
HAL Id: hal-00348848
https://hal.science/hal-00348848

Submitted on 22 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of multispectral images to high spatial
resolution: a critical review of fusion methods based on

remote sensing physics
Claire Thomas, Thierry Ranchin, Lucien Wald, Jocelyn Chanussot

To cite this version:
Claire Thomas, Thierry Ranchin, Lucien Wald, Jocelyn Chanussot. Synthesis of multispectral
images to high spatial resolution: a critical review of fusion methods based on remote sens-
ing physics. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 (5), pp.1301-1312.
�10.1109/TGRS.2007.912448�. �hal-00348848�

https://hal.science/hal-00348848
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 5, MAY 2008 1301

Synthesis of Multispectral Images to High Spatial
Resolution: A Critical Review of Fusion Methods

Based on Remote Sensing Physics
Claire Thomas, Thierry Ranchin, Member, IEEE, Lucien Wald, and Jocelyn Chanussot, Senior Member, IEEE

Abstract—Our framework is the synthesis of multispectral im-
ages (MS) at higher spatial resolution, which should be as close
as possible to those that would have been acquired by the corre-
sponding sensors if they had this high resolution. This synthesis
is performed with the help of a high spatial but low spectral
resolution image: the panchromatic (Pan) image. The fusion of
the Pan and MS images is classically referred as pan-sharpening.
A fused product reaches good quality only if the characteristics
and differences between input images are taken into account.
Dissimilarities existing between these two data sets originate from
two causes—different times and different spectral bands of ac-
quisition. Remote sensing physics should be carefully considered
while designing the fusion process. Because of the complexity of
physics and the large number of unknowns, authors are led to
make assumptions to drive their development. Weaknesses and
strengths of each reported method are raised and confronted to
these physical constraints. The conclusion of this critical survey
of literature is that the choice in the assumptions for the develop-
ment of a method is crucial, with the risk to drastically weaken
fusion performance. It is also shown that the Amélioration de la
Résolution Spatiale par Injection de Structures concept prevents
from introducing spectral distortion into fused products and offers
a reliable framework for further developments.

Index Terms—Image enhancement, image processing, merging,
multiresolution techniques, remote sensing.

I. INTRODUCTION

A LL IMAGING applications that require analysis of two or
more images of a scene can benefit from image fusion. We

rely on two definitions extracted from literature—Wald’s [1]
and Piella’s [2] definitions, respectively. Wald [1] defines image
fusion as “a formal framework in which are expressed means
and tools for the alliance of data originating from different
sources. It aims at obtaining information of a greater quality,
although the exact definition of ‘greater quality’ will depend on
the application”. According to Piella [2], fusion is “the combi-
nation of pertinent (or salient) information in order to synthe-
size an image more informative and more suitable for visual
perception or computer processing,” where the “pertinence” of
the information is also dependent on the application task.
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Each application field of image fusion leads to an interpreta-
tion of these definitions and also involves specific physical con-
siderations. In this paper, we focus on a particular application
field of image fusion in remote sensing, which is the synthesis
of multispectral (MS) images to the higher spatial resolution of
the panchromatic (Pan) image. The main spectral characteristic
of the Pan modality is to cover a broad range of the wavelength
spectrum, whereas an MS band covers only a narrow spectral
range. Since more energy comes to Pan sensor, time acquisition
can be reduced still preserving the same intensity response as
MS images in terms of the number of photons. The advantage
of the Pan image is a smaller size of pixels and, hence, better
spatial resolution. The Pan image, thus, combines low spectral
resolution and high spatial resolution, whereas the MS image
combines reverse characteristics. The design of MS sensors
with better resolution is limited by technical constraints of on-
board storage and bandwidth transmission of the images from
the satellite to the ground.

Therefore, due to a combination of observational constraints
imposed by the acquisition system, spaceborne imagery usu-
ally provides separated but complementary product types. An
increasing number of applications such as feature detection [3]
or land cover classification [4] require high spatial and high
spectral resolution at the same time for improved classification
results, strengthened reliability, and/or a better visual interpre-
tation. In response to those requirements, image fusion has
become a powerful solution to provide an image containing
the spectral content of the original MS images with enhanced
spatial resolution. This particular field of application of data
fusion is usually called pan-sharpening. More precisely, the
framework of the presented study is the synthesis of fused MS
images that should be as close as possible to those that would
have been observed if the corresponding sensors had this high
spatial resolution.

