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I. INTRODUCTION

W ITH an increased resolution, new spaceborne synthetic aperture radar (SAR) images will be an important source of information for the monitoring of glacier activity, by providing regular measurements such as surface topography, velocity fields or rocks, and crevasse cartography. After successful SAR experiments on Arctic and polar region glaciers [START_REF] Fischer | Observation of recent surges of Vatnajökull, Iceland, by means of ERS SAR interferometry[END_REF], the study of Alpine temperate glaciers proved to be more complex. Some experiments carried out with existing spaceborne interferometric SAR (InSAR) data have shown that only specific data such as European Remote Sensing satellite (ERS) 1/2 tandem couples provide information on welloriented glaciers at certain times of the year [START_REF] Mattar | Validation of alpine glacier velocity measurements using ERS tandem-mission SAR data[END_REF]. However, the characteristics of future spaceborne SAR missions such as TerraSAR-X (11-day repeat cycle, left/right looking, various incidence angles, up to 2-m resolution, dual polarization, etc.) reinforce the potential of interferometric measurements over Alpine glaciers.

The existing standard interferometric processing chains such as the differential interferometric automated process applied to survey of nature (DIAPASON) [START_REF] Massonnet | CNES general-purpose SAR correlator[END_REF] or the repeated orbit interferometry package (ROI-PAC) [START_REF] Rosen | Synthetic aperture radar interferometry[END_REF], [START_REF] Rosen | Updated repeat orbit interferometry package released[END_REF] provide a complete D-InSAR processing chain. These algorithms have already been tested and successfully applied in the context of SAR interferometry to measure accurate displacements (volcanology or seismology). These processors are built from standard wellestablished InSAR algorithms such as coregistration of singlelook complex (SLC) images, phase scaling, and unwrapping. However, this procedure is often error prone when applied to temperate glacier monitoring because of the complex glacier topography (Fig. 1) or the phase noise and discontinuities at glacier boundaries.

With decameter resolution (about 20 m for ERS SAR images), the amplitude is often difficult to use to extract precise information. Different methods have been developed to derive ice velocity measurement, either by "speckle tracking" [START_REF] Strozzi | Glacier motion estimation using SAR offset-tracking procedures[END_REF], [START_REF] Gray | Velocities and ice flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry[END_REF] or by feature tracking [START_REF] De Lange | Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering[END_REF]. These methods should benefit from the new generation of SAR satellites with meter resolution images and fully polarimetric data. This should allow to detect different features, to identify backscattering mechanisms, and to improve the extraction of the geometric deterministic component of the interferometric phase by adaptive techniques [START_REF] Vasile | General adaptive neighborhood technique for improving SAR interferometric coherence and phase estimation[END_REF], [START_REF] Vasile | Intensity-drivenadaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[END_REF] or multiresolution approaches [START_REF] Davidson | Multiresolution phase unwrapping for SAR interferometry[END_REF], [START_REF] Lopez-Martinez | Modeling and reduction of SAR interferometric phase noise in the wavelet domain[END_REF].

InSAR measurements include topographic fringes (phase variations due to the relief), which are useful in estimating the surface elevation for deriving glacier volume change [START_REF] Surazakov | Estimating volume change of mountain glaciers using SRTM and map-based topographic data[END_REF], and displacement fringes (induced by the glacier displacement between the two InSAR acquisitions), which are useful in estimating ice stain rates [START_REF] Forster | Measurement of glacier geophysical properties from InSAR wrapped phase[END_REF]. The main limitations are • temporal decorrelation due to glacier surface and subsurface fast changes, particularly during the warmest season [START_REF] Trouvé | Combining airborne photographs and spaceborne SAR data to monitor temperate glaciers: Potentials and limits[END_REF]; • volume decorrelation caused by microwave penetration into uniform ice and associated elevation bias for topographic measurements [START_REF] Dall | InSAR elevation bias caused by penetration into uniform volumes[END_REF]; • the need to separate the topographic fringes from the displacement fringes and possible atmospheric perturbations [START_REF] Massonnet | Radar interferometry and its application to changes in the Earth's surface[END_REF].

