αi, i odd , i < ℓ} ∪ {ε ℓ-1 = α ℓ-2 + α ℓ-1 + α ℓ }
1.3. A biparabolic subalgebra of g is defined to be the intersection of two parabolic subalgebras whose sum is g. This class of algebras has first been studied in the case of sln by Dergachev and Kirillov [START_REF] Dergachev | Index of Lie algebras of seaweed type[END_REF] under the name of seaweed algebras.

For a subset π ′ of π, we denote by p + π ′ the standard parabolic subalgebra of g which is the subalgebra generated by b + = h ⊕ n + and by g-α, for α ∈ π ′ . We denote by p - π ′ the "opposite parabolic subalgebra" generated by b -= n -⊕ h and by gα,

for α ∈ π ′ . Set l π ′ = p + π ′ ∩ p - π ′ .
Then l π ′ is a Levi factor of both parabolic subalgebras p + π ′ and p - π ′ and we can write

l π ′ = n + π ′ ⊕ h ⊕ n - π ′ where n ± π ′ = n ± ∩ l π ′ . Let m + π ′ (respectively m - π ′ ) be the nilradical of p + π ′ (respectively p - π ′ ).
We denote by g π ′ the derived Lie algebra of l π ′ and by z(l π ′ ) the center of l π ′ . The Cartan subalgebra h ∩ g π ′ of g π ′ will be denoted by h π ′ .

Definition 1.3. The subalgebra qπ 1 ,π 2 of g given as follows by the subsets π1, π2 ⊂ π

qπ 1 ,π 2 := p + π 1 ∩ p - π 2 = n + π 2 ⊕ h ⊕ n - π 1
is called the standard biparabolic subalgebra (associated to π1 and π2).

Its nilpotent radical is uπ 1 ,π 2 := (n + π 2 ∩ m + π 1 ) ⊕ (n - π 1 ∩ m - π 2 ) and lπ 1 ,π 2 := lπ 1 ∩π 2 is the standard Levi factor of qπ 1 ,π 2 .
Any biparabolic subalgebra is conjugate to a standard one, see [TY04b, §2.3] or [J06, §2.5]. So, for our purpose, it will be enough to consider standard biparabolic subalgebras.

Remark 1.4. The classification of quasi-reductive (bi)parabolic subalgebras of reductive Lie algebras can be deduced from the classification of quasi-reductive (bi)parabolic subalgebras of simple Lie algebras: A stabilizer of a linear form on g is the product of its components on each of the simple factors of g and of the center of g. As a consequence, we may assume that g is simple without loss of generality.

Let π1, π2 be two subsets of π. The dual of qπ 1 ,π 2 is identified to qπ 2 ,π 1 via the Killing form of g. For a = (aK

) K∈Kπ 2 ∈ (C * ) kπ 2 and b = (bL) L∈Kπ 1 ∈ (C * ) kπ 1 , set u(a, b) = K∈Kπ 2 aKx-ε K + L∈Kπ 1 bLxε L
It is an element of uπ 2 ,π 1 and the linear form (ϕu)|q π 1 ,π 2 is a regular element of q * π 1 ,π 2 for any (a, b) running through a nonempty open subset of (C * ) kπ 2 +kπ 1 , cf. [TY04b, Lemma 3.9].

We denote by Eπ 1 ,π 2 the subspace generated by the elements εK, for

K ∈ Kπ 1 ∪ Kπ 2 . Thus, dim Eπ 1 ,π 2 = kπ 1 + kπ 2 -dim(Eπ 1 ∩ Eπ 2 ). As it has been proved in [J06, §7.16], we have ind qπ 1 ,π 2 = (rk g -dim Eπ 1 ,π 2 ) + (kπ 1 + kπ 2 -dim Eπ 1 ,π 2 ) (1)
Remark 1.5. By (1), the index of qπ 1 ,π 2 is zero if and only if Eπ 1 ∩ Eπ 2 = {0} and kπ 1 + kπ 2 = rk g. For example, in type E6, there are exactly fourteen standard parabolic subalgebras p + π ′ with index zero. The corresponding subsets π ′ ⊂ π of the simple roots are the following: {α1, α5}; {α3, α6}; {α1, α4, α5}; {α3, α4, α6}; {α1, α5, α6}; {α1, α3, α6}; {α1, α3, α5}; {α3, α5, α6}; {α1, α3, α4}; {α4, α5, α6}; {α1, α3, α4, α5}; {α3, α4, α5, α6}; {α1, α2, α3, α4}; {α2, α4, α5, α6}. This was already observed in the unpublished work [El] of A. Elashvili (with a small error).

In the sequel, we will often make use of the following element of uπ 2 ,π 1 on our way to construct reductive forms: 1.4. We end the section by reviewing what is known in the classical case. First recall that the biparabolic subalgebras of simple Lie algebras of type A and C are always quasi-reductive as has been shown by D. Panyushev in [P05].

u - π 1 ,π 2 = ε∈Eπ 2 , ε / ∈∆ + π 1 x-ε If π2 = π, we simply write u - π 1 for u - π 1 ,
The classification of quasi-reductive parabolic subalgebras of the orthogonal Lie algebras is given in the recent work [DKT] of Duflo, Khalgui and Torrasso. Since we will use this result repeatedly, we state it below.

Let E be a complex vector space of dimension N endowed with a nondegenerate symmetric bilinear form. Denote by soN the Lie algebra of the corresponding orthogonal group. Let V = {{0} = V0 V1 • • • Vs = V } be a flag of isotropic subspaces in E, with s ≥ 1. Its stabilizer in soN is a parabolic subalgebra of soN and any parabolic subalgebra of soN is obtained in this way. We denote by p V the stabilizer of V in soN .

Theorem 1.7. [DKT] 

Let V = {{0} = V0 V1 • • • Vs = V }
be a flag of isotropic subspaces in E with s ≥ 1. Denote by V ′ the flag of isotropic subspaces in E which is equal to V \ {V } if dim V is odd and equal to N/2, and equal to V otherwise.

The Lie algebra p V is quasi-reductive if and only if the sequence V ′ does not contain two consecutive subspaces of odd dimension.

Example 1.8. For g =D6 there are twelve standard parabolic subalgebras p = p + π ′ which are not quasi-reductive. The corresponding subsets π ′ ⊂ π of the simple roots are the following: {α2}, {α4}, {α1, α4}, {α2, α4}, {α2, α5}, {α2, α6}, {α1, α2, α4}, {α2, α3, α4}, {α2, α4, α5}, {α2, α4, α6}, {α2, α5, α6}, {α2, α4, α5, α6}.

Among these, the connected π ′ are {α2}, {α4}, {α2, α3, α4}.

Thus it remains to determine the quasi-reductive parabolic subalgebras of the exceptional Lie algebras. This is our goal.

Methods of reduction

In this section, we develop methods of reduction to deduce the quasi-reductivity of a parabolic subalgebra from the quasi-reductivity of other subalgebras. We assume that π2 = π. Nevertheless we keep the notations of biparabolic subalgebras where it is convenient.

2.1. The following theorem seems to be standard. As there is no proof to our knowledge, we give a short proof here: Theorem 2.1 (Transitivity). Let π ′′ , π ′ be subsets of π with π ′′ ⊂ π ′ . Suppose that K π ′ ⊂ Kπ. Then, q π ′′ ,π is quasi-reductive if and only if q π ′′ ,π ′ is.

Proof. Note that the assumption K π ′ ⊂ Kπ implies ind q π ′′ ,π ′ = ind q π ′′ ,π + (kπk π ′ ) by formula (1). Since u π ′ ,π is an ideal of b + contained in n + , Proposition 1.6(ii) enables to choose w ′ in l π ′ such that both (ϕ w ′ +u - π ′

)|q π ′′ ,π and (ϕ w ′ )|q π ′′ ,π ′ are regular linear forms of q π ′′ ,π and q π ′′ ,π ′ respectively. Then one can show that q π ′′ ,π ′ (ϕ

w ′ ) = q π ′′ ,π (ϕ w ′ +u - π ′ ) ⊕ K∈Kπ \K π ′ Chε K . By Proposition 1.2, if q π ′′ ,π (respectively q π ′′ ,π ′ ) is quasi-reductive, then we can assume furthermore that (ϕ w ′ +u - π ′
)|q π ′′ ,π (respectively (ϕ w ′ )|q π ′′ ,π ′ ) has reductive type. Hence the equivalence of the theorem follows.

Suppose that g is simple and let π be the subset of π defined by Kπ = {π} ∪ K π . If g is of exceptional type, π \ π only consists of one simple root which we denote by απ. Note that απ is the simple root which is connected to the lowest root in the extended Dynkin diagram.

As a consequence of Theorem 2.1, to describe all the quasi-reductive parabolic subalgebras of g, for g of exceptional type, it suffices to consider the case of parabolic subalgebras p + π ′ with απ ∈ π ′ . This will be an important reduction in the sequel.

Remark 2.2. If g has type F4 (resp. E6, E7, E8), then g π has type C3 (resp. A5, D6, E7). In particular, if g has type F4 or E6, then p + π ′ is quasi-reductive for any π ′ which does not contain απ because in types A and C all (bi)parabolic subalgebras are quasi-reductive.

2.2. As a next step we now focus on a property that we call "additivity" to relate the quasi-reductivity of different parabolic subalgebras (cf. Theorem 2.11). Throughout this paragraph, g is assumed to be simple.