Even with geometrically registered Pan and MS images, dis-
similarities might exist between these modalities. In addition to
changes produced by their different spectral acquisition bands
of Pan and MS images, drastic changes might also occur in
the scene for two different acquisition times. Many authors
attempt to figure out relationships between these remotely
sensed images for the development of their fusion method.
However, because of variations between these images, no ob-
vious universal link exists. This is the emphasis of this paper,
which demonstrates that physics must be taken into account
and discusses ways to do so. The reliability of the starting
assumption adopted by several publications is discussed and
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Fig. 1. SPOT2, Three Gorges dam, China. Illustration of the changes that can be observed between two acquisition times. (a) Pan modality, 10 m, acquired in
1990. (b) Green modality XS1, 20 m, 1998. Copyright CNES SPOT-Image 1990 and 1998.

confronted to physics. The purpose of this critical survey is to
highlight the domain of validity and the shortcomings of such
approaches compared to others, leading to recommendations
for adopting existing methods or developing new ones.

This paper is organized as follows. Section II illustrates the
effects of the environmental physics in MS and Pan images
to highlight the complexity of the images for the synthesis of
MS images at high resolution using a Pan image. Section III
introduces notations, details the challenges of fusion, and
explains why authors need to make assumptions to develop
their fusion methods. Then, Section IV analyzes the different
assumptions of the main categories of fusion methods found in
literature to study to what extent physics is taken into account.
Section V is dedicated to the most recent developments that are
discussed under the light of this analysis. Last, in Section VI,
a conclusion is drawn, and a series of recommendations is
proposed.

II. INPUT IMAGE CHARACTERISTICS

Generally, MS and Pan modalities often display the same
geographic area. We assume that Pan and MS input data sets
are a priori geometrically registered. The task of registration is
a very challenging one [5], particularly when images come from
different platforms. Blanc et al. [6] showed that a geometrical
distortion of only 0.1 pixel in standard deviation produces a
noticeable effect on the quality of fused images resulting from
a pixel-to-pixel fusion process.

Nevertheless, even with perfectly coregistered images, the
Pan and MS data sets can locally exhibit some dissimilarities,
whose origin is not always well understood by the fusion com-
munity [7], [8]. This can impact the quality of fused images.
Several types of dissimilarities are illustrated and discussed in
the following.

One of the most common dissimilarities is object occul-
tation. The first possible cause of occultation is when the
time lag in the acquisition of the Pan and MS images is not
close to zero. Several transformations may occur in this lapse
of time—variations in vegetation depending on the season,
different illumination conditions, development of suburbs, or
changes due to natural catastrophes (earthquakes, floods, vol-
cano eruptions, etc.). Fig. 1 displays the effects of a human
construction—the Three Gorges dam of the Yangtze River,
China. For the past century, the Chinese government has con-

sidered ways to harness the strength of the Yangtze River and
tame its devastating power. A decade ago, the government set
out to accomplish this goal as they began construction of a very
large dam to be completed in 2009. The first picture is a SPOT2
Pan modality taken in 1990 with 10 m of spatial resolution.
The second one depicts the same scene 8 years later in the
green spectral range. The spatial resolution is 20 m. Works
began between these two dates, impacting the environment at
a large scale. Riverbanks have been cleared from all vegetation
to welcome construction works. Changes that occurred in these
8 years are highly perceivable in these two images. Note that
we are using the word “occultation”; we may have used as well
“disappearance” or inversely “appearance.”

Even in the case of almost identical acquisition times, oc-
cultation of objects may also occur because of their different
spectral bands of acquisition. The demonstration is carried out
on Pan images degraded to the original spatial resolution of MS
images. The next three illustrations are identically organized.
The first column [Fig. 2(a)] depicts the part of a satellite image
acquired in the wavelength range of the Pan modality. This part
is downsampled to the original spatial resolution of the MS
image. The corresponding MS excerpt is presented in Fig. 2(b).
Fig. 2(c) displays a particular transect of each image under the
form of a graph, delimited in each image thanks to a frame.
The curve represents grayscale levels as a function of the pixel
number in the extracted line. Pan and blue transects are plotted
with full and dashed lines, respectively.

The Pan excerpt of Fig. 2(a) shows a path that is surrounded
by vegetation; the image was acquired by Quickbird over the
city of Fredericton, Canada. The spatial resolution is 0.7 m,
which is downsampled to the original resolution (2.8 m) of
MS images. The same portion of the image in blue range is
exhibited in Fig. 2(b), with the original resolution of 2.8 m.

The path that is visible in the Pan image is missing in
the MS modality. This generates a local dissimilarity between
these two images. The reverse case is also possible, with a
structure present in the MS modality but which cannot be
distinguished in the Pan modality, as displayed in Fig. 3. The
landscape of the excerpt shows agricultural fields in the area
of Toulouse, France. Images were collected by the satellite
SPOT5. Fig. 3(a) is the Pan modality with 2.5 m of spatial
resolution and downsampled to 10 m, and Fig. 3(b) depicts
the near-infrared modality with resolution of 10 m. Fig. 3(c)
exhibits Pan and blue transects.