To estimate the surface displacement, one of the safest options consists in using an external digital terrain model (DTM) of the target area. However, the required accuracy of the DTM increases with the baseline between the two SAR acquisitions, making interferograms more and more sensitive to the topography. This is particularly crucial in the regions presenting deeply embedded valleys such as the glacial valleys in the Alps. In this context, reliable estimates of the phase gradient within the interferogram become more and more necessary as the resolution of SAR data increases: smaller ground resolution cells will reveal the local topographic variations (microrelief), and larger baselines (smaller altitude of ambiguity) will transform them into local fringe pattern. These fringes are difficult to detect without using locally adaptive techniques. Previous approaches based on the estimation of local frequencies proved to be rather efficient with low-resolution (LR) data [START_REF] Davidson | Multiresolution phase unwrapping for SAR interferometry[END_REF], [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF]. If correctly estimated, local frequencies can be used in the InSAR processing at different stages, such as interferogram filtering [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF] or phase unwrapping [START_REF] Ghiglia | Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[END_REF]- [START_REF] Trouvé | Improving phase unwrapping techniques by the use of local frequency estimates[END_REF]. They are also used for accurate coherence estimation obtained by compensating the local phase slope to avoid the bias (underestimation) due to the phase rotation within the estimation window. A recent method proposed by Zebker and Chen consists, for instance, in dividing the interferogram into 8 × 8 or 16 × 16 pixel windows and measuring the local dominant fringe patterns in the Fourier domain [START_REF] Zebker | Accurate estimation of correlation in InSAR observations[END_REF].

In this paper, we propose to improve these approaches and to adapt them to the new context of high-resolution (HR) interferograms. An original two-step method for estimating local frequencies is presented. The first step estimates the main fringe pattern on large boxcar windows by using existing methods. It provides a robust estimation of the average local frequency corresponding to the so-called "LR" fringe pattern. The second step consists in removing this main fringe pattern and estimating the remaining local fringe patterns due to local variations, which are missed in the first step for different reasons such as

• difference between the fringe model estimated in the first step and the real fringes; • local aliasing when the LR fringes are already high frequency and local variations increase the fringe rate; • discontinuities of the fringe pattern within the LR estimation boxcar window.

To estimate the local frequency corresponding to the so-called "HR" fringe pattern, we propose to use intensity-driven adaptive neighborhoods (IDANs) that are more likely to follow the local fringe variations and a new method to estimate the 2-D local frequencies on such neighborhoods with variable shape and size. The key issue when using the algorithm proposed in [START_REF] Vasile | Intensity-drivenadaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[END_REF] lies in the fact that surface orientation is highly correlated with SAR intensity values. This observation is valid mainly for glacial areas, where the presence of other factors influencing the SAR intensity signal is highly reduced. Results are presented using two different data sets over the Mer-deglace-the Leschaux and the Tacul glaciers, which are located in the Mont-Blanc area: a simulated interferogram obtained from an HR DTM computed from aerial photographs, and a real interferogram from an airborne Experimental SAR (E-SAR) campaign that took place in this area in October 2006. The remainder of this paper is organized as follows. Section II is dedicated to the presentation of the local frequency estimation algorithm. In Section III, the results obtained using the proposed approach are presented and compared to those given by previous methods developed in the framework of ERS interferograms. Both simulated and real interferograms are used. Results of phase unwrapping and interferogram filtering are also given, starting from the obtained frequency estimates. In Section IV, some conclusions and perspectives are presented. Eventually, Appendix briefly describes the principles of the 2-D local frequency estimation technique [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF] used with boxcar windows for the LR fringe pattern analysis.

II. HIGH-RESOLUTION FRINGE PATTERN ANALYSIS

Under the assumption of a large number of scatterers inside the resolution cell, the statistics of the interferometric phase have been completely characterized [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF]. Several interferogram filtering strategies have been reported [START_REF] Monti Guarnieri | SAR interferometry: A 'quick and dirty' coherence estimator for data browsing[END_REF]- [START_REF] Wu | A locally adaptive filter of interferometric phase images[END_REF].