Definition 2.3. Let π ′ , π ′′ be subsets of π. We say that π ′ is not connected to π ′′ if α ′ is orthogonal to α ′′ , for all (α ′ , α ′′ ) in π ′ × π ′′ .
Notation 2.4. For a positive root α, we denote by K + π (α) the only element L of Kπ such that α ∈ ΓL. Note that unless α ∈ Eπ, K + π (α) is the only element L of Kπ for which εLα is a positive root. For K ∈ Kπ, we have

K + π (εK) = K.
Remark 2.5. It can be checked that K + π (α) = K + π (β) for α, β simple if and only if α and β are in the same orbit of -w0 where w0 is the longest element of the Weyl group of g. This suggests that w0 should play a role in these questions, as may be guessed from a result of Kostant which says that Eπ is a basis of the space of fixed points of -w0 and from work of Joseph and collaborators ([J06, J07]).

Definition 2.6. We shall say that two subsets π ′ , π ′′ which are not connected to each other satisfy the condition ( * ) if:

( * ) K + π (α ′ ) = K + π (α ′′ ) ∀ (α ′ , α ′′ ) ∈ π ′ × π ′′ .
Note that if kπ = rk g (that is if -w0 acts trivially on π), the condition ( * ) is always satisfied. Moreover, by using Table 3, a case-by-case discussion shows: Lemma 2.7. Assume that g is simple of exceptional type and let π ′ be a connected subset of π containing απ. Then, for any subset π ′′ of π which is not connected to π ′ , the two subsets π ′ , π ′′ satisfy the condition ( * ), unless g = E6, π ′ = {α1, α2, α3, α4} and π ′′ = {α6} or by symmetry π ′ = {α2, α4, α5, α6} and π ′′ = {α1}.

Remark 2.8. If g = E6, with π ′ = {α1, α2, α3, α4} and π ′′ = {α6}, then K + π (α1) = K + π (α6) = {{α1, α3, α4, α5, α6}}
, so π ′ and π ′′ do not satisfy the condition ( * ). As a matter of fact, the parabolic subalgebra p + π ′ ∪π ′′ will appear as a very special case (see Remark 2.12).

Let π ′ , π ′′ be two subsets of π which are not connected to each other and assume that π ′ , π ′′ satisfy condition ( * ). By Proposition 1.6(ii), we can let w ′ be in

l π ′ such that (ϕw)| p + π ′ is regular where w = w ′ + u - π ′ .
Denote by s ′ be the image of p + π ′ (ϕw) by the projection map from p + π ′ to its derived Lie algebra

g π ′ ⊕ m + π ′ with respect to the decomposition p + π ′ = z(l π ′ ) ⊕ g π ′ ⊕ m + π ′ . Let k ′ be the intersection of z(l π ′ ) with ε∈Eπ , ε ∈∆ + π ′ ker ε. Lemma 2.9. (i) ind p + π ′ = dim s ′ + dim k ′ . (ii) [s ′ , p + π ′ ∪π ′′ ] ⊂ p + π ′ and ϕw([s ′ , p + π ′ ∪π ′′ ]) = {0}. Proof. (i) We have dim p + π ′ (ϕw) = ind p + π ′ . Since the image of p + π ′ (ϕw) by the projection map from p + π ′ to g π ′ ⊕ m + π ′
is s ′ , it suffices to observe that the intersection of z(l π ′ ) with p + π ′ (ϕw) is k ′ . And this follows from the choice of w. (ii) Let x be an element of p + π ′ (ϕw); write for some

x = x0 + x ′ + x + with x0 ∈ z(l π ′ ), x ′ ∈ g π ′ and x + ∈ m + π ′ . Since [x + , w ′ ] lies in m + π ′ , the fact that x ∈ p + π ′ (ϕw) means [x0, u - π ′ ] + [x ′ , w ′ ] + [x ′ , u - π ′ ] + [x + , u - π ′ ] ∈ m + π ′ . First, we have to show [x ′ + x + , p + π ′ ∪π ′′ ] ⊂ p + π ′ . As [x ′ , p + π ′ ∪π ′′ ] ⊂ p + π ′ since π ′′ , π ′ are not connected, it suffices to prove that x + ∈ m + π ′ ∪π ′′ . If not, there are γ ∈ ∆ + π ′′ , K ∈ Kπ, and α ′ ∈ ∆ + π ′ such that γ -ε K + π (γ) = -(α ′ + εK ) , i.e. ε K + π (γ) = γ + (α ′ + εK) Hence γ, α ′ ∈ Γ 0 K + π (γ) that is K + π (α ′ ) = K + π (γ). But this contradicts condition ( * ). Thus [x ′ + x + , p + π ′ ∪π ′′ ] ⊂ p + π ′ . It remains to show: ϕw([x ′ + x + , p + π ′ ∪π ′′ ]) = {0} that is [x ′ + x + , w] ∈ m + π ′ ∪π ′′ . If [x ′ + x + , w] ∈ m + π ′ ∪π ′′ , there must be γ ∈ ∆ + π \∆ π ′ , K ∈ Kπ, and α ′′ ∈ ∆ + π ′′ such that γ -εK = α ′′ . In particular α ′′ ∈ Γ 0 K + π (γ) that is K + π (α ′′ ) = K + π (γ). On the other hand, [x, w] ∈ m + π ′ implies that there exist α ′ ∈ ∆ + π ′ and L ∈ Kπ, such that γ -ε K + π (γ) = -(α ′ + εL) , i.e. ε K + π (γ) = γ + (α ′ + εL) As before, we deduce that α ′ ∈ Γ 0 K + π (γ) , i.e. K + π (α ′ ) = K + π (γ) = K + π (α ′′ )
w = w ′ + u - π ′ with w ′ ∈ l π ′ . Since we assumed that p + π ′ is not quasi-reductive, (ϕw)| p + π ′
contains a nonzero nilpotent element, x, which is so contained in the derived Lie algebra of p + π ′ . Then, Lemma 2.9(ii) gives [x,

p + π ′ ∪π ′′ ] ⊂ p + π ′ and {0} = ϕw([x, p + π ′ ∪π ′′ ]) = ϕ ′ ([x, p + π ′ ∪π ′′ ]) = ϕ([x, p + π ′ ∪π ′′ ]
). As a consequence, p + π ′ ∪π ′′ (ϕ) contains the nonzero nilpotent element x. This contradicts the choice of ϕ. The same line of arguments works if we assume that p + π ′′ is not quasi-reductive.

Under certain conditions, the converse of Corollary 2.10 is also true as we show now. To begin with, let us express the index of p + π ′ ∪π ′′ in terms of those of p + π ′ and p

+ π ′′ . As E π ′ ∪π ′′ ,π = E π ′ ,π + E π ′ ,π , we get: dim E π ′ ∪π ′′ ,π = dim E π ′ ,π + dim E π ′′ ,π -dim(E π ′ ,π ∩ E π ′′ ,π ). Hence, formula (1) implies ind p + π ′ ∪π ′′ = ind p + π ′ + ind p + π ′′ -(rk g + kπ -2 dim(E π ′ ,π ∩ E π ′′ ,π )) . (2)
In case rk g = kπ, the intersection E π ′ ,π ∩ E π ′′ ,π is equal to Eπ and has dimension rk g. Hence, the index is additive in that case, as (2) shows.

Theorem 2.11 (Additivity). Assume that g is simple and of exceptional type and that kπ = rk g. Let π ′ , π ′′ be two subsets of π which are not connected to each other. Then, p + π ′ ∪π ′′ is quasi-reductive if and only if both p + π ′ and p + π ′′ are quasi-reductive.

Remark 2.12. The conclusions of Theorem 2.11 is valid for classical simple Lie algebras, even without the hypothesis kπ = rk g. In types A or C this follows from the fact that all biparabolic subalgebras are quasi-reductive. If g is an orthogonal Lie algebra, this is a consequence of Theorem 1.7. However, for the exceptional Lie simple algebra E6, the only one for which kπ = rk g, the conclusions of Theorem 2.11 may fail. Indeed, let us consider the following subsets of π for g of type E6: π ′ = {α1, α2, α3, α4} and π ′′ = {α6}.. By Remark 1.5, p + π ′ is quasi-reductive as a Lie algebra of zero index. On the other hand, p + π ′′ is quasi-reductive by the transitivity property, cf. Remark 2.2. But, it will be shown in Theorem 4.6 that p + π ′ ∪π ′′ is not quasi-reductive. As a consequence of Lemma 2.7 and Corollary 2.10, even in type E6 where rk g = kπ, if p + π ′ ∪π ′′ is quasi-reductive, then p + π ′ and p + π ′′ are both quasi-reductive. As a by-product of our classification, we will see that the above situation is the only case which prevents the additivity property to be true for all simple Lie algebras (see Remark 5.3).