THOMAS et al.: SYNTHESIS OF MULTISPECTRAL IMAGES TO HIGH SPATIAL RESOLUTION 1303

Fig. 2. Quickbird, excerpt of Fredericton, Canada. Illustration of an object occultation in an MS modality. (a) Pan, 0.7 m downsampled to 2.8 m. (b) Blue,
2.8 m. (c) Transects of the segment shown in each image (dashed: blue; full line: Pan). Copyright Digital Globe 2002.

Fig. 3. SPOT5, Toulouse, France. Illustration of an object occultation in the Pan modality. (a) Pan, 2.5 m downsampled to 10 m. (b) Near-infrared, 10 m.
(c) Transects of the segment shown in each image (dashed: near-infrared; full line: Pan). Copyright SPOT Image 2002.

Fig. 4. Quickbird, excerpt of a stadium near downtown Fredericton, Canada. (a) Pan, 0.7 m downsampled to 2.8 m. (b) Blue, 2.8 m. (c) Transects of the segment
shown in each image (dashed: blue; full line: Pan). Copyright Digital Globe 2002.

The near-infrared transition lies from low- to high-value
grayscales, whereas the transect corresponding to a line extrac-
tion of the Pan modality does not exhibit any transition at all.

Fig. 4 highlights another type of dissimilarity called the con-
trast inversion or the contrast reversal information. The excerpt
represents a stadium that is located in downtown Fredericton,
Canada, and taken by the satellite Quickbird. Fig. 4(a) is the
Pan modality at 0.7 m downsampled to 2.8 m, and b is blue
with 2.8-m original spatial resolution.

Transects of Fig. 4(c) show that the athletic trail and its
surrounding grass are in contrast inversion in the two excerpts
(darker or brighter feature, respectively).

Even if the Pan and MS images are said to be acquired at
the same time, acquisition moments are not precisely identical.
Moreover, the two sensors do not exactly aim at the same
direction. These two facts have an impact on the imaging of
fast-moving objects. For example, the position of a vehicle
might slightly differ from one image to another. Geometrically
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Fig. 5. True-color composition of fused Quickbird images (0.7 m) extracted
from Google Earth over the city of Turin, Italy. Illustration of the default of
ghost caused by fast-moving objects. Copyright Google.

registered images superimpose most structures located in the
whole images. Moving objects such as cars, lorries, or planes
are locally no longer superimposable. The consequence on
fusion is that low-resolution moving objects might create a
ghost corresponding to the low-resolution version of the mov-
ing object. Fig. 5 comes from Google Earth, a tool that offers
a worldwide coverage of fused products. The picture shows a
plane over the city of Turin, Italy.

This particular excerpt is a Quickbird fused product at the
spatial resolution of the Pan modality (0.7 m). The high-
resolution plane is in bright white; however, a low-resolution
multicolor and slightly shifted ghost of this plane also appeared
during the fusion process.

Many physical phenomena interfere during the acquisition
phase. They are not always well understood by the fusion
community. As already discussed, for images acquired at two
different acquisition times, variation of illumination in the
scene may be observed when hours are different and when
the sun declination is different depending on the season. It
causes a modification in the size and orientation of shadows,
and changes in contrast luminance as well. Shadows produce
physical occultation of objects. Changes in ground occupation
may also occur, and objects may move (Figs. 1 and 5).

In the case of two successive days at the same local time,
such as daily data provided by the satellite Formosat-2, shadows
and contrasts would be almost unchanged. However, even with
clear skies, optical atmospheric conditions may be different. For
instance, the load of water vapor or aerosol in the atmosphere
column has an impact on the sharpness of the edges, and the
corresponding impact is a function of the wavelength.

Different spectral bandwidths cause differences in acquired
images (Figs. 2–4). Spectral dissimilarities are the result of the
interaction between the incident solar energy and the matter;
a sensor collects the resulting energy retransmitted toward the
satellite, and, finally, the sensor synthesizes the final image
through optical and electronic devices. The matter is actually
the soil type (sand, snow, vegetation, bare and dry ground, wet
lands, etc.), and the corresponding reflectance varies with the

Fig. 6. Sketch of the normalized spectral responses of the different spectral
bands of SPOT 1-2-3 and relative reflectance of several ground types as a
function of the wavelength (in micrometers).

Fig. 7. Normalized spectral responses of the different spectral bands of Ikonos
as a function of the wavelength (in micrometers). Blue, green, red, brown,
and black curves respectively correspond to blue, green, red, near-infrared,
and Pan modalities. Source: http://www.geoeye.com/products/imagery/ikonos/
spectral.htm.

wavelength. Fig. 6 features the spectral response functions of
the Pan and the three MS modalities of SPOT 1-2-3 satellites.
Green, pink, and red bands correspond to green, red, and near-
infrared modalities, respectively. The Pan spectral response
of the sensor is not drawn; however, the bandwidth of the
Pan modality is indicated on the top of the graph. Spectral
reflectances of several ground types are overlaid.