Lee et al. proposed a spatially adaptive filtering method for improving the accuracy of the interferometric phase estimation [START_REF] Lee | A new technique for noise filtering of SAR interferometric phase images[END_REF]. The basic idea of the filter is to preserve edges and to better filter noise in their vicinity. A set of 16 directional subwindows are defined to locate the optimal estimation samples inside the considered neighborhood. The subwindow selection procedure is performed either after locally applying the phase unwrapping procedure or operating in the complex plane. Only the pixels in the selected subwindow are used to compute the filtered value, which is derived from the locally linear minimum meansquared error estimator. In [START_REF] Lopez-Martinez | Modeling and reduction of SAR interferometric phase noise in the wavelet domain[END_REF], a multiscale interferogram analysis is proposed. The phase image is locally analyzed in the Shannon wavelet domain, and the filter is characterized by good spatial resolution maintenance properties.

This paper presents a new method to obtain the local frequencies within an interferogram by fusing multiscale analysis technique [START_REF] Davidson | Multiresolution phase unwrapping for SAR interferometry[END_REF], multivariate adaptive neighborhood (AN) estimation algorithm [START_REF] Vasile | Intensity-drivenadaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[END_REF], and robust LR squared fixed-size windowing procedure [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF]. This can only be achieved due to a new adaptive 2-D frequency estimator dedicated to neighborhoods with variable shape and size.

A. Proposed Model

For each pixel of the interferogram, the 2-D phase signal φ is considered as having two deterministic components as follows:

• the LR phase φ LR corresponding to the average fringe pattern created by the LR features; • the HR phase φ HR corresponding to the local difference of the phase signal with the average fringe pattern. This component is induced by HR features.

Furthermore, one random component corresponding to the phase noise φ n is added. Consequently, the analytical phase signal can be written as e jφ = e jφ LR e jφ HR e jφ n .

(

LR and HR components do not correspond to a partition of the frequency domain such as low or high frequencies, but to the spatial resolution of the associated fringe pattern. In the case of topographic fringes for instance, the LR phase corresponds to the mean slope of the area covered by a large estimation window [Fig. 2(a)], whereas the HR phase corresponds to smaller scale additional variations around this average slope due to the microrelief [Fig. 2(b)]. The first step of the proposed algorithm consists in estimating the LR phase and removing the associated fringe pattern. This is performed by estimating the 2-D LR local frequency with a modified version of the MUSIC algorithm [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF]. The method consists in building a 1-D signal vector by appending the lines of a small rectangular sliding subwindow. Then, the covariance matrix of this vector is estimated within a larger window. The estimation of the two frequency components is based on the structure of the vector covariance matrix (VCM) described in the Appendix. The principle of this VCM method requires large rectangular estimation windows, and it cannot be applied to irregular ANs.

B. Spatial Support

In the second step, the local HR frequencies are estimated. The proposed procedure consists in gathering only the pixels that belong to the same HR spatial feature and fulfill the "local stationarity" hypothesis [START_REF] Touzi | A review of speckle filtering in the context of estimation theory[END_REF]. We assume that small homogeneous regions within the two intensity images correspond to ground areas with a homogeneous cover and a constant orientation which should respect the stationarity hypothesis. Although not generally valid for any type of terrain (particularly flat vegetation or urban areas), this assumption is verified for rather steep-sloped temperate glaciers that are encountered over 1500 m above sea level (ASL) in the Alps. As a consequence, the information that is provided by the intensity multivariate vector is suitable to build IDAN [START_REF] Vasile | Intensity-drivenadaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[END_REF]. Even if these neighborhoods are not exactly "fringe pattern driven," they are more likely to respect the stationarity hypothesis than blind boxcar windows according to the following considerations.

• Within a full SAR scene, the local variation of the backscattered radar radiation strongly depends on the local surface orientation of the targeted area. In software such as ROI-PAC for instance, the knowledge of the slope orientation provided by a DTM is sufficient to simulate SAR image and to register them on real ERS or ENVISAT images.

If the LR SAR data are mainly sensitive at the mean slope, the new HR SAR systems will more accurately reflect the small slope variations induced by the local microrelief.

• The local variations of the backscattered radar radiation imposed by local changes of the dielectric and magnetic permittivities may not be directly linked to phase nonstationarity. However, they are potential sources of different backscattering mechanism or temporal evolutions yielding to different coherence level in large baseline or repeatpass interferometry. For instance, it allows discriminating between rocks and ice or different snows in the particular context of Alpine glaciers.