Proof. We argue by induction on the rank of g. By the transitivity property (Theorem 2.1), Remark 2.12 and the induction, we can assume that απ ∈ π ′ . Then, by Lemma 2.7 and Corollary 2.10, only remains to prove that if both p + π ′ and p + π ′′ are quasi-reductive, then so is p + π ′ ∪π ′′ . Assume that both p + π ′ and p + π ′′ are quasi-reductive. By Proposition 1.2, we can find a linear regular form ϕ in (p

+ π ′ ∪π ′′ ) * such that ϕ ′ = ϕ | p + π ′ and ϕ ′′ = ϕ | p + π ′′
are regular and of reductive type for p + π ′ and p + π ′′ respectively. By Proposition 1.6(ii), we can assume that ϕ = (ϕ w+u

-)| p + π ′ ∪π ′′ , where w = h + w ′ + w ′′ , with w ′ ∈ n + π ′ , w ′′ ∈ n + π ′′ and h ∈ h. Hence, ϕ ′ = (ϕ h+w ′ +u -)| p + π ′ and ϕ ′′ = (ϕ h+w ′′ +u -)| p + π ′′ .
Use the notations of Lemma 2.9. By Lemma 2.9(ii),

s ′ is contained in p + π ′ ∪π ′′ (ϕ). Show now that k ′ is zero. Let h be an element k ′ . Since h ∈ k ′ , we have ε(h) = 0 for any ε ∈ Eπ which is not in ∆ + π ′ .
On the other hand, for any ε ∈ Eπ ∩ ∆ + π ′ , we have ε(h) = 0 since h lies in the center of l π ′ . Hence, our assumption rk g = kπ implies h = 0. As a consequence of Lemma 2.9(i), we deduce that ind p + π ′ = dim s ′ . Similarly, if s ′′ denotes the image of p + π ′′ (ϕ ′′ ) under the projection from p + π ′′ to g π ′′ ⊕ m + π ′′ , Lemma 2.9(ii) tells us that s ′′ is contained in p + π ′ ∪π ′′ (ϕ) and that ind p + π ′′ = dim s ′′ . To summarize, our discussion shows that s ′ + s ′′ is contained in p + π ′ ∪π ′′ (ϕ) and that these two subspaces have the same dimension by equation (2). So s ′ + s ′′ = p + π ′ ∪π ′′ (ϕ). But by assumption, s ′ + s ′′ only consists of semisimple elements. From that we deduce that ϕ is of reductive type for p + π ′ ∪π ′′ , whence the theorem.

Some classes of quasi-reductive biparabolic subalgebras

In this section we show that, under certain conditions on the interlacement of the two cascades of π1 and π2, we can deduce that qπ 1 ,π 2 is quasi-reductive (Theorem 3.6). We assume in this section that g is simple.

3.1. We start by introducing the necessary notations. Recall that for a positive root α, K + π (α) stands for the only element L of Kπ such that α ∈ ΓL, cf. Notation 2.4. To any positive root α ∈ ∆ + π we now associate the subset K - π (α) of the cascade Kπ of all L such that the highest root εL can be added to α: We need also the following notation:

K - π (α) = {L ∈ Kπ | εL + α ∈ ∆ + π } . Observe that the set K - π ( 
∆ + π = {α ∈ ∆ + π , α = 1 2 (εK -ε K ′ ) ; K, K ′ ∈ Kπ} .
Remark 3.2. One can check that for g a simply-laced simple Lie algebra, no positive root can be written in the way as asked for in the definition of ∆ + π . Thus ∆ + π is empty if g is simple of type A, D or E. We list the sets ∆ + π in Table 4 for the simple Lie algebras of types B ℓ , C ℓ , G2 and F4.

B ℓ , ℓ ≥ 2: { 1 2 (ε2i -ε2i-1), i = 1, . . . , ℓ 2 } C ℓ , ℓ ≥ 3: { 1 2 (εi -ε i+k+1 ), 1 ≤ i ≤ ℓ -1, 0 ≤ k ≤ l -i -1} G2: { 11 = 1 2 (ε1 -ε2)} F4: { 1110 = 1 2 (ε1 -ε2), 1111 = 1 2 (ε1 -ε3), 1121 = 1 2 (ε1 -ε4), 0001 = 1 2 (ε2 -ε3), 0011 = 1 2 (ε2 -ε4), 0010 = 1 2 (ε3 -ε4)}
Table 4. ∆ + π for the simple Lie algebras.

Part of the following lemma explains that for a root α in ∆ + π we can actually describe the two cascades involved in the expression of α:

Lemma 3.3. (i) Whenever α ∈ ∆ + π , then K - π (α) consists of a unique element K - π (α). (ii) For any element α = 1 2 (εK -ε K ′ ) of ∆ + π we have K = K + π (α) and K ′ = K - π (α). Proof. One can deduce (i) from Table 4. (ii) By (i), we have K - π (α) = {K - π (α)}. Furthermore, < α, ε ∨ K >= 1 so εK -α is a root (cf. [TY05, Proposition 18.5.3(iii)]). Since εK -α = ε K ′ + α, these two are both positive roots, forcing K + π (α) = K and K - π (α) = K ′ .
Let π1 and π2 be two subsets of π. We define

K (j) i = {M ∈ Kπ i | εM ∈ ∆ + π j } .
Thus, for M is in K

(j) i we have εM = 1 2 (ε K + π j (ε M ) -ε K - π j (ε M )
) by Lemma 3.3(ii). Note that M is an element of the cascade of πi while K ± π j (εM ) belong to the cascade of πj . Definition 3.4. Let π1, π2 be subsets of π. We say that the cascades Kπ 1 and Kπ

2 are well-interlaced if dim(Eπ 1 ∩ Eπ 2 ) = #(Kπ 1 ∩ Kπ 2 ) + # K (2) 1 + # K (1)
2 . Remark 3.5. The following subsets π1, π2 of π give rise to examples of well-interlaced cascades:

(1) π1 and π2 are such that Kπ i ⊂ Kπ j or Kπ j ⊂ Kπ i . In particular, this is the case if π1 or π2 is empty.

(2) π1 and π2 are such that the collection of all highest roots Eπ 1 ∪ Eπ 2 consists of linearly independent elements 1 . These two cases have already been studied by Tauvel and Yu in [START_REF] Tauvel | Sur l'indice de certaines algèbres de Lie[END_REF].

1

We mean that this collection of roots forms a set of linearly independent roots, neglecting any multiplicities that might occur, cf. Example 3.7 below.

We are now ready to formulate the main result of this section. It will be proved in Subsection 3.2 below.

Theorem 3.6. Let qπ 1 ,π 2 be a biparabolic subalgebra of g. Assume that the cascades Kπ 1 and Kπ 2 are well-interlaced. Then qπ 1 ,π 2 is quasi-reductive.

More precisely, the linear form ϕ u(a,b) is of reductive type for almost all choices of the coefficients (a, b) ∈ C kπ 1 +kπ 2 .

Example 3.7. Suppose that g is simple of type E6. In the case where π1 = {α2, α3, α4} (resp. π1 = {α2, α3, α4, α6}, π1 = {α1, α2, α3, α4}) and π2 = π, the union Eπ 1 ∪ Eπ 2 consists of linearly independent elements. Hence qπ 1 ,π 2 = p + π 1 is quasi-reductive by Remark 3.5(2) and Theorem 3.6. We now give an example which is not covered by Remark 3.5:

Example 3.8. Suppose that g is simple of type F4. The subsets π1 = {α3, α4} and π2 = π are well-interlaced and qπ 1 ,π 2 = p + π 1 is quasi-reductive by Theorem 3.6. Note that Theorem 2.1 provides an alternative way to prove that this parabolic subalgebra is quasi-reductive.

Remark 3.9. The converse of Theorem 3.6 is not true. For example, we can easily check that the assumption of Theorem 3.6 does not hold for the parabolic subalgebra p + {α 2 ,α 4 } of E6. However, it is quasi-reductive as we will show in Subsection 5.1 (Theorem 5.6).

3.2. This subsection is devoted to the proof of Theorem 3.6. We start with two technical lemmata.

Let α ∈ ∆ + π . Recall that by Lemma 3.3(ii), α is written as

α = 1 2 (ε K + π (α) -ε K - π (α)
). As an abbreviation we set

α = 1 2 (ε K + π (α) + ε K - π (α) ) . Thus α + α = ε K + π (α) and -α + α = ε K - π (α)
. From the relations between the four roots α, α, ε K - π (α) and ε K + π (α) we define the structure constants τ1, τ2, τ3, τ4 as follows:

[xα, x-ε K + π (α) ] = τ1x-α ; [x-α, x-ε K - π (α) ] = τ2x-α ; [xα, x α ] = τ3xε K + π (α) ; [x-α, x α ] = τ4xε K - π (α) 
.

Lemma 3.10. Assume that g is of type

B ℓ (ℓ ≥ 2), C ℓ (ℓ ≥ 3) or F4. Let α be in ∆ + π . (i)
The only roots of the form kα + lα are {±α, ±α, ±(α ± α)}.

(ii) We have τ1, τ2 ∈ {-1, 1}, τ3, τ4 ∈ {-2, 2} and τ1τ4 = τ2τ3.

Proof. (i) By assumption, the four linear combinations ±(α ± α) are all roots. The claim then follows since root strings have at most length 2 in types B, C and F.

(ii) We explain how to obtain τ1 = ±1, the computations of τi for i = 2, 3, 4 is completely analogous. Consider the α-string through -ε K + π (α) . It has the form {-ε K + π (α) , -α, -ε K - π (α) }, so in particular, p = 0 in the notation of Subsection 1.2, whence τ1 = ±1.

Only remains to proof the equality τ1τ4 = τ2τ3. We compute the bracket [x-α, [xα, xα]] in two different ways. We have [x-α, xε

K + π (α) 
] = -τ1x α (cf. [TY05, §18.2.2 and Corollary 18.5.5]). Hence [x-α, [xα,

x α ]] = [x-α, τ3xε K + π (α) 
] = -τ1τ3x α . On the other hand, as ε K + π and ε K - π have the same length (g having type different from G2), we have:

[hα, x α ] = α, α ∨ x α = 0. So: [x-α, [xα, x α ]] = [x α , [xα, x-α]] + [xα, [x-α, x α ]] = -[hα, x α ] + τ4[xα, xε K - π (α) 
] = -τ4τ2xα again by using [TY05, §18.2.2 and Corollary 18.5.5]. We have so obtained τ1τ3 = τ2τ4. From that the claim follows.

From now, we let π1, π2 be two subsets of π.

Lemma 3.11. Let M be an element of

K (j) i . (i) ε K + π j (ε M ) and ε K - π j (ε M ) are not roots of πi. (ii) For K ∈ Kπ j , εM ± εK is a root if and only if K = K ∓ π j (εM ).
Proof. (i) Can be deduced from Tables 2, 3 and 4.

(ii) The fact that εMε K + j (ε M ) and εM + ε K - j (ε M ) are roots of πj has been observed in Lemma 3.10(i). Next, by Lemma 3.3(i), we know that K - π j (εM ) is the only element L of Kπ j such that εM + εL is a root. Suppose now that there is L ∈ Kπ j , L = K + π j (εM ), such that εL -εM is a root. By Lemma 3.10(i), we have L = K - π j (εM ). So, the fact that εL -εM is a root forces β = εM -εL to be a positive root, by definition of K + π j (εM ). Then the equality

β + εL = εM implies β, ε ∨ M = 1. On the other hand, we have εM , ε ∨ L = 1 2 (ε K + π j (ε M ) -ε K - π j (ε M ) ), ε ∨ L = 0 since L = K ± π j (εM ). So εL, ε ∨ M = 0. As a consequence, 1 = β, ε ∨ M = β + εL, ε ∨ M = εM , ε ∨ M = 2.
Hence we get a contradiction.

Recall that for (a, b) ∈ (C * ) kπ 1 +kπ 2 , we have set

u(a, b) = K∈Kπ 2 aKx-ε K + L∈Kπ 1 bLxε L Lemma 3.12. Let (a, b) be in (C * ) kπ 1 +kπ 2 . For K ∈ Kπ i ∩ Kπ j , M ∈ K (2) 1 and N ∈ K (1)
2 , there exist ρK ∈ C * , (λM , µM , νM ) ∈ (C * ) 3 and (λ ′ M , µ ′ M , ν ′ M ) ∈ (C * ) 3 such that the elements yK, zM and tN of qπ 1 ,π 2 defined by

yK = xε K + ρKx-ε K zM = xε M + λM x-ε M + µM xε K + π 2 (ε M ) + νM xε K - π 2 (ε M ) tN = x-ε N + λ ′ N xε N + µ ′ N x-ε K + π 1 (ε N ) + ν ′ N x-ε K - π 1 (ε N )
are semisimple elements of g which stabilize ϕ u(a,b) in qπ 1 ,π 2 .

Proof. Set u = u(a, b). For K ∈ Kπ i ∩ Kπ j , it is clear that yK is semisimple. Moreover, for ρK = aK/bK , the element yK stabilizes (ϕu)|q π 1 ,π 2 ; we even have [yK , u] = 0.

Let now M be in K

(2)

1 . If K (2) 1
= ∅ then g cannot be of type G2, since for G2, K

= ∅ (cf. Table 4). So g is of type B ℓ , C ℓ or F4 (Remark 5.3). Thus we are in the situation of Lemma 3.10. Let (λM , µM , νM ) be in (C * ) 3 . By definition of zM , we have:

[zM , u] = K∈Kπ 2 aK ([xε M , x-ε K ] + λM [x-ε M , x-ε K ]) + µM L∈Kπ 1 bL[xε K + π 2 (ε M ) , xε L ] + νM L∈Kπ 1 bL[xε K - π 2 (ε M ) , xε L ] -λM bM hε M + µM a K + π 2 (ε M ) hε K + π 2 (ε M ) + νM a K - π 2 (ε M ) hε K - π 2 (ε M ) Note that [xε M , x-ε K ] = 0 if and only if K = K + π 2 (εM ) by Lemma 3.3. By Lemma 3.11(i), the element v = µM L∈Kπ 1 bL[xε K + π 2 (ε M ) , xε L ] + νM L∈Kπ 1 bL[xε K - π 2 (ε M ) , xε L ] lies in uπ 1 ,π 2 . We set εM = 1 2 (ε K + π j (ε M ) + ε K - π j (ε M )
), and define the structure constants τ1, τ2, τ3, τ4 for α = εM and α = εM . Then, by Lemma 3.3 we have

[zM , u] = (τ1a K + π 2 (ε M ) + λM τ2a K - π 2 (ε M ) )x-ε M + v -λM bM hε M + µM a K + π 2 (ε M ) hε K + π 2 (ε M ) + νM a K - π 2 (ε M ) hε K - π 2 (ε M )
By Remark 3.2, the elements of Eπ 2 form a basis of h * π 2 since K

(2) 1 = ∅. So, by Lemma 3.3, we can write

hε M = c + hε K + π 2 (ε M ) -c -hε K - π 2 (ε M ) with c + , c -∈ C * . Furthermore, ε K + π 2 (ε M ) and ε K - π 2 (ε M )
have the same length (they are both long roots, cf. Table 4). So,

c + = c -(cf. [TY05, §18.3.3]). Hence [zM , u] = (τ1a K + π 2 (ε M ) + λM τ2a K - 2 (ε M ) )x-ε M + v + (-cλM bM + µM a K + π 2 (ε M ) )hε K + π 2 (ε M ) + (cλM bM + νM a K - π 2 (ε M ) )hε K - π 2 (ε M )
As a result, if we take for λM , λM = -τ1a K + π 2 (ε M ) /(τ2a K - π 2 (ε M ) ) and then for µM and µM , µM = cλM bM /a K + π 2 (ε M )

and νM = -cλM bM /a K - π 2 (ε M ) we obtain that [zM , u] = v ∈ uπ 1 ,π 2 , i.e. that zM stabilizes (ϕu)|q π 1 ,π 2 . In a similar way, one shows that tN stabilizes (ϕu)|q π 1 ,π 2 .

It remains to prove that zM is semisimple (and that tN is semisimple but this can be done in a similar way). By Lemma 3.10(i), we have exp(tad

x ε M )(xε M + λM x-ε M ) = xε M + λM x-ε M + t[x ε M , xε M ] + tλM [x ε M , x-ε M ] = xε M + λM x-ε M -tτ3 xε K + π 2 (ε M ) -tλM τ4xε K - π 2 (ε M )
for any t ∈ C * . By Lemma 3.10(ii), we have τ1τ4 = τ2τ3. Therefore it is possible to choose t so that both equalities

-tτ3 = cλM bM /a K + π 2 (ε M ) (= µM ) and -tτ4 = -cbM /a K - π 2 (ε M ) (= νM ) hold, because λM = -τ1a K + π 2 (ε M ) /(τ2a K - π 2 (ε M ) ). With such a t, exp(t adx ε M )(xε M + λM x-ε M ) = zM . Hence zM is semisimple since xε M + λM x-ε M is.
We can now complete the proof of Theorem 3.6: Let (a, b) ∈ (C * ) kπ 1 +kπ 2 such that (ϕu)|q π 1 ,π 2 is qπ 1 ,π 2 -regular where u = (a, b). The orthogonal of Eπ 1 ,π 2 in h is contained in qπ 1 ,π 2 (ϕu). Then, by Lemma 3.12, it suffices to prove that the elements yK, zM , tN , for

K ∈ Kπ 1 ∩ Kπ 2 , M ∈ K (2)
1 , and N ∈ K

(1) 2 , are linearly independent. Indeed, if so, the stabilizer of (ϕu)|q π 1 ,π 2 in qπ 1 ,π 2 contains a (commutative) subalgebra which consists of semisimple elements of qπ 1 ,π 2 and of dimension

(rk g -dim Eπ 1 ,π 2 ) + #(Kπ 1 ∩ Kπ 2 ) + # K (2) 1 + # K (1)
2 . But the hypothesis of Theorem 3.6 tells us that #(Kπ

1 ∩ Kπ 2 ) + # K (2) 1 + # K (1) 2 = dim(Eπ 1 ∩ Eπ 2 ) = kπ 1 + kπ 2 -dim Eπ 1 ,
π 2 (cf. Definition 3.4). Hence, by formula (1), this subalgebra is the stabilizer of (ϕu)|q π 1 ,π 2 . Now, by construction, M, N, K + π 2 (εM ), K - π 2 (εM ), K - π 1 (εN ), K + π 1 (εN ) do not belong to Kπ 1 ∩ Kπ 2 . Moreover, M ∈ Kπ 1 \ Kπ 2 and N ∈ Kπ 2 \ Kπ 1 , whence the expected statement.