This picture shows that the Pan and near-infrared bands
do not overlap at all. The Pan spectral range covers a little
wider portion of the spectrum toward the red wavelengths. One
given pixel gives a nonzero grayscale value if its ground type
reflects the incident solar energy in the range of the acquisition
bandwidth of the corresponding sensor. In this graph, an ob-
ject that reflects solar energy in the wavelengths surrounding
0.75 µm is only visible in the Pan modality and completely
occulted in MS modalities, as is the case of Fig. 2. On the other
hand, if an object exhibits a signal only in the near-infrared
range, near-infrared modality can capture this object while Pan
cannot, like in Fig. 3.
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To explain contrast inversion in Fig. 4, we refer to Ikonos
spectral band responses in Fig. 7. This figure shows spectral
response functions of blue, green, red, near-infrared, and Pan
modalities for the satellite Ikonos corresponding to the colors
blue, green, red, brown, and black, respectively.

As the Ikonos Pan spectral band contains a large portion of
the near-infrared wavelength range, which is very sensitive to
vegetation, areas containing such landscape are brighter than
the rest of the scene. On the contrary, vegetation has almost
no response in the blue range, which exhibits dark digits in
Fig. 4. Consequently, if vegetation is surrounded by another soil
type that is characterized by constant response with wavelength,
their transition appears in contrast inversion in the two bands.

In conclusion, the MS and Pan data sets might present
some local dissimilarities such as object occultation, contrast
inversion, or moving objects due to different spectral bands
of the sensors or different times of acquisition. These effects
are due to environmental physics. If they are not—or only
partially—taken into account, fusion success might be endan-
gered by the apparition of artifacts. Before proceeding to a
critical analysis of literature on this point, Section III defines
some useful notations.

III. FUSION PURPOSE AND NOTATIONS

In the following, A defines Pan modality, and Bk is the kth
MS modality. N is the total number of MS bands. In the case of
Ikonos, where N = 4, k equal to 1 designates the blue modality,
whereas 4 represents the near-infrared one. The subscript “0”
is the Pan image spatial resolution res0; thus, the original Pan
image is called A0. The subscript “1” is the resolution index
of the original MS images res1, giving Bk1. “∗” designates the
fused products: fused MS images at the spatial resolution of
Pan res0 are called (Bk1)∗0. The issue of the synthesis of MS
images to higher spatial resolution can, thus, be mathematically
expressed by

(Bk1)∗0 = f(Bk1, A0). (1)

The aim of fusion is to perform a high-quality transformation
of the MS content when increasing the spatial resolution from
res1 to res0. The problem may be seen as the inference of
the information that is missing to the images Bk1 for the
construction of the synthesized images (Bk1)∗0 [9], [10].

The ideal fusion method should be able to correctly han-
dle all dissimilarities described in Section II. Nowadays, no
published fusion method actually fulfills the totality of these
requirements.

IV. CRITICAL PRESENTATION OF THE

GROUPS OF FUSION METHODS

This section is dedicated to the survey of literature concern-
ing the assumptions made by authors when developing their
fusion methods. Attention should be paid to the consideration
of physics in the fusion process. Our purpose is to demonstrate
that several assumptions a priori reduce fusion success because
they do not consider all the physics of acquisition. We adopt

Wald’s classification [10] of the fusion methods to make up a
brief description of the standard methods. The three categories
are projection–substitution, relative spectral contribution, and
methods that belong to the Amélioration de la Résolution
Spatiale par Injection de Structures (ARSIS) concept. Other
classifications of the fusion methods could have been adopted,
as discussed later.

A. Projection–Substitution Methods

These fusion methods exploit a vectorial approach since
all MS modalities are simultaneously synthesized. The MS
modalities are projected into a new space to reduce information
redundancy and obtain decorrelated components. One of the
components isolates structures of MS images from the rest of
the information, mainly related to color. The assumption of this
type of methods is that the structures contained in this structural
(or geometrical) component are equivalent to those in the Pan
modality. Next, the substitution consists of the total or partial
replacement of this structural component by the Pan modality.
Last, the inverse projection is performed to obtain (Bk1)∗0.

Most famous projection–substitution methods are based on
principal component analysis (PCA) [11] and intensity hue
saturation (IHS) [12]. IHS is a transform that originally applies
on exactly three MS modalities. In the field of fusion, the space
transform is often confused with the fusion method itself. In the
following, IHS will, thus, designate the fusion method.