The main advantage of the IDAN method is to gather a significant number of samples in an estimation window where stationarity is simultaneously preserved with respect to the two intensity images.

The two master I 1 and slave I 2 intensity images are considered as a bivariate image as follows:

p(m, n) = [I 1 (m, n), I 2 (m, n)] T .
(

) 2 
The proposed AN determination relies on the image p(m, n) and involves processing vectorial images mixed with multiplicative noise model. The algorithm consists of the following steps [START_REF] Vasile | Intensity-drivenadaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[END_REF]. 1) Rough estimation of the seed value: Compute the marginal median p(m, n) in the 3 × 3 centered neighborhood. 2) Region growing: The eight direct neighbors p(m , n ) of the seed are accepted inside the AN provided they meet the following condition:

p(m , n ) -p(m, n) p(m, n) ≤ T 1 , T 1 = 2 3 σ n µ n . (3)
Threshold T 1 is set according to the speckle mean µ n and standard deviation σ n , which are a priori known constants, as they both depend on the initial number of looks L and are identical for both intensity images. Then, the same procedure is applied for all of the neighbors of the newly included pixels and so on. The region growing is iterated until either the number of pixels already included in the AN exceeds a predefined upper limit N max or none of the new neighbors fulfills the test condition (3). The pixels that have already been tested but not accepted inside the AN (called background pixels in the following) are stored in a separate list. 3) Refined estimation of the seed value: A more reliable estimator of the unspeckled seed value p(m, n) is now obtained by averaging the pixels included in the AN defined in the previous step. 4) Reinspection of the background pixels: The background pixels p(o, r) of the list created in step 2) are tested again and aggregated in the AN provided that

p(o, r) -p(m, n) p(m, n) ≤ T 2 , T 2 = 2T 1 . ( 4 
)
The AN is updated accordingly. The test is less restrictive, as the inclusion threshold is twice as large as the one used in the first step of the region growing procedure.

C. Autocorrelation Function

One major advantage of the AN lies in the fact that its shape adapts to the useful signal. This allows the shape of the spatial support to be irregular. As a consequence, conventional estimators of the local frequency, such as VCM [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF] or Fourier transform [START_REF] Zebker | Accurate estimation of correlation in InSAR observations[END_REF], cannot be used with AN.

This section introduces a new adaptive 2-D frequency estimator that can be successfully applied in the specific case of ANs. The main idea is to use the previously obtained AN as spatial support for computing the 2-D autocorrelation function of the phase signal.

Using 2-D notation, the phase signal is modeled by a firstorder approximation corresponding to a 2-D complex sine wave with frequency (f x , f y ) and additive noise φ n as

s(k, l) = e jφ(k,l) = e j[2π(kf x +lf y )+φ n ] .
(

) 5 
The autocorrelation coefficients are defined by

γ(p, q) = E s(k, l) • s(k -p, l -q) (6)
where E{• • •} denotes the mathematical expectation and s(k-p, l-q) denotes the complex conjugate of s(k-p, l-q). Under the assumption that the phase noise is an additive independent identically distributed random process, we obtain γ(p, q) = K e j 2π( pf x +qf y ) [START_REF] Gray | Velocities and ice flux of the Filchner ice shelf and its tributaries determined from speckle tracking interferometry[END_REF] where K = | e j φ n (0) | 2 is a real coefficient that does not affect the autocorrelation phase anymore.

As the stationarity and ergodicity conditions are assured, the autocorrelation function is computed by spatial averaging of the products s(k, l) • s(kp, lq) for all the possible delays (p, q) within the AN. One can notice that the reliability of the γ(p, q) estimation strongly depends on the available number N p,q of pairs of pixels delayed with (p, q). Then, the local frequencies can be estimated from two consecutive values of the autocorrelation function (on lines or on rows). The proposed algorithm estimates the components of the 2-D frequency as the arguments of the following sums:

f x = 1 2π • arg   (p,q) N p,q N p+1,q • γ(p + 1, q)γ(p, q)   (8) 
f y = 1 2π • arg   (p,q) N p,q N p,q+1 • γ(p, q + 1)γ(p, q)   . ( 9 
)
By weighting the estimated value γ(p, q) by N p,q , the more reliable samples become more important. Moreover, for each component f x and f y , a confidence measure C f x (respectively C f y ) is defined by the ratio of the magnitude of the complex sum over the sum of the magnitudes as

C f x = (p,q) N p,q N p+1,q • γ(p + 1, q)γ(p, q) (p,q) N p,q N p+1,q • γ(p + 1, q)γ(p, q) . ( 10 
)
When all the different products γ(p + 1, q)γ(p, q) have the same argument, the confidence is equal to 1 and reveals a good agreement between the fringe pattern and the complex sine-wave model. On the contrary, the confidence decreases when the products γ(p + 1, q)γ(p, q) have different arguments, due to unreliable estimation of the autocorrelation function or disagreement with the model. The global confidence

C f = min(C f x , C f y )
is taken as the minimum of the two confidences to reveal an unreliable 2-D frequency estimate as soon as one of the two components is not reliable.

D. Application to SAR Interferograms

The block diagram of the proposed two-step algorithm for local frequency estimation is presented in Fig. 3. First, an LR phase flattening is performed by using the 2-D LR frequency (f LR x , f LR y ) estimated by the VCM method [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF]. In each pixel (m, n) of the interferogram, the global fringe pattern is approximately removed in the surrounding pixels (k, l) by computing the following flattened phase φ fl : Finally, the obtained local frequencies can be directly used as input for either SAR data filtering [START_REF] Vasile | General adaptive neighborhood technique for improving SAR interferometric coherence and phase estimation[END_REF] or phase unwrapping [START_REF] Ghiglia | Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[END_REF].

φ fl (k, l) = φ(k, l) -2π (k -m)f LR x + (l -n)f LR y . ( 11 
)

III. RESULTS AND DISCUSSION

The proposed method has been tested on the "Chamonix-Mont-Blanc" test site which is located in the Alps, near the borders between France, Italy, and Switzerland (45 • 50 N, 6 • 51 E). It includes the Aiguille-Verte (4122 m ASL), the Chamonix valley (1000 m ASL), and several instrumented glaciers. The results presented in this section have been obtained on simulated TerraSAR-X HR data and on airborne E-SAR data over a group of three glaciers: 1) the well-known Mer-de-glace glacier and in its upper part; 2) the Leschaux glacier; and 3) the Tacul glacier.

A. Simulated TerraSAR-X InSAR Data

To illustrate the proposed method on HR data over Alpine glaciers, a 2-m resolution DTM of the Mer-de-glace [START_REF] Trouvé | Combining airborne photographs and spaceborne SAR data to monitor temperate glaciers: Potentials and limits[END_REF] has been used to simulate the SAR amplitude of TerraSAR-X images using the method proposed in [START_REF] Julea | Simulation of SAR images and radar coding of georeferenced information for temperate glacier monitoring[END_REF]. The parameters used in the simulation are presented in Table I.

Fig. 4(a) and (b) presents a real ERS amplitude (∼20-m resolution) and the simulated TerraSAR-X amplitude (∼2-m resolution), respectively. The area corresponds to a part of the Mer-de-glace glacier illustrated in Fig. 5. The altitude information provided by the DTM has been resampled in a TerraSAR-X slant range geometry [Fig. 4(c)] and converted into topographic fringes modulo a tunable altitude of ambiguity [Fig. 4(d)]. A controlled noise level was also introduced on the resulting HR phase and amplitude images. The comparison with LR image, such as the ERS acquisition illustrated in Fig. 4(a), shows that small relief variations become visible in the HR images, and the presence of crevasses can be noticed.

Fig. 6 illustrates the fringe orientation maps computed from the frequency estimates over the Mer-de-glace glacier and the Les-Echelets flank. A colored lookup table, which is provided in Fig. 6 The use of simulated HR interferogram allows objective performance assessments. A comparison between a conventional frequency estimation on a boxcar window and the multiresolution LR + HR proposed method has been performed by measuring the accuracy of the 2-D frequency estimates. The root-mean-square error (RMSE) has been computed using, as reference, the phase gradient measured by Prewitt kernels in the SAR-coded elevation map [Fig. 4(c)]. The results reported in Table II have been obtained by • single-resolution approach using the VCM method on conventional boxcar windows with a 7 × 7 size which is a good compromise between robust estimation and spatial resolution preservation; • LR + HR frequency estimation, LR by VCM method on large boxcar sliding window (11 × 11) and HR by the new algorithm on AN (50 samples).

The RMSE of the proposed method is significantly lower (almost divided by 2) than the RMSE of conventional boxcar estimation.

The importance of the HR frequency component can be assessed by directly injecting the 2-D local frequencies in least-squares phase unwrapping [START_REF] Ghiglia | Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[END_REF], [START_REF] Trouvé | Improving phase unwrapping techniques by the use of local frequency estimates[END_REF]. The simulated interferogram has been unwrapped from the LR local frequency estimates and from the LR + HR estimates. After multiplying with the corresponding altitude of ambiguity and zero origin correction, the two results can be compared to the real altitude available from the HR DTM, which are resampled in the TerraSAR-X slant range. Fig. 7 presents a 50-m spatial profile along the surface of the Mer-de-glace glacier. The approximate position of the profile is marked in red in Fig. 5. Although the VCM LR unwrapped phase is rather linear, the proposed method follows the fractal shape induced by the local altitude variation.

B. Airborne InSAR Data

The proposed method has been applied on real HR InSAR data acquired by the E-SAR airborne system over the upper part of the Mer-de-glace glacier (the Tacul and Leschaux glaciers). A campaign with SAR image acquisitions and in situ measurements has been organized in October 2006, in collaboration between the German Aerospace Center (DLR) and the French laboratories of the MEGATOR project [START_REF] Trouvé | Combining airborne photographs and spaceborne SAR data to monitor temperate glaciers: Potentials and limits[END_REF]. The parameters of the data set used to illustrate the performances of the proposed method are reported in Table III.

The amplitude, coherence, and phase images of a 10-m baseline L-band interferogram are illustrated in Fig. 8. On the amplitude and the coherence images, one can observe the curved stripes that correspond to the Forbes band phenomena. This periodical feature indicates the one-year displacement of the Tacul glacier, and it is explained by the fact that during the summer season, a large amount of rocks fall on the ice in the upper part of the glacier and almost none in winter when rocks are much more stable. This phenomenon produces the smooth "staircase" shape in the upper part of the Tacul glacier. On the interferogram [Fig. 8(c)], the fringe pattern has two main components: 1) the topography and 2) the range evolution of the path difference (the so-called orbital fringes in the case of spaceborne data).

The results of the 2-D local frequency estimation performed at LR and the final combined LR and HR estimates are illustrated in Fig. 9 by the orientation of the corresponding phase gradient. For comparison, the orientation of the local fringe pattern computed using VCM on nonadaptive 7 × 7 squared centered neighborhood is presented in Fig. 9(b). As expected, the LR result in Fig. 9(a) is smooth and robust but it does not follow the local variations of the fringe pattern neither along the glacier surface nor on the surrounding mountains. This missing information is present in the sum of the LR and the HR components, which provides a more robust and more precise estimate of the local fringe pattern. One can notice a clear resolution improvement over the Forbes bands, where the local small slope variation is completely lost in the LR estimate and is hardly visible in the 7 × 7 VCM estimate. The local slope orientation along the Western side of the Aiguille-du-Tacul mountain (left side of Fig. 9) is more accurately estimated with the proposed algorithm. Fig. 10(b) presents the coherence filtering results obtained with the IDAN filter [START_REF] Vasile | General adaptive neighborhood technique for improving SAR interferometric coherence and phase estimation[END_REF], using the deterministic fringe pattern compensation provided by the HR and LR local frequency estimation [Fig. 9(c)]. The confidence image in Fig. 10(c) was thresholded to avoid using unreliable estimation of the HR fringe pattern. The value empirically chosen for the threshold is 0.4. In addition, the coherence map filtered with the 7 × 7 boxcar filter and the VCM 7 × 7 estimated local frequencies [Fig. 9(b)] are illustrated in Fig. 10(a).

Several different factors influence the coherence estimation, such as the true coherence value itself, the number of sample averaged to reduce estimation bias and variance, and the respect of the local stationarity assumption. To investigate the influence of the frequency estimates and the use of ANs on coherence Histograms in Fig. 11 show the results obtained on the E-SAR interferogram. The use of the AN instead of the boxcar for complex multilooking has a stronger effect on the coherence level than the use of an adaptive multiresolution frequency estimation technique instead of a nonadaptive one. In this particular case, the bulk of the improvement can be achieved by phase slope compensation with boxcar frequency estimation; hence, the coherence levels are affected only in small areas with local strong variations of the fringe pattern. However, it can be noticed that in both cases (boxcar and IDAN), the LR + HR frequencies have slightly improved the results compared to the VCM frequencies. The lower coherence obtained with the ANs is due to the larger number of samples averaged by IDAN with a stop criterion N max = 100 compared to the 49 samples averaged by the 7 × 7 boxcar. Lower coherence can be interpreted as a benefit of the proposed method (a reduction of the coherence overestimation due to a sufficient averaging)

or by a drawback if the lower values are due to the averaging of heterogeneous pixels in nonstationary areas. According to the previous results, regarding IDAN coherence estimation [START_REF] Vasile | Intensity-drivenadaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[END_REF] and the visual improvement of the filtered coherence and phase images, it seems reasonable to interpret the coherence decrease by the "positive" explanation rather than by a lack of stationarity over the AN.

In conclusion, the different factors that affect the coherence and the lack of "ground truth" make it difficult to illustrate an improvement of the frequency estimation through the coherence level histograms. The main benefit of the proposed method, regarding coherence estimation, is the use of the same AN for both frequency estimation and coherence filtering to preserve the HR of the data.

IV. CONCLUSION AND PERSPECTIVES

The increased performances of future HR SAR systems (TerraSAR-X, COSMO-SKYMED, or Radarsat-2) together with the developments of appropriate processing algorithms reinforce the potential of SAR interferometry for temperate glacier periodic monitoring. A new method has been proposed to estimate the local frequencies within HR interferograms by a multiresolution algorithm: LR 2-D frequency are estimated on large boxcar windows by previous estimation methods such as VCM [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF] and HR 2-D fringe pattern remaining after LR phase flattening are analyzed by measuring their local frequency on IDANs. This method is adapted to deal with the small ground resolution cells and small altitudes of ambiguity, which makes the fringe pattern sensitive to the local topographic variations.

In the context of temperate glacier activity monitoring, it can be applied to improve the processing of HR interferograms to derive, for instance, very accurate DTM and differential DTM to obtain volume balances. In this case, HR frequency estimation combined with intensity-driven neighborhood techniques provides very good results since most of the sources of phase nonstationarity are revealed by the SAR intensities, which are mostly influenced by the local slope. It will also be useful for differential interferometry to obtain HR velocity field measurements that require efficient phase filtering and unwrapping methods. In this case, one difficulty that has to be addressed in future works is the presence of phase nonstationarity that is more related to the glacier displacement models and independent from the amplitude information. Future work should also investigate different strategies to perform HR fringe pattern analysis in different contexts, where the intensity information would not be dominated by the topography (urban areas, agricultural regions, etc.). A fusion of different information sources such as the coherence or the phase gradient would make the method applicable in more general terrain.

APPENDIX

The VCM method [START_REF] Trouvé | Fringe detection in noisy complex interferograms[END_REF] used to estimate the 2-D local frequencies (f x , f y ) of SAR interferograms on boxcar windows is based on the structure of a "signal vector" resulting from the concatenation of the lines of a 2-D complex sine-wave signal s(m, n) = e iφ(m,n) = e i2π(m•f x +n•f y ) . If this signal is observed on a N s × N s subwindow (square for the sake of simplicity), the size of the "signal vector" v s is N 2 s and the size of its covariance matrix Γ s is N 2 s × N 2 s . With this model, Γ s can be written as

Γ s = v s • v s † =                    1 e  2π•f x e  2π•2f x • • • e  2π(N s -1)f x --- e  2π•f y e  2π•(f x +f y ) • • • e  2π((N s -1)f x +f y ) --- • • •                    [vs † ]
.

Accordingly, this covariance matrix presents a N s × N s block structure: inside the blocks, lines are equal to the previous lines multiplied by a x = e i2π•f x and each block is equal to the previous block multiplied by a y = e i2π•f y . This block structure can be used to estimate the 2-D local frequencies of SAR interferograms by the following three-step algorithm:

1) estimate the N 2 s × N 2 s VCM under the stationarity and ergodicity hypothesis by complex averaging on a N e × N e sliding window, with N e > N s to average (N e -N s + 1) 2 matrix samples; 2) compute by least-squares estimation the coefficients a x and a y ; 3) derive the frequency estimates fx and fy from the arguments of these coefficients. 

Fig. 1 .

 1 Fig. 1. May 2004: Surface topography and texture variability on the Mer-deglace glacier (human size marked in red).

Fig. 2 .

 2 Fig. 2. DTM profile on the Mer-de-glace glacier. (a) Using DTED-1 LR DTM (Res = 80 m). (b) Using HR DTM (Res = 2 m).

Fig. 3 .

 3 Fig. 3. Block diagram of the proposed method.

  The resulting HR phase signal e φ fl exhibits the local differences between the 2-D sine-wave model and the real fringe pattern. Second, the 2-D HR frequency (f HR x , f HR y ) of the HR phase signal is estimated from the 2-D autocorrelation function using IDANs as spatial support. According to the Nyquist-Shannon criterion, when the local variation ∆φ of the phase signal belongs to the [-π, π] interval, its local frequency f belongs to [-0.5, 0.5]. The proposed two-step method first estimates the 2-D LR spatial frequency (f LR x , f LR y ) in the domain [-0.5, 0.5] × [-0.5, 0.5]. After the removal of this average fringe pattern, the 2-D HR frequency (f HR x , f HR y ) can also be estimated in the domain [-0.5, 0.5] × [-0.5, 0.5]. In the case of local aliasing due to HR features, which makes the magnitude of a frequency component higher than 0.5 and lower than 1, the LR + HR model is able to recover this component and yields a total of 2-D frequency (f LR x + f HR x , f LR y + f HR y ), which belongs to the domain [-1, 1] × [-1, 1]. In other words, the proposed method is also able to retrieve phase gradients in limited aliased areas where ∆φ belongs to [-2π, 2π].

Fig. 4 .Fig. 5 .

 45 Fig. 4. Mer-de-glace glacier (840 × 340 pixels). (a) ERS-1 five-look amplitude. (b) Simulated one-look TerraSAR-X amplitude. (c) Elevation image in TerraSAR-X slant range geometry. (d) Simulated one-look TerraSAR-X phase.

Fig. 6 .

 6 Fig. 6. Orientation map of the local fringe pattern with TerraSAR-X (840 × 340 pixels). (a) LR with VCM 11 × 11 (local fringe orientation lookup table in the right upper corner). (b) VCM 7 × 7. (c) Sum of the LR and the HR components. (d) IDAN filtered phase with LR + HR phase flattening.

  Fig. 7. Spatial profile (50 m) along the surface of the Mer-de-glace glacier. (In green) Real altitude resampled in the TerraSAR-X slant range. (In red) Unwrapped HR + LR estimates of the local frequencies. (In blue) Unwrapped LR estimates of the local frequencies.

Fig. 8 .

 8 Fig. 8. E-SAR (16-look) interferogram (392 × 709 pixels). (a) Master amplitude. (b) Coherence map. (c) Interferometric phase.

Fig. 9 .

 9 Fig. 9. Orientation map of the local fringe pattern with E-SAR (392 × 709 pixels). (a) LR with VCM 11 × 11 (local fringe orientation lookup table in the right upper corner). (b) VCM 7 × 7. (c) Sum of the LR and the HR components.

Fig. 10 .Fig. 11 .

 1011 Fig. 10. E-SAR L-band SAR data (392 × 709 pixels). (a) Boxcar 7 × 7 filtered coherence with VCM 7 × 7 phase flattening. (b) IDAN filtered coherence with LR + HR phase flattening. (c) Confidence map for HR frequency estimation.
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