Non quasi-reductive parabolic subalgebras

So far, our results (Theorem 3.6) only provide examples of quasi-reductive parabolic subalgebras. It is much trickier to prove that a given Lie algebra is not quasi-reductive. Indeed, to prove that a given parabolic subalgebra is quasi-reductive, one can make explicit computations, cf. Section 5. In this section we exhibit examples of non quasi-reductive parabolic subalgebras.

4.1. We first discuss the case of the parabolic subalgebras p + π ′ where π ′ only consists of one simple root. For α ∈ π, denote the parabolic subalgebra p + {α} simply by p + α . Thanks to Theorem 4.1 we have a criterion for the quasi-reductivity of p + α :

Theorem 4.1. Let α be in π. Then the parabolic subalgebra p + α is quasi-reductive if and only if one of the following two conditions holds: α ∈ ∆ + π or {α} ∪ Eπ consists of linearly independent elements.

If one of the above two conditions are satisfied, then the cascades of {α} and of π are well-interlaced; so, it is clear that p + α is quasi-reductive by Theorem 3.6. Thus, Theorem 4.1 provides a converse to Theorem 3.6 for π1 = {α} and π2 = π.

Proof. We only need to show that if p + α is quasi-reductive then α satisfies one of the two conditions of the theorem. Suppose that p + α is quasi-reductive. If α does not satisfy any of the above conditions, then α ∈ Eπ, and α is not an element of ∆ + π ⊔Eπ. By Proposition 1.2, we can find w in p - α such that (ϕw)| p + α is regular and of reductive type for p + α . Moreover, by Proposition 1.6(ii), since α ∈ Eπ, we can suppose that w is of the form: holds. By the choice of w, p + α (ϕw) is an abelian Lie algebra consisting of semisimple elements. In particular x must be semisimple. Write the element x as follows:

w = ax-α + h + bxα + u -
x = λx-α + h ′ + µxα + x + with λ, µ ∈ C, h ′ ∈ h and x + ∈ m + α . From the fact [x, w] ∈ m +
α , we deduce that h ′ ∈ K∈Kπ ker εK. So we can assume that h ′ = 0 according to (3). Hence

λµ = 0, since x is semisimple. Since α is not in Eπ, ε K + π (α) -α is a (positive) root.
In turn, suppose that εKα is a root, for K ∈ Kπ.. As α is a simple root, εKα is necessarily a positive root, so K = K + π (α). Therefore, we have

[x, w] = λ L∈K - π (α) [x-α, x-ε L ] + µ[xα, x-ε K + π (α) ] + λα(h)x-α + (aµ -bλ)hα -µα(h)xα + [x + , w] As [x, w] ∈ m + α , the bracket [x-ε K + π (α)
, xα] must be compensated. This bracket cannot be compensated by the term [x + , w]. Indeed, if this were the case, then there would exist K ∈ Kπ and β ∈ ∆ + π \{α} such that ε K + π (α) -α = εK -β. But this would force K = K + π (α) and so α = β, which is impossible. We deduce that there is

L ∈ K - π (α) such that ε K + π (α) -α = εL + α. Thus, α = 1 2 (ε K + π (α) -εL) that is α ∈ ∆ + π which contradicts our assumption on α. B ℓ , ℓ ≥ 3 D ℓ , ℓ ≥ 4 G2 F4 E6 E7 E8 αi, 2 ≤ i ≤ ℓ -1, i even αi, 2 ≤ i ≤ ℓ -2, i even α1 α1 α2 α1, α4, α6 α1, α4, α6, α8
Table 5. The parabolic subalgebras p + α which are not quasi-reductive.

According to Theorem 4.1, we list the simple roots α corresponding to a non quasi-reductive parabolic subalgebra p + α (for simple g) in Table 5.

Remark 4.2. In the exceptional case, Table 5 shows that there is always at least one non quasi-reductive parabolic subalgebra.

4.2. We now exhibit a few more parabolic subalgebras which are not quasi-reductive (Theorem 4.3 and Theorem 4.6), all in type E.

Theorem 4.3. (i) If g is of type E7 and if π ′ is one of the subsets {α1, α3, α4}, {α4, α5, α6}, or {α1, α3, α4, α5, α6}, then p + π ′ is not quasi-reductive. (ii) If g is of type E8 and if π ′ is one of the subsets {α1, α3, α4}, {α4, α5, α6}, {α6, α7, α8}, {α1, α3, α4, α5, α6} {α4, α5, α6, α7, α8}, or {α1, α3, α4, α5, α6, α7, α8}, then p + π ′ is not quasi-reductive.

The indices of the parabolic subalgebras considered in Theorem 4.3 are given in Table 6. Note that for g of type E7 or E8, and π ′ = {α4, α5, α6}, p + π ′ is not quasi-reductive by Theorem 2.1 and Example 1.8.

In the proof of the theorem and in Lemma 4.4 below, we make use of the following notations:

If π ′ is a connected subset of π, π ′ is defined to be the connected subset of π ′ satisfying K π ′ = {π ′ } ∪ K π ′ and u + π ′ is the element ε∈Eπ \∆ + π ′ xε .. Note that the element u + π ′ + u - π ′ is a semisimple element of g. Assume that g is of type E8. Set: α11 = α3 + α4, α12 = α4 + α5, α13 = α5 + α6, α14 = α6 + α7, α19 = α3 + α4 + α5, α20 = α4 + α5 + α6, α21 = α5 + α6 + α7, α27 = α3 + α4 + α5 + α6, α28 = α4 + α5 + α6 + α7, α35 = α3 + α4 + α5 + α6 + α7
and denote by I π ′ the set of integers i such that αi ∈ ∆ π ′ . Whenever αi is defined, xi and yi stand for xα i and x-α i respectively. Consider the following equations:

(E1) µ4 + ν19 = 0 (G1) µ11 -ν12 = 0 (F1) µ19 + ν4 = 0 (H1) µ12 -ν11 = 0 (E2) -µ6 + ν21 = 0 (G2) µ13 + ν14 = 0 (F2) µ21 -ν6 = 0 (H2) µ14 + ν13 = 0 (E3) µ20 + ν35 = 0 (G3) µ27 -ν28 = 0 (F3) µ35 + ν20 = 0 (H3) µ28 -ν27 = 0
in the variables µi and νi. Set π ′ 1 = {α1, α3, α4, α5, α6}, π ′ 2 = {α4, α5, α6, α7, α8} and π ′ 3 = {α1, α3, α4, α5, α6, α7, α8}. We now introduce subspaces a k of g π k ′ (for k = 1, 2, 3) as follows:

-for k = 1, 2, a k is the space of elements ε∈Eπ ∩ π ′ k λε hε + i∈I π ′ k (µixi + νiyi) with (λε ) ε∈Eπ ∩ π ′ k in C |Eπ ∩ π ′ k | and where ((µi)i∈I π ′ k , (νj )j∈I π ′ k
) run through the set of the solutions of the homogeneous linear system defined by the equations (Ek), (Fk), (Gk), (Hk).

-a3 is the space of elements

ε∈Eπ ∩ π ′ 3 λε hε + i∈I π ′ 3 (µixi+νiyi) with (λε ) ε∈Eπ ∩ π ′ 3 in C |Eπ ∩ π ′ 3 | and where ((µi)i∈I π ′ 3 , (νj )j∈I π ′ 3 )
runs through the set of the solutions of the homogeneous linear system defined by all twelve equations.

Here is a technical lemma used in the proof of Theorem 4.3:

Lemma 4.4. Assume that g is of type E8. Then a k , for k = 1, 2, 3, is the centralizer in g π ′ k of the semisimple element u + π ′ + u - π ′ .
It is a reductive Lie algebra and its rank is at most ind p + π ′ -1.

Proof. Let k ∈ {1, 2, 3}. The fact that a k centralizes u - π ′ can be checked without difficulty. As µ and ν play the same role in the equations (Ek), (Fk), (Gk), (Hk), we deduce that a k centralizes u + π ′ too; hence a k centralizes u + π ′ + u - π ′ . Then a k is a reductive Lie algebra as an intersection between a reductive Lie algebra and the centralizer in g of a semisimple element of g.

Next we show: rk a k ≤ ind p + π ′ -1. We can readily verify from the equations defining a k that the center of a k is zero. Therefore, the rank of a k is strictly smaller that the one of g π ′ k . Indeed, if not, a k is a Levi subalgebra of g π ′ k since g π ′ k has type A. But any proper Levi subalgebra of g π ′ k has a non trivial center. So, for k = 1, 2, we get rk a k ≤ 2 since rk g π ′ k = ind p + π ′ k = 3 whence the statement.

For k = 3, what foregoes yields rk a3 ≤ 4 since the rank of g π ′ 3 is 5. We have to show: rk a3 < ind p + π ′ 3 = 4. The space a3 has dimension 21. But there is no reductive Lie subalgebra of rank 4 and of dimension 21 since 21 -4 is not even. As a result, we get rk a3 < 4.

Here is the proof of Theorem 4.3:

Proof of Theorem 4.3. By the transitivity property (Theorem 2.1), statement (ii) implies (i). So we only consider the case of E8. Let π ′ be one of the subsets as described in (ii). Assume that p + π ′ is quasi-reductive. We will show that this leads to a contradiction. Choose w ∈ p - π ′ such that the following two conditions are satisfied:

-(ϕw)| p + π ′ is p + π ′ -regular and of reductive type for p + π ′ ; -(ϕw)| m + π ′ belongs to the B-orbit of (ϕ u - π ′ )| m + π ′ .
This choice of w is possible by Proposition 1.2 and Proposition 1.6(ii). By the second condition, we can assume that w = w ′ + u - π ′ with w ′ ∈ l π ′ . Let x be an element of the stabilizer (ϕw

)| p + π ′ in p + π ′ ; we write x = h + x ′ + x + , with h ∈ h, x ′ ∈ n - π ′ ⊕ n + π ′ and x + ∈ m + π ′ . The fact [x, w] ∈ m + π ′ forces h ∈ ε∈Eπ \∆ + π ′ ker ε.
From that, we deduce that h belongs to the subspace of h generated by the elements hε , for ε ∈ Eπ ∩ π ′ ⊂ π ′ (use Table 3). Now for α ∈ Γ π ′ , one obtains that ε K + π (α) ∈ ∆ + π ′ and we claim that x ′ has zero coefficient in gα. Otherwise, there must be

β ∈ ∆ + π ′ and K ∈ Kπ such that α -ε K + π (α) = -(β + εK).
One can check that for each of the subsets π ′ such an equality is not possible (use Table 3). To summarize, we obtain the inclusion:

p + π ′ (ϕw) ⊂ g π ′ ⊕ H - π ′ ⊕ m + π ′ , (4) 
where H - π ′ is the Heisenberg Lie algebra generated by the g-α, α ∈ Γ π ′ . Let t be the image of p + π ′ (ϕw) by the projection map from g π ′ ⊕ H - π ′ ⊕ m + π ′ to g π ′ . As p + π ′ (ϕw) is a torus of g by hypothesis, (4) shows that t is a torus of g π ′ of dimension ind p + π ′ = dim p + π ′ (ϕw). For the first three subsets, with π ′ of rank 3, p + π ′ has index 2 but g π ′ has rank 1. So we get a contradiction. The remaining cases, with π ′ of rank 5 or 7, require more work. Let us describe the torus t. To do that, we consider on one hand the roots α ∈ ∆ + π ′ with ε K + π (α) ∈ ∆ + π ′ for which there exist β ∈ ∆ + π ′ and K ∈ Kπ such that αε K + π (α) = -(β + εK). On the other hand, we consider the roots α ∈ ∆ - π ′ for which there is ε ∈ Eπ \ ∆ π ′ such that α + ε is a root. All the possible roots give rise to equations describing t. Let k ∈ {1, 2, 3} and use the notations introduced before Lemma 4.4. The equations what we obtained are precisely the equations (Ek), (Fk), (Gk), (Hk) for k = 1, 2, and all twelve equations above for k = 3. Thereby t is contained in the reductive Lie algebra a k . But the torus t has dimension ind p + π ′ and this contradicts Lemma 4.4.

Remark 4.5. Proceeding with the proof of Lemma 4.4, one readily obtains that a k , for k = 1, 2, 3, has precisely dimension ind p + π ′ -1 (note that dim a1 = dim a2 = 10 and dim a3 = 21). Then, the proof of Theorem 4.3 shows that the dimension of the torus part of generic stabilizers is ind p + π ′ -1. This dimension is given, for each case, in the last column of Table 6.

We end the section with an example of non quasi-reductive parabolic subalgebra in E6. As noticed in Remark 2.12, Theorem 4.6 shows that the additivity property fails in type E6: Theorem 4.6. If g if of type E6 and if π ′ = {α1, α2, α3, α4, α6}, then p + π ′ is not quasi-reductive.

By symmetry, if π ′ = {α1, α2, α4, α5, α6}, then p + π ′ is not quasi-reductive, either.

Proof. Choose w ∈ p - π ′ such that the following two conditions are satisfied:

-(ϕw)| p + π ′ is p + π ′ -regular;
-(ϕw)| n + belongs to the B-orbit of (ϕ u -)| n + . This choice is possible by Proposition 1.2 and Proposition 1.6(ii). By the second condition, we can assume that w

= w ′ + u -where w ′ is in h ⊕ n + π ′ . For x ∈ p + π ′ , we write x = h + x ′ + x + with h ∈ h, x ′ ∈ n - π ′ ⊕ n + π ′ and x + ∈ m + π ′ . Set: α7 = α1 + α3, α8 = α2 + α4, α9 = α3 + α4, α12 = α1 + α3 + α4, α13 = α2 + α3 + α4, α17 = α1 + α2 + α3 + α4
and let I π ′ be the set of integers i such that αi ∈ ∆ π ′ . Then, for i ∈ I π ′ , xi, yi and hi stand for xα i , x-α i and hα i respectively. Write

x ′ = i∈I π ′ µixi + 6 i=1 λihi + i∈I π ′ νiyi and w ′ = h0 + l∈I π ′ a l x l with h0 ∈ h and (µi, λj, ν k , a l ) i,j,k,l ∈ C 3|I π ′ |+6 .
From [x, w] ∈ m + π ′ , we first deduce that h belongs to ker ε for any ε ∈ Eπ \ ∆ + π ′ whence we get λ1 = -λ6 and λ3 = -λ5. Next, we argue as at the end of Theorem 4.3(ii): we use the roots α ∈ ∆ + π ′ such that ε K + π (α) ∈ ∆ + π ′ and for which there exist β ∈ ∆ + π ′ and K ∈ Kπ such that αε K + π (α) = -(β + εK). This enables us to show that µi = 0 for any i ∈ I π ′ \ {1, 4, 6} and that ν6 = µ1, µ6 = ν1. Now, we consider the terms in xα for α ∈ ∆ π ′ and in hα for α ∈ π ′ of [x, w]. All these terms have to be zero; this gives us equations. Some of them involve the terms in xα for certain α ∈ ∆ + π \ ∆ + π ′ but we can eliminate these variables and obtain equations whose variables are only the (λi)i's, (µj )j's, and (ν k ) k 's, for i = 1, 3, 4, j = 1, 4 and k ∈ I π ′ . Here are these equations:

(X1) 2a1λ1 -a1λ3 + (α6 -α6)(h0)µ1 + a7ν3 + a12ν9 + a17ν13 = 0 (X2) -a2λ4 + a8ν4 + 2ν8 + a13ν9 + a17ν12 = 0 (X3) -a3λ1 + 2a3λ3 -a3λ4 -a7ν1 + a9ν4 + a13ν8 = 0 (X4) 2a4λ4 -α4(h0)µ4 -a8ν2 -a9ν3 -a12ν7 = 0 (X5) -2λ4 + α4(h0)ν4 -a2ν8 -a3ν9 -a7ν12 = 0 (X6) -2a6λ1 + a6λ3 + (α1 -α6)(h0)ν1 + a3ν7 + a9ν12 + a13ν17 = 0 (X7) a7λ1 + a7λ3 -a7λ4 -a3µ1 + a12ν4 + a17ν8 = 0 (X8) a8λ4 + a2µ4 -2ν2 -a13ν3 -a17ν7 = 0 (X9) -a9λ1 + 2a9λ3 + a9λ4 + a3µ4 -a12ν1 -a13ν2 = 0 (X12) a12λ1 + a12λ3 + a12λ4 -a9µ1 + a7µ4 -a17ν2 = 0 (X13) -a13λ1 -a17ν1 = 0 (X17) a17λ1 + a17λ3 -a13µ1 = 0 (H1)
a6µ1 -a1ν1 -a7ν7 -a12ν12 -a17ν17 = 0 (H3) -a3ν3 -a7ν7 -a9ν9 -a12ν12 -a13ν13 -a17ν17 = 0 (H4) -2µ4 -a2ν2 + 2a4ν4 + a8ν8 + 2a9ν9 + 2a12ν12 + a13ν13 + a17ν17 = 0

Using a computer algebra system, we show that for any ((ai)i∈I π ′ , (αi(h0)) i∈π ′ ) in an open dense subset of C |I π ′ | × C 6 , the above homogeneous linear system has rank 14, a13a17 = 0, and any of its solution ((λi)i=1,3,4, (µj )j=1,4, (ν k ) k∈I π ′ ) verifies λ3 = 0. We can (and do) assume that ((ai)i∈I π ′ , (αi(h0)) i∈π ′ ) belongs to this open subset; in particular a13a17 = 0. From the equations (X13) and (X17), we obtain that any solution of this system verifies λ 2 1 + µ1ν1 = 0 because λ3 = 0. Since µi = 0 for any i ∈ I π ′ \ {1, 4, 6} as observed previously, this shows that x ′ is a nilpotent element of l π ′ ; so x is a nilpotent element of g. As a consequence, p + π ′ is not quasi-reductive.

Explicit computations and classification

We assume in this part that g is simple of exceptional type. Together with Theorem 1.7, the next two theorems (Theorem 5.1 and Theorem 5.2) complete the classification of quasi-reductive parabolic subalgebras of simple Lie algebras. The goal of this section is to prove these theorems.

Theorem 5.1. Assume that g is of type G2, F4, E7 or E8. Let π ′ be a subset of π.

(i) If g is of type G2, then p + π ′ is quasi-reductive if and only if π ′ is different from {α1}. (ii) If g is of type F4, then p + π ′ is quasi-reductive if and only if each connected component of π ′ is different from {α1}.
(iii) If g is of type E7, then p + π ′ is quasi-reductive if and only if each connected component of π ′ is different from the subsets {α1}, {α4}, {α6}, {α1, α3, α4}, {α4, α5, α6} and {α1, α3, α4, α5, α6}.

(iv) If g is of type E8, then p + π ′ is quasi-reductive if and only if each connected component of π ′ is different from the subsets {α1}, {α4}, {α6}, {α8}, {α1, α3, α4}, {α4, α5, α6}, {α6, α7, α8}, {α1, α3, α4, α5, α6}, {α4, α5, α6, α7, α8} and {α1, α3, α4, α5, α6, α7, α8}.

Theorem 5.2. Assume that g is of type E6 and let π ′ be a subset of π. Then p + π ′ is quasi-reductive except in the following three cases:

1) {α2} is a connected component of π ′ ; 2) π ′ = {α1, α2, α3, α4, α6};

3) π ′ = {α1, α2, α4, α5, α6}.

Table 6 and Table 7 below summarize the results of Theorems 5.1 and 5.2 ; indeed, whenever rk g = kπ, only the cases where π ′ is connected need to be dealt with thanks to Theorem 2.11. In these tables, the last column gives the dimension of the torus part of a generic stabilizer; we refer to Remark 4.5 for explanations in the types E7 and E8. For the type E6, let us roughly explain our computations : in most cases, the subspaces ε∈Eπ ∪∆ π ′ ker ε of h yield elements of the generic stabilizers of the regular linear forms of the form (ϕ w ′ +u -)| p + π ′ with w ′ ∈ l π ′ . For the cases {α1, α2, α6}, {α2, α3, α5} and {α1, α2, α3, α5, α6}, one can show that the generic stabilizers of these forms also contain nonzero semisimple elements which do not belong to h. Since this is not a central point for our work, we omit the details.

Type F4: π ′ ind p + π ′ dim. of torus part {α1} 1 0
Type E7:

π ′ ind p + π ′ dim. of torus part {α1} 1 0 {α4} 1 0 {α6} 1 0 {α1, α3, α4} 2 1 {α4, α5, α6} 2 1 {α1, α3, α4, α5, α6} 3 2 
Type E8:

π ′ ind p + π ′ dim. of torus part {α1} 1 0 {α4} 1 0 {α6} 1 0 {α8} 1 0 {α1, α3, α4} 2 1 {α4, α5, α6} 2 1 {α6, α7, α8}
2 1 {α1, α3, α4, α5, α6} 3 2 {α4, α5, α6, α7, α8} 3 2 {α1, α3, α4, α5, α6, α7, α8} 4 3 Table 6. The non quasi-reductive parabolic subalgebras p + π ′ with connected π ′ in F 4 , E 7 and E 8 and their indices.

Remark 5.3. Theorems 5.1 and 5.2 confirm what was announced in Remark 2.12: The only cases where the additivity property fails is for g = E6 and π ′ = {α1, α2, α3, α4, α6} (where {α1, α2, α3, α4} is not connected to {α6}), resp. for g = E6 and π ′ = {α1, α2, α4, α5, α6}.

By Theorem 4.1, Theorem 4.3 and Theorem 4.6, in order to prove Theorems 5.1 and 5.2, it is enough to show that if π ′ is different from the subsets listed in Theorems 5.1 and 5.2 then p + π ′ is quasi-reductive. This is our goal until the end of the paper. Recall that απ is the simple root connected to the lowest root in the extended Dynkin diagram. By Theorem 2.1, we can assume that π ′ contains απ. Moreover, whenever rk g = kπ, we can assume that π ′ is connected by Theorem 2.11.

The case where π ′ has rank 1 was dealt with in Theorem 4.1. In the next subsection, we study the case where π ′ is connected and of rank 2. Then we discus the remaining cases in Subsection 5.2.

Set µ k = (bc k )/aj k , for k = 0, 1, 2, 3. By Lemma 5.4 we get b(-hε π ′ ) + k=0,1,2,3 µ k aj k hε j k = 0. Next, we set λ2 = -aj 2 τ2/(aj 0 τ1) and λ3 = -aj 3 τ4/(aj 0 τ3) so that the terms in x -(ε π ′ +ε j 2 ) and x -(ε π ′ +ε j 3 ) in [x, u] are both equal to zero. At last, we choose ν so that the term in xα i 2 in [x, u] is 0. Then the element x stabilizes (ϕu)| p + π ′ . Let λ be as above. We have thus obtained the inclusion K∈Kπ ker εK ⊕ Cx ⊂ p + π ′ (ϕu). By equation (1), ind p + π ′ = rk gkπ + 1 whence the equality K∈Kπ ker εK ⊕ Cx = p + π ′ (ϕu). We now show that x = x(λ) is semisimple. To start with, we prove that x is semisimple if and only if (τ2τ5)/τ1 + (τ4τ6)/τ3 = 0. As β2 and β3 are both different from αi 1 , αi 2 and αi 1 + αi 2 , the component of x on l π ′ in the decomposition p

+ π ′ = l π ′ ⊕ m + π ′ is x-ε π ′ + µ1xε j 1 + νx-ε j 1
. By what foregoes, µ1 = (bc1)/aj 1 = 0. Therefore, x is semisimple if and only if ν = 0. We have νbτ0 + λ2aj 3 τ5 + λ3aj 2 τ6 = 0, that is, by the choices of λ2 and λ3: νbτ0 -(aj 2 τ2aj 3 τ5)/(aj 0 τ1) -(aj 3 τ4aj 2 τ6)/(aj 0 τ3) = 0 Hence ν = 1/(bτ0) × (aj 2 aj 3 )/aj 0 × ((τ2τ5)/τ1 + (τ4τ6)/τ3). As a result, ν = 0 if and only (τ2τ5)/τ1 + (τ4τ6)/τ3 = 0.

It remains to check that the condition (τ2τ5)/τ1 + (τ4τ6)/τ3 = 0 holds. We check the condition for the all cases considered in the proof of Lemma 5.4. Note that the computations of the integers τi can be done using GAP.

Type F4: One checks that τ1 = τ3 = 1 and τ2 = τ4 = τ5 = τ6 = -1. Type E6: One checks that τ1 = τ2 = τ3 = τ4 = 1 and τ5 = τ6 = -1. Type E7: One checks that τ1 = τ2 = τ3 = τ4 = τ5 = τ6 = -1. Type E8: One checks that τ1 = τ2 = τ3 = τ4 = τ5 = τ6 = 1.

To summarize, this gives us:

Theorem 5.6. For simple g of exceptional type, and simple π ′ ⊂ π of rank 2 containing απ, the parabolic subalgebra p + π ′ is quasi-reductive. Using Theorem 5.6, we obtain new cases of quasi-reductive parabolic subalgebras in E6:

Theorem 5.7. For simple g of type E6 and π ′′ = {α1, α2, α4} or {α1, α2, α4, α6}, p + π ′′ is quasi-reductive. Note that Theorem 5.7 cannot be deduced from Theorem 2.11 even though π ′′ is not connected. Indeed Theorem 2.11 fails in type E6 as explained in Remark 2.12.

Proof. We approach the two cases in the same way. (cf. Lemma 5.5). One can readily check that x belongs to p + π ′′ (ϕ u ′′ ), too. On the other hand, in both cases, the orthogonal of E π ′′ ,π in h has dimension 1, is contained in p + π ′′ (ϕ u ′′ ), and does not contain x. Hence, as x is semisimple (by Lemma 5.5), we have found a torus a dimension 2 which is contained in p + π ′′ (ϕ u ′′ ). We distinguish now the two cases: Case π ′′ = {α1, α2, α4}: by (1), ind p + π ′′ = 2. Then, the above discussion shows that (ϕ u ′′ )| p + π ′′ is of reductive type.

Case π ′′ = {α1, α2, α4, α6}: by (1), ind p + π ′′′ = 3. So, it suffices to provide a nonzero semisimple element in p + π ′′ (ϕ u ′′ ) which does not lie in the preceding torus. We claim that the (semisimple) element y = (aK 3 /b {α 6 } )xα 1 + (aK 2 /b {α 1 } )x-α 1 + (aK 3 /b {α 1 } )xα 6 + (aK 2 /b {α 6 } )x-α 6 + x + does the job, where x + is an element of m + π ′′ and where Ki (for 1 ≤ i ≤ 4) corresponds to the highest root εi. 5.2. Using the results of Sections 2, 3 and 4, we are able to deal with a large number of parabolic subalgebras. Unfortunately, the results obtained so far do not cover all parabolic subalgebras. There remains a small number of cases. We consider these here. This will complete the proof of Theorems 5.1 and 5.2.

We first consider examples which do not need of the computer programme GAP.

It is well known that minimal parabolic subalgebras of a real simple (finite dimensional) Lie algebra are quasireductive, see e.g. [START_REF] Moore | Restrictions of unitary representations to subgroupes and ergodic theory: Group extensions and group cohomology[END_REF]. Moreover, the complexified subalgebras give rise to quasi-reductive subalgebras of the corresponding complex simple Lie algebra. In type F4 and type E6 the so-obtained parabolic subalgebras of g correspond to the subsets π ′ = {α1, α2, α3} and π ′ = {α2, α3, α4, α5} of π respectively. As a result, we have: Proposition 5.8. (i) If g is of type F4 and if π ′ is {α1, α2, α3} then p + π ′ is quasi-reductive. (ii) If g is of type E6 and if π ′ is {α2, α3, α4, α5} then p + π ′ is quasi-reductive.

We consider now the remaining cases. For all these cases, we are able to find (a, b) ∈ C * (kπ +k π ′ ) such that ϕ u(a,b) is of reductive type for p + π ′ . We have used the computer programme GAP to check that the stabilizer of such a form is a torus of g. The commands we have used are presented in Appendix A.

Proposition 5.9. (i) If g is of type E6 and if π ′ is {α1, α2, α3, α4, α5} or {α2, α3, α4, α5, α6} then p + π ′ is quasireductive.

(ii) If g is of type E7 and if π ′ is one the subsets {α1, α2, α3, α4}, {α1, α2, α3, α4, α5}, {α1, α2, α3, α4, α5, α6}, {α1, α3, α4, α5} or {α1, α3, α4, α5, α6, α7} then p + π ′ is quasi-reductive. (iii) If g is of type E8 and if π ′ is one the subsets {α5, α6, α7, α8}, {α3, α4, α5, α6, α7, α8}, {α2, α4, α5, α6, α7, α8} or {α2, α3, α4, α5, α6, α7, α8} then p + π ′ is quasi-reductive.

This proposition completes the proof of Theorems 5.1 and 5.2; the other cases are dealt with either in Remark 1.5, or in Example 3.7, or in Theorems 4.1, 5.6 and 5.7 (or deduced from Theorem 2.1 or Theorem 2.11 as explained before).

Remark 5.10. As noticed in the introduction, Proposition 5.9 can be proved without the help of GAP; this is done in a joint work of the second author and O. Yakimova, [MY] where the authors consider the maximal reductive stabilizers of quasi-reductive parabolic subalgebras of simple Lie algebras.

  , ε2 = 0122 , ε3 = 0120 , ε4 = 0100 }

  π and, in the special case of π1 = ∅ and π2 = π, we write u -for u - ∅ . Let B be the Borel subgroup of G whose Lie algebra is b + . We summarize in the following proposition useful results of Kostant concerning the linear form (ϕ u -)| b + . They can be found in [TY05, Proposition 40.6.3]. Proposition 1.6. (i) The linear form (ϕ u -)| b + is of reductive type for b + . More precisely, the stabilizer of ϕ u -in b + is the subspace K∈Kπ ker εK of h of dimension rk gkπ. (ii) Let m be an ideal of b + contained in n + . The B-orbit of (ϕ u -)|m in m * is an open dense subset of m * .

  α) may be empty or contain more than one element. Examples 3.1. (1) If K is in the cascade Kπ then K - π (εK) is empty. (2) In type E7, for α = α4 + α5 + α6, the set K - π (α) has more than one element: ε4 + α, ε5 + α, ε6 + α are all positive roots.

  with a, b ∈ C, h ∈ h. Let us remind that the stabilizer of (ϕ u -)| b + in b + is the orthogonal of Eπ in h (Proposition 1.6(i)). Consequently, as α ∈ Eπ, we have [b + (ϕ u -), w] = {0}, whence b + (ϕ u -) ⊂ p + α (ϕw). In addition, by formula (1), ind p + α = ind b + + 1. So, b + (ϕ u -) is an hyperplane of p + α (ϕw) (cf. [TY04b, Lemma 4.5]). Now choose x in p + α such that the decomposition p + α (ϕw) = Cx ⊕ K∈Kπ ker εK (3)

  Let π ′ be the subset {α2, α4}. Then π ′ is a connected component of π ′′ . Hence, one can choose u ′′ = u(a, b) such that both (ϕ u ′′ )| p + π ′′ and (ϕ u ′ )| p + π ′ are regular (for p + π ′′ and p + π ′ respectively) where u ′ = u(a, b π ′ ). Let λ = (λ2, λ3, µ0, µ1, µ2, µ3, ν) be an element of C 7 such that x = x(λ) stabilizes (ϕ u ′ )| p + π ′

Table 2 .

 2 E π for the classical Lie algebras.

  Suppose that p + π ′ ∪π ′′ is quasi-reductive and that any one of the other two parabolic subalgebras is not quasireductive and show that this leads to a contradiction. By assumption we can choose ϕ ∈ (p + π ′ ∪π ′′ ) * of reductive type for p + π ′ ∪π ′′ such that ϕ ′ = ϕ | ′ -regular and p + π ′′ -regular respectively. Suppose for instance that p + π ′ is not quasi-reductive. By Proposition 1.6(ii) we can suppose furthermore that ϕ ′ = (ϕw)| p +

	p	+ π ′	and ϕ ′′ = ϕ |	p	+ π ′′	are p + π π ′

and this contradicts condition ( * ).

Corollary 2.10. Let π ′ , π ′′ be two subsets of π which are not connected to each other and satisfy condition ( * ). If p + π ′ ∪π ′′ is quasi-reductive then p + π ′ and p + π ′′ are both quasi-reductive.

Proof.
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Notations, definitions and basic facts

In this section, we recall a number of known results that will be used in the sequel.

π ′ ⊂ π, π of type E6 ind p + π ′ dim. of torus part {α2} 3 2 {α1, α2}, {α2, α6} 2 1 {α3, α2}, {α2, α5} 2 1 {α1, α2, α5}, {α2, α3, α6} 1 0 {α1, α2, α6} 3 2 {α2, α3, α5} 3 2 {α1, α2, α3}, {α2, α5, α6} 2 1 {α1, α2, α3, α5}, {α2, α3, α5, α6} 1 0 {α1, α2, α3, α6}, {α2, α1, α5, α6} 1 0 {α1, α2, α3, α5, α6} 3 2 {α1, α2, α3, α4, α6}, {α1, α2, α4, α5, α6} 1 0

Table 7. The non quasi-reductive parabolic subalgebras p + π ′ in E 6 and their indices.

5.1. Assume that g is of type F4, E6, E7 or E8 and let π ′ be a connected subset of π of rank 2 which contains απ.

Write π ′ = {αi 1 , αi 2 } with αi 2 = απ. Lemma 5.4 shows that the roots of π ′ have common properties:

Lemma 5.4. The subset π ′ has type A2 and there are four integers j0, j1, j2, j3 in {1, . . . , kπ} and a quadruple (c0, c1, c2, c3) ∈ C 4 such that the following properties are satisfied:

) and hε π ′ = 3 k=0 c k hε j k . Proof. We verify the properties for each type: Type F4: π ′ = {α2, α1}, with α1(= απ) = 1 2 (ε1-ε4-ε2-ε3) and α2 = ε4. Moreover hα 1 +α 2 = 1 2 (hε 1 +hε 4 -hε 2 -hε 3 ). Type E6: π ′ = {α4, α2}, with α2(= απ) = 1 2 (ε1-ε4-ε2-ε3) and α4 = ε4. Moreover hα 2 +α 4 = 1 2 (hε 1 +hε 4 -hε 2 -hε 3 ). Type E7: π ′ = {α1, α3}, with α1(= απ) = 1 2 (ε1-ε6-ε2-ε3) and α3 = ε6. Moreover hα

Recall that there exist a = (a1, . . . , a kg ) 

We define the structure constants τ1, τ2, τ3, τ4, τ5, τ6, τ0 by the following equations:

Set u = u(a, b) and x = x(λ). We have:

In the above notations, this gives:

In this appendix, we explain how to use GAP to verify that for suitable u = u(a, b) and π ′ as described in Proposition 5.9 the linear form (ϕu)| p + π ′ is of reductive type. We do this for the example g =E7 and π ′ = {α1, α2, α3, α4, α5}, the other cases work similarly. First, we define the simple Lie algebra L (= g), a root system R and a Chevalley Basis (h,x,y) of L, and then the parabolic subalgebra P (= p + π ′ ) generated by gP; its dimension is dP:

>L:=SimpleLieAlgebra("E",7,Rationals);;R:=RootSystem(L);; >x:=PositiveRootVectors(R);;y:=NegativeRootVectors(R);; >g:=CanonicalGenerators(R);;h:=g[3];; >gP:=Concatenation(g[1],h,y{[1..5]});;P:=Subalgebra(L,gP);;dP:=Dimension(P); 90

Next we choose numbers (a1,a2,a3,a4,a5,a6,a7,b1,b2,b3,b4) ∈ (C * ) (kπ +k π ′ ) and we define the element u=u1+u2 We are now ready to compute the stabilizer of (ϕ u )| P . To start with, we calculate the vector space V generated by the brackets u*bP[i], for i = 1, . . . , dP, where bP is a basis of P. We obtain the orthogonal K of V with respect to the Killing form thanks to the command KappaPerp. Then, the stabilizer S of (ϕ u )| P is the intersection of K and P: >bP:=List(Basis(P));; l:=[];;for i in [1..dP] do l[i]:=u*bP[i];od;;l; >V:=Subspace(L,l);;K:=KappaPerp(L,V);;S:=Intersection(K,P);;dS:=Dimension(S); 4 The fact dim S=4 shows that (ϕ u )| P is regular, since ind P = 4. It remains to check that S is a reductive subalgebra of L.. To process, we check that the restriction of the Killing form to S × S is nondegenerate. For that it suffices to compute the intersection between S and its orthogonal in L. The result has to be a vector space of dimension 0:

>KS:=Intersection(KappaPerp(L,S),S); <vector space of dimension 0 over Rationals>