The first step of IHS is the upsampling of the input MS
images to adjust to the Pan spatial resolution. These images are
noted (Bk1)

upsamp
0 since Bk1 images are upsampled from res1

to res0. Direct linear IHS transform was originally defined for
three modalities

(I1)
upsamp
0 = α1(B1,1)

upsamp
0

+ α2(B2,1)
upsamp
0 + α3(B3,1)

upsamp
0 (2)

where Chavez et al. [11] defined αi = 1/
√

3 ∀i, and Gonzalez
and Woods [13] defined αi = 1/3 ∀i. In this formalism,
(I1)

upsamp
0 is a linear combination of the upsampled input MS

images, and it is supposed to gather the geometrical structures
embedded in these images. The total or partial replacement of
(I1)

upsamp
0 requires prior histogram adjustment between the

Pan and this component. Let newI be the new intensity. The
total replacement of (I1)

upsamp
0 is given by

newI = A0 (3)

and the partial replacement is given by

newI = a(I1)
upsamp
0 + (1 − a)A0, with a ∈ [0, 1]. (4)

Last, reverse transform is applied on unchanged H and S
components with newI.

Tu et al. [14], [15] pioneered a new way of tackling the linear
IHS formulation discussed in [13]. The kth fused MS modality
(Bk1)∗0 is given by

(Bk1)∗0 = (Bk1)
upsamp
0 + d, with d = newI − (I1)

upsamp
0 .

(5)
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Fig. 8. Hierarchical decomposition of the information (ARSIS concept).

The different implementations of IHS depend on the expres-
sion of d. The fused image (Bk1)∗0 is, thus, a function of newI,
i.e., a function of Pan, and of (I1)

upsamp
0 corresponding to a

function of all the upsampled low-resolution images.

B. Relative Spectral Contribution Methods

These methods are also based on the linear combination of
bands. The fundamental assumption consists of considering that
low-resolution Pan can be written as a linear combination of
original MS images. This assumption comes from the overlap
of the spectral bands

A1 = ΣαkBk1, with k = {1, . . . , N}. (6)

The weights αk are related to the spectral contribution of
the low-resolution version of the Pan modality to each MS
band. A filtering operation applied on the Pan image is, thus,
implicitly required. Well-known methods are Brovey [16], color
normalized, and P+XS [17]. In all these formalisms, the fused
MS product is a function of this linear combination and of the
Pan image as well.

C. ARSIS Concept Implementations

ARSIS is the French acronym for “Amélioration de la
Résolution Spatiale par Injection de Structures” (Improving
Spatial Resolution by Structure Injection) [9]. Its fundamen-
tal assumption is that the missing spatial information in MS
modalities can be inferred from the high frequencies, which lay
between res0 and res1 of the Pan image, and possibly from
external knowledge. Multiscale or multiresolution algorithms
are applied onto these images to obtain a scale-by-scale de-
scription of the information content of both images, generally
represented by a pyramidal structure, as illustrated in Fig. 8.
This is called the multiscale model (MSM) [10], [18].

The missing coefficients (dashed plane) to be injected in
pyramid B from image A are needed to synthesize the fused
image (Bk1)∗0 located in the missing bottom of pyramid B
(dashed plane). Because of the dissimilarities between im-
ages, high frequencies extracted from the Pan representation
and those of an MS image are not exactly equivalent. In the

aim of synthesizing MS images close to those that would
have been collected by the corresponding sensor if it had the
high spatial resolution, adaptation or transformation should be
applied to adjust these details to the MS representation [9],
[10]. This is called the intermodality model (IMM) [10] or the
interband structure model (IBSM) [18]. Several IMMs have
been proposed in [9], [10], [18], and [19]. Some implemen-
tations of the concept do not perform any transformation of
the high frequencies before injection into MS low-resolution
images; this is the case of [20], high-pass filter (HPF) [11], and
[21]–[23]. The others estimate the transformation IMM to con-
vert the information provided by the multiscale representation
of A into those needed for the synthesis of image (Bk1)∗0.
The estimation is performed at lower resolution where images
are simultaneously present in both pyramidal representations.
Pan high-frequency structures are then transformed using this
relation before insertion in the MS modalities: this is called the
high-resolution IMM (HRIMM) or the high-resolution IBSM.

Last, the reverse transform of the multiscale algorithm is
applied to synthesize the fused MS image. Such methods are
presented in a general way in [9]. The MSM may be based
on wavelet transforms [18], [24]–[26], Laplacian pyramid de-
composition [18], [20], curvelets [27], contourlets, and local
average gradient [28]. The MSM should take into account the
modulation transfer functions (MTFs) of the real sensors since
the MTFs of the MS sensors may be significantly different from
one another and, particularly, are different from the Pan one
[29]. MTF-tailored filters would limit frequency discontinuities
for the fused product [30].

D. Advantages and Drawbacks of Projection–Substitution and
Relative Spectral Contribution Fusion Methods

1) Result Depends on the Correlation: By construction, the
higher the correlation between the Pan and each MS modality,
the better the success of fusion. If the correlation is high, then
an MS modality can be written as an affine function of the Pan
modality. Thus, if we refer to the IHS formulation [see (2)], the
intensity component also becomes an affine function of the Pan
modality. As this component is the one to be replaced by the Pan
modality, if an adjustment of histogram is performed between
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Fig. 9. Ideal normalized spectral responses. In abscissa, the wavelengths are
in micrometers.

(I1)
upsamp
0 and Pan, fusion would produce optimal results. The

same theoretical proof can be supplied to any linear relationship
such as PCA or relative spectral contribution methods. There-
fore, the more numerous the dissimilarities between the input
images, the worse the quality of the fusion products using these
fusion methods.
2) Good Visual/Geometrical Impression in Most Cases:

The advantage of these two types of method is to produce a no-
ticeable increase in visual impression with a good geometrical
quality regarding the structures [7], [31], [32]. Vijayaraj et al.
[32] and Yocky [33] stated that they are well suited to certain
applications such as cartography or the localization of specific
phenomena like target recognition.
3) Spectral Distortion: Their major drawback is spectral

distortion, also called the color or radiometric distortion, which
is characterized by a trend to present a predominance of a color
on the others [24]. This effect is either localized to a certain
type of landscape or affecting the whole image. This issue has
been also raised by Pellemans et al. [34], who postulated that
these methods were not adapted to vegetation study. The spec-
tral distortion observed in projection–substitution and relative
spectral contribution fused products is due to the modification
of the low frequencies of the original MS images [10], [35].
A fused MS modality is mathematically written as a function
of the original MS and Pan images. These modalities contain
low frequencies, which are injected and alter those of Bk1.
However, according to the spectral response of recent space-
borne sensors, no obvious relation exists between Pan and MS
input modalities, and such a relation is certainly not linear.
In Fig. 7, corresponding to Ikonos spectral band responses, if
an object reflects solar incident energy in wavelengths located
around 1 µm, it will be impossible to infer the pixel value in
the Pan modality from other MS modalities since this pixel
will have a grayscale value equal to 0 in all MS images. More-
over, this graph shows that blue and green channels overlap,
creating spectral redundancy between the two images. The
relative spectral contribution assumption would be perfectly
true if spectral responses of all the sensors of a satellite verify
the ideal theoretical graph from Fig. 9.

As a matter of fact, this assumption is not realistic. Even if
the Pan modality was artificially simulated by a combination
of actual MS acquisitions, it would never be equal to a linear
combination of MS responses. MS airborne or spaceborne sen-
sors do not offer a constant response over the whole bandwidth.
Bandwidth limits are characterized by varying response of
the sensor, generating partial overlapping between modalities.

Rahman and Csaplovics [36] stressed that such methods have
been developed under certain assumptions, and when these
assumptions are violated, the result may be of poor quality.
4) Local Dissimilarities Not Taken Into Account: These fu-

sion methods follow global approaches, i.e., the same model
applies to the entire image. In the example presented in
Fig. 3, with the path visible in the Pan modality and absent
in the blue range image, these fusion methods introduce the
edges of this path in the fused blue modality. Local dis-
similarities between images, such as contrast inversions and
occultations of objects, decrease the correlation between the
images and are not correctly synthesized by these fusion
methods.

In the projection–substitution methods, all images are con-
sidered as a vectorial information. Any modification brought by
the replacement of (I1)

upsamp
0 by a function of Pan produces

a nonquantifiable effect on each modality through the inverse
transform. This effect differs according to the adopted projec-
tion [7]. It is identical for all MS modalities in the linear IHS
fusion method; however, in other color space transforms, a few
modalities can concentrate most of the impact.

E. Advantages and Drawbacks of ARSIS Concept
Fusion Methods

To limit spectral distortion, the fusion method should pre-
serve low frequencies. It means that if a fused product is
downsampled to its original low resolution, the original MS
image should be retrieved. This is the consistency property
defined by [37]

D (Bk1, (B∗
k0)1) < εk (7)

where D is the distance between the kth original MS modality
Bk1 and the fused image B∗

k0 degraded to the original MS
resolution res1. εk is a real value close to zero and depends
on the modality. This consistency property captures the first
property in [10], [24], and [38]. Multiscale algorithms have the
ability to apply hierarchical decomposition of an input image
into successive coarser approximations. Such decomposition
isolates low frequencies and preserves them while synthesiz-
ing high frequencies. Another formulation of this property is
possible. If δ is the error between Bl and (B∗

h)l, then

(B∗
k0)l = Bk1 + δ (8)

where δ can be considered as a noise coming from the fusion
process and the resampling step. In the Fourier domain, assum-
ing that Bk1 and δ are uncorrelated, it becomes

FT ((B∗
k0)1) = FT (Bk1) + FT (δ) (9)

where FT is the Fourier transform. FT (δ) should be close
to zero. Equation (9) means that the frequency content of the
original images Bl should be as close as possible to that of fused
images degraded to the original resolution l. In other words,
fusion methods should only deal with high frequencies.

Many authors already stated that multiscale approaches are
able to establish a good tradeoff between the respect of low
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frequencies and the insertion of high frequencies [7], [9],
[10], [18], [24], [33], [35], [37], [39]. ARSIS concept meth-
ods, which are based on multiscale or multiresolution algo-
rithms, inherently fulfill the consistency property.
1) Aliasing: Nevertheless, multiscale algorithms should be

chosen in such a way that they do not produce artifacts af-
fecting low frequencies such as aliasing. For instance, the
spectral response of the filter used in the HPF method [11]
displays bounds yielding to aliasing. Such a filter should not
be used.
2) Local Dissimilarities Handling: Several authors devel-

oping within the ARSIS concept propose fusion methods based
on local approaches or local estimation of parameters to take
into account local dissimilarities between images. This is the
case of the two couples IMM-HRIMM: CBD (context-based
decision) in [20] and RWM (from its authors Ranchin, Wald,
Mangolini) in [18]. Basically, the Pan details are injected if
the absolute value of the local correlation coefficient is large
enough compared to a given threshold, and the MS modalities
are upsampled otherwise. The main strength of this approach is
to assure good consistency with the original MS data set since
nothing is done when images are poorly correlated. However,
several experiments demonstrate that it may result into local
heterogeneity that degrades the quality of the result and weak-
ens image interpretation.

F. Conclusion

It is worth noticing that another proposal for fusion method
classification could have been followed. One of the reviewers
proposed a classification into two categories, grouping our
second and third categories. He proposed to name them com-
ponent substitution methods and multiresolution analysis meth-
ods, respectively. This classification into two classes permits
to distinguish the fusion methods that do not apply a filtering
operation from the others. However, the preservation of the
spectral content of the original MS data set is ensured only if
no disturbing low frequency is injected into the fused products.
In our opinion, the preservation of the original content of MS
images is very important in the fusion process. It is inherently
ensured by the methods in the ARSIS concept. It differentiates
this category from the two others, and this is why we favor this
classification.

This critical tour of the literature yields better comprehen-
sion of the strengths and weaknesses of the different types of
methods. Recent methods have been proposed to reduce the
artifacts. They are the methods that belong to more than one
category and are, thus, called “hybrid methods.” Some of them
are presented and discussed in Section V.

V. CRITICAL PRESENTATION OF

RECENT HYBRID METHODS

A. Projection–Substitution Combined With Relative
Spectral Contribution

A group of recent publications has dealt with IHS-based
methods combined with the relative spectral contribution as-

sumption. The contribution of each modality to the intensity
component is weighted to fit the Pan and, thus, to reduce the
radiometric distortion. For instance, Aiazzi et al. [40] used the
Gram–Schmidt color space transform instead of IHS.
1) IHS and Relative Spectral Contribution Assumption: The

first enhancement of the linear IHS transform was made by
Tu et al. [15]. Particular attention was paid to vegetated areas
since spectral distortion is significant in such areas with the
original IHS method. The reflectance of vegetation is large
in near-infrared range and, thus, in Pan (see, e.g., Fig. 7)
and small in visible range. Introducing near-infrared modality
into the IHS expression contributes to the increase in the
correlation between Pan and this intensity, particularly in pres-
ence of vegetation. Similarly to (2), low-resolution intensity is
expressed by

(I1)
upsamp
0 = 1/4(B1,1)

upsamp
0 + 1/4(B2,1)

upsamp
0

+ 1/4(B3,1)
upsamp
0 + 1/4(B4,1)

upsamp
0 (10)

where the fourth modality corresponds to the near-infrared
band. The spectral distortion appears to be partially limited.
This new method is called the fast IHS and was also found
under the name generalized IHS. This equation can easily be
generalized to N modalities.

The second enhancement consists of considering the over-
lapping of the blue and green spectral response functions for
the Ikonos imagery (Fig. 7). This overlapping creates spectral
redundancy. To decrease this effect, Tu et al. [15] modify the
previous equation as follows:

(I1)
upsamp
0 = 1/3 [a(B1,1)

upsamp
0 + b(B2,1)

upsamp
0

+ (B3,1)
upsamp
0 + (B4,1)

upsamp
0 ] (11)

with a + b = 1 and a < b. These parameters were determined
thanks to an analysis on a sample of 92 Ikonos excerpts,
maximizing the correlation coefficient cc() between Pan and
(I1)

upsamp
0 , i.e.,

Argmax
(a,b)

(cc ((I1)
upsamp
0 , A)) . (12)

An optimal response was obtained for the couple (a, b) =
(0.25, 0.75). The end of the procedure remains unchanged. Pan
modality replaces (I1)

upsamp
0 before the IHS inverse transform.

Gonzalez-Audicana et al. [41] exploited the four-band IHS
formulation of Tu et al. [15] in (10); however, each MS
modality (Bk,1)

upsamp
0 is multiplied by a coefficient γ, which

is a function of its spectral response and the Pan one. This
coefficient is, thus, different for each modality. All the details
of the computation of the weighting factor γ are given in
Sections III and IV.

Another version of the new intensity was defined by
Choi [42], which is also extended to four MS modalities, i.e.,

newI = A − (A − (I1)
upsamp
0 ) /t (13)

where t is the tradeoff parameter to weight Pan injection. For
the first time, the tradeoff between spectral and spatial quality
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is explicitly introduced. These recent fusion methods agree with
Choi [42], who advocated that fusion is a tradeoff modeled by

min
newI

{
|A − newI|2 + |newI − (I1)

upsamp
0 |2

}
. (14)

2) Discussion: The purpose of these improvements is to re-
duce the gap between Pan modality and the linear combination
of the MS modalities, i.e., to increase the correlation coefficient.
Nevertheless, we disagree with this formulation. On the one
hand, (14) pushes the new intensity to look like Pan, which
is theoretically wrong as discussed in Section II. On the other
hand, the second functional term tends to decrease the distance
between the new intensity and the original upsampled one.
Although the pixel sizes are the same, these two images do not
have the same spatial resolution. They are not comparable for
high frequencies (see Section II), and it is absolutely wrong to
constrain newI to mimic (I1)

upsamp
0 .

Equation (14) implies that both high spectral and spatial
quality cannot be reached at the same time. Several very recent
publications have also dealt with this idea of tradeoff. For
instance, Malpica [43] combined generalized IHS with the
overlapping treatment of Tu et al. [15] with a hue enhancement.
Tu et al. [44] proposed an improvement of the work of Choi
[42] with an automatic adjustment of the t parameter. This idea
of tradeoff has also been formulated and used by Lillo-Saavedra
and Gonzalo [45], who expressed this tradeoff between the
spectral and spatial quality of the fused image using the
“a trous” wavelet transform.

We disagree with this idea of tradeoff formulated as an
a priori assumption for fusion method developments. We think
that an ideal fusion method must be able to simultaneously
reach both radiometric and geometric quality, and not one at the
expense of the other. It is in no way possible to define weights
to write Pan as a function of MS modalities with the recent
high-resolution satellite sensors. Such assumptions restrict the
quality of the results.

The ideal fusion method should be able to preserve origi-
nal spectral and spatial information of the MS images while
increasing the spatial resolution. Dissociating the spectral and
spatial quality has drastic consequences. Many authors think
that the color information belongs to the original MS images,
whereas the high spatial resolution details belong to the Pan
modality. This idea led [45] to the design of a fusion method
that is based on the minimization of a distance between the Pan
modality and each MS band, as if high-frequency details should
be exactly those of the Pan, which is often locally false as
illustrated in previous sections. The important point here is that
high-resolution details also bear spectral information. A truck
appearing in bright red at low resolution should remain red
in the high-resolution fused color composition image, which
means that high-frequency details should be reduced to the red
modality in this particular case. That is why spectral and spatial
aspects of fusion are intrinsically linked. As the ideal fusion
method does not exist yet, it turns out that the fused products,
according to the tool used for fusion, generally correspond to
a tradeoff between a good geometrical representation of struc-
tures and a good representation of original colors. Therefore,
according to our opinion and experience, this tradeoff is a

consequence of the use of certain tools and not an a priori
compulsory assumption for development.

B. Relative Spectral Contribution Combined With the
ARSIS Concept Assumption

Several recent fusion methods are based on the minimization
of energy functionals E. These are hybrid methods because
the terms of the functionals are selected in different categories
of methods. For instance, Ballester et al. [46] proposed an
algorithm based on the following terms and assumptions.

— The geometry of the MS images is contained in the
topographic map of the Pan modality, which defines the
term Egeometric. This term uses a gradient expression to
extract high frequencies from the Pan and to inject them
into each MS modality, and is, thus, in accordance with
the ARSIS concept.

— There exists a linear relationship between the Pan and
the MS images, giving Eradiometric, like in the case of
relative spectral contribution methods.

— The last term corresponds to the expression of the low-
resolution pixel function of the high-resolution pixels
using a smoothing kernel ElinkedTOdata. This is the
mathematical translation of the consistency property
introduced in the presentation of the ARSIS concept.

These three elements build an energy functional whose min-
ima give the reconstructed MS images at higher resolution.
This functional is written as follows:

Ek = µElinkedTOdata + Egeometric + λEradