N
N

N

HAL

open science

A new contour filling algorithm based on 2D topological

map

Guillaume Damiand, Denis Arrivault

» To cite this version:

Guillaume Damiand, Denis Arrivault. A new contour filling algorithm based on 2D topological
map. Graph-Based Representations in Pattern Recognition, Jun 2007, Alicante, Spain. pp.319-329,

10.1007/978-3-540-72903-7 29 . hal-00348857

HAL Id: hal-00348857
https://hal.science/hal-00348857v1
Submitted on 22 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00348857v1
https://hal.archives-ouvertes.fr

A New Contour Filling Algorithm Based on 2D
Topological Map *

Guillaume Damiand** and Denis Arrivault

SIC - bat. SP2MI, Bvd M. et P. Curie
BP 30179, 86962 Futuroscope Chasseneuil Cedex - France

{damiand,arrivault}@sic.univ-poitiers.fr

Abstract. In this paper, we present a topological algorithm which al-
lows to fill contours images. The filling problem has been widely treated
and it recently appeared that it can always be split into two different
process : a generic topological process and a dedicated geometrical post-
processing which depends on the application. Our algorithm, based on a
2D topological map description of the image, addresses the first step of
processing. It is fast, generic and robust. Moreover, the complete topo-
logical description allows to easily integrate geometrical constrains and
makes our approach an interesting basis for every filling process.

Keywords. topological maps, filling process, character reconstruction.

1 Introduction

Filling algorithms are used in many applications but especially in character im-
age generation [1]. The motivation of our work comes from the handwritten
characters description. In order to use structural methods for describing a char-
acter (for example fuzzy hierarchical graphs as in [2]) one needs to extract a clean
skeleton. The filling algorithm was developed for the characters reconstruction
phase of this process. Actually, a skeleton-based graph is built from character
image through a contour approximation and a character reconstruction (Fig. 1).

The problem of filling the contour of a region has been widely treated during
the last three decades. Depending on the application, this can be solved by using
an a priori knowledge on the contour topology (with contour approximations for
example) or directly with the raster graphics. Pavlidis [3] separated also the
"polygon based" techniques from the "pixel based" ones. The purpose of this
article is to present a "pixel based" algorithm using a topological description
without a priori knowledge.

* Paper published in Proceedings of 6th TAPR International Workshop on Graph
Based Representation in Pattern Recognition, LNCS 4538, pages 319-329, June 2007.
Thanks to Springer Berlin / Heidelberg. The original publication is available at
http://wuw.springerlink.com/content/r5j430978141wlj6/

** Partially supported by the ANR Fundation under grants ANR-06-MDCA-008-
05/FOGRIMMI.

2 Guillaume Damiand and Denis Arrivault

A Contour fillin; A
g
5K

Fig. 1. Processing of a chinese handwritten characters.

A Contour

approximation,

—

. filtering
. and thinning

=A00RE

There are many "pixel based" filling algorithms in the literature. They can be
divided into two broad categories [4]: parity check filling algorithms (also called
scan-line or edge filling) and seeds growing (also referred to as connectivity
filling or region growing). Filling by parity check is fast and requires less or
no additional working memory comparing with seeds growing filling. Line by
line, the background pixels are associated with a depth number according to the
number of black pixels previously encountered during the line scan. Then the
filling is done by using the depth number parity. The major difficulty facing such
a scheme is that different arcs of the contour may be mapped on the same pixel
(Fig. 2 (A)). That is the reason why it often fails to correctly handle complex
objects while seeds growing methods are theoretically more robust. Starting from
interior starting points (the seeds), seed growing algorithms are propagation
procedures that color the regions of interest. Nevertheless, the seed choice is a
non trivial issue and can not be automated without an a priory knowledge of
the contours relation.

R, R, | R, | R,
A B C D

Fig. 2. The problem which occurred when two boundaries are shared. (A) Regions
R, and Rj3 share a part of a boundary (drawn in dark grey in the figure). (B) What
we will obtain by our algorithm: both regions are filled. (C) What we want to obtain

intuitively. (D) Another configuration, topologically equivant to (A), but in this case,
intuitivelly, we want to fill both regions.

The contours relation are defined by Codrea & Al. [5] who explain that a
filling operation need a formal or explicit description of what is an interior or
exterior region. In this perspective, Martin & Al. [6] propose a topology-based
filling algorithm which uses not only inclusion relation for the filling decision but

A New Contour Filling Algorithm Based on 2D Topological Map 3

also the ideas of dominant subobject and exteriority for addressing the images
with ambiguities. The dominant subobject is defined as the region which com-
prises most of the external perimeter of an object and exteriority allows to fill
subobjects that are outside enough of a dominant subobject even if the sharing
boundary is small. This algorithm is powerful but requires complex definitions
and thresholds. Moreover it does not allow to deal with non closed contours.
Nevertheless, Martin & Al. outline a fundamental aspect of the filling problem.
The contour images has to be processed at two levels : a topological process
first that is quite generic for all applications and a geometrical process that is
dedicated to the application.

The topological process given by Martin & Al. is based on the inclusion
relation. This approach is quite poor and does not allow to propose efficient ge-
ometrical constraints. The 2D topological maps used in our approach provide a
complete topological description that can be efficiently adapt to every applica-
tion. The filling algorithm proposed in this article is a topological one, generic,
complete and fast. We are not addressing the geometrical constraints at the
moment but we will explain why this approach is an interesting basis for every
filling problems.

In the next section, recalls on 2D-topological maps will be given. Then we will
present our algorithm which allows to fill contours image by using this structure.
Finally we will provide some examples and try to highlight the advantages and
the geometrical extensions of such an approach. The article will end with a
conclusion and some perspectives.

In this article, the background pixels of the images are the white ones and
contours are drawn in black. Furthermore contours are composed of digital curves
(closed or not) which connectivity is 8 with no redundancy. These properties are
guaranteed by our processing chain which applies a thinning algorithm.

2 Recalls

Topological maps are an extension of combinatorial maps [7-10] in order to
represent in a unique and minimal way a labeled image. We present here briefly
the main notions of combinatorial maps and of topological maps (see [11, 12] for
more details).

2.1 Combinatorial Maps

Intuitively, a 2D combinatorial map (called also a 2-map) is an extension of a
planar graph that keeps the orientation of edges around each vertex. Each edge
of the graph is divided in two parts. Basic elements obtained are called darts and
are the unique basics of the combinatorial map definition. A 2D combinatorial
map can represent the topology of a 2D subdivision of orientable spaces without
boundary. This model has been extended to represent any type of subdivision,
orientable or not, and with or without boundaries (see [11] and Fig. 3).

4 Guillaume Damiand and Denis Arrivault

More precisely, a subdivision of a 2D topological space is a partition of the
space into 3 subsets whose elements are 0D, 1D and 2D cells (respectively called
vertices, edges and faces, and noted i-cell, i = 0...2). Border relations are
defined between these cells, where the border of an i-cell is a set of (j<i)-cells.
Two cells are incident when one belongs to the border of the second, and two
i-cells are adjacent if they are both incident to a common (j<i)-cell.

A combinatorial map is an algebra composed by a set of darts that represents
the elements of the subdivision, and 2 mappings (called $; and () defined on
these darts that represent adjacency relations (this can be easily extended in
nD, with n mappings). 31 puts in relation a dart and the next dart of the same
face, and (3 puts in relation both darts incident to a same edge. These 3; have to
verify some particular properties in order to ensure the validity of the represented
subdivision (f; is a permutation and (s is an involution, see for example [11] for
the formal definition).

7 4
> 9\11\
1|6 8 110 1

696/1;/%
B

Fig. 3. Usual representation of a 2D combinatorial map. (A) A 2D object. (B) Explicit
representation where each dart and each one to one mapping are drawn. Darts are
represented by black segments, 81 by grey arrows and (2 by black arrows. (C) Implicit
representation, where (; applications are not explicitly drawn but can be deduced from
the shape of the objects. Two darts in relation by (; are drawn consecutively, and the
arrow on darts shows the orientation of 8;. Two darts in relation by 2 are drawn near,
parallel and in reverse orientation.

A

We can see in Fig. 3B the combinatorial map representing the object shown
in Fig. 3A. In this example, each dart and each one to one mapping are drawn.
In general, we do not use this representation but we prefer the one shown in
Fig. 3C where §; are not explicitly drawn but can be (generally) deduced from
the shape of objects.

Within the combinatorial map framework, all cells are implicitly represented
through the notion of orbit. Intuitively, an orbit < B;,,...,3;, > (d) is the set
of darts that can be reached with a breadth-first search algorithm, starting with
d, and using all combinations of all 3;, or 61-;1 permutations Vk,1 < k < j.
With this notion, each cell is defined as a particular orbit. Based on the cells
definition, we can retrieve the classical cell degree notion. The degree of an i-cell
¢ is the number of distinct (i-+1)-cells incident to ¢. Note that in a n-dimensional

A New Contour Filling Algorithm Based on 2D Topological Map 5

space, the degree is not defined for n-cells, since (n+1)-cells do not exist in such
a space.

2.2 Topological Maps

Topological maps are an extension of combinatorial maps in order to represent
in a unique and minimal way a labeled image.

R,

6 7

| ‘EEEEEEE N
3 5 8

‘Rl ———i!!...‘——!L 4 IOLM
[EEEEEEEEEEN 12 16l lis
EEEEEEEEE e " 14
I IR RINORTD 201 18] 13
| &)
! 19
[

IR R R RN NIRT
IR} NRERRRI
EEEEEEEEN

12
17

(A) (B)

Fig.4. (A) A 2D labeled image drawn with its interpixel boundaries. (B) The corre-
sponding topological map with its inclusion tree.

We can see in Fig. 4 a 2D labeled image and the corresponding topological
map. A topological map is a combinatorial map that represents a labeled image
and that verifies particular properties. Indeed, this map is minimal, complete
and unique. These properties lead to another characteristic of the topological
map: each edge represents exactly an interpixel boundary between two regions
of the image (this can be seen in Fig. 4). An interpixel boundary between two
regions R; and R, is the set of maximal interpixel curves such that each linel of
these curves is incident to exactly one pixel of R; and one pixel of R; (see [12]
for proofs concerning topological map properties).

When a region is included into another region (as region Ry in Fig. 4 which
is included into region R3), the corresponding topological map is composed of
several connected components. There is no information in the map that allows
to place relatively the different connected components, and thus we have lost the
topological information concerning the inclusion. To solve this problem, we add
an inclusion tree to the topological map. This tree contains each region of the
image, rooted by Ry, and a region R; is son of a region R; when R; is included
into R;. With this tree, we are now able to retrieve each inclusion relation.
Moreover, each region of this tree R is linked with a dart of the topological map
that belongs to its external boundary (called representative dart of R), and each
dart of the map is linked with its belonging region. With these two links, we can
efficiently run through all the boundaries of a given region.

! Ry is the region which surrounds all the image, called the infinite region.

6 Guillaume Damiand and Denis Arrivault

Combinatorial map represents the topological part of our model: all the cells
of the space subdivision and all the adjacency and incidence relations. But it is
also necessary to represent the geometry of the image. We speak about embed-
ding to design this geometrical model. There are many different possibilities to
represent the geometry and the choice of one of them depends on the application.
In this work, we have chosen to use an interpixel matrix.

This matrix contains all the interpixel elements that belong to interpixel
boundaries of the corresponding image. We can see in Fig. 4(A) the correspond-
ing embedding of the topological map shown in Fig. 4(B). A linel is present in
the matrix if it is between both pixels that belong to two different regions. A
pointel is present in the matrix if it is incident to more than two linels.

Each dart of the topological map is linked with a doublet (p,l) that allows
to retrieve, given a dart d, the corresponding cells in the interpixel matrix. With
p we can retrieve the pointel associated with d, and so the coordinates of the
corresponding vertex. With (p,!) we can retrieve the first linel associated with
d. This linel is oriented and gives the initial direction of the edge associated with
d. To retrieve the embedding of the edge incident to dart d, we start from this
linel, and follow the path of linels until we find a pointel, or we go back to the
initial linel.

3 Using Topological Map for Filling Contours

Given a contour image obtained from a character image after contour approxima-
tion, filtering and thinning (Fig. 1), we want to fill each region which corresponds
to the interior of a character. The main idea of our solution is to use topological
map, and more precisely the inclusion tree associated with topological map in
order to retrieve one pixel for each region to fill, and then to use a classical
flood-fill algorithm starting from these germs.

Due to the type of our images, each region to fill R can be characterized by
two specific properties:

1. the color of R is white in the image;
2. the depth of R in the inclusion tree is even.

The first property can easily be deduced since black pixels in the images
belong to a boundary of a character. The second property is deduced from the
type of boundaries present in the image as we can see in Fig. 5. Indeed, in our
images, two types of boundaries are alternated: external boundaries and internal
boundaries. Indeed, each region is always composed by one external boundary.
When it has some holes, each one is represented by one internal boundary. This
process is repeated if there is another region included in one hole, this region is
represented by an external boundary and so on.

With these considerations, we can characterized each boundary by its depth
in the inclusion tree. By considering that a character is never incident to the
border of the image?, we are sure that the region R, associated to the external

2 Even if this property is not always true, we can easily modify the image by adding
white pixels all around it in order to verify the property.

A New Contour Filling Algorithm Based on 2D Topological Map 7

Fig.5. An example of images we have to process. (A) Initial image. We have drawn
external borders in black and internal borders in grey, but this is only for the explana-
tions and all the borders are represented by black pixels in the real image. (B) Image
we want to obtain after interiors of characters are filled. The numbers correspond to
the depth of each region in the inclusion tree.

boundary is included in the region that corresponds to the background of the
image Ryp. The depth of Ry, region is 1 since it is directly included in the infinite
region, and thus the depth or R, is 2 since R, is directly included in Ry.

It is important to note that the regions represented in topological map are
4-connected regions and that each external boundary is a 8-connected path.
Consequently, if an external boundary is not a single straight line, it is always
associated with more than one region. Those regions are all at a depth 2 in
the tree since each one is directly included in Rp. Furthermore, an external
boundary can not include any region. Then, the white region Ry delimited by
an external boundary is also to a depth 2 in the tree. Indeed, Ry is adjacent to
regions representing the external boundary, and by definition of inclusion tree,
two adjacent regions have the same depth. Thus we can conclude that each white
region with a depth 2 in the tree is a region delimited by an external boundary
and thus need to be filled.

Now if we consider an internal boundary, and the region R; associated with
this boundary (we can do the same remark than for external boundary, it is
possible to have several regions associated with an internal boundary, but each
one has the same depth in the tree). The depth of region R; is 3 since this region
is included into Ry. Indeed, otherwise, the boundary is not an internal boundary
since it is adjacent to an external boundary. The white region delimited by this
boundary has the same depth in the tree, but this region must not be filled since
this is a hole in the surrounding region.

Now, we can do exactly the same remarks for the next external boundary,
associated to a region with depth 4, and so on, to conclude that we need to fill
each white region with an even depth in the inclusion tree.

Thanks to these properties, we can deduce Algorithm 1 which, given a topo-
logical map, computes the list of each germ that belongs to a region to fill.

8 Guillaume Damiand and Denis Arrivault

Algorithm 1: Computation of the list of germs that belong to all regions
to fill.
Input: A topological map M
Output: The list of pixels that are all the germs belonging to regions to
fill.

res «— ()
foreach region r of the inclusion tree do
if the depth of v is even and the color of r is white then
d < representative dart of r
(p,1) < doublet associated with d
add the pixel associated with (p,l) in res

return res

Given a dart that belongs to a region to fill, we need to find a pixel inside
the region. For that, we first recover the doublet (p,l) associated to the dart.
Then, depending on the linel, we can compute a pixel inside the region. Indeed,
edges of the map are counter-clockwise oriented, and thus we know that given an
edge of an external border, the interior of the region is always on the right of the
oriented edge. As we can see in Fig. 6, there are only four possible configurations,
and depending on the configuration we can directly retrieve the coordinates of
the pixel, given the coordinates of the pointel.

p®=1 op 1
a = B =
A B C D

Fig. 6. The four possible configurations of a doublet (p,!) and the associated pixel g for
each case. We note (p., py) the coordinates of the pointel and (g, gy) the coordinates of
the pixel. (A) (92, 9y)=(pz,py)- (B) (92, 9y)=(Pz — 1,py). (C) (g2, 9y)=(p= —1,py —1).
(D) (9=, 9y) =Pz py — 1).

The complexity of Algorithm 1 is linear in number of regions of the image.
Indeed, this algorithm runs through all regions of the image and for each region
to fill, just computes the coordinates of one pixel inside the region by atomic op-
erations. This algorithm is thus very efficient since we do not need to run through
all the pixels of the image. Note that this algorithm needs a topological map,
but the computation of topological map can be considered as a pre-processing
operation. Moreover this computation can be achieved very quickly by using op-
timal extraction algorithm [12] with a complexity linear in number of pixels of
the image, but also with a single image scan and with only the minimal number
of operations to applied for each pixel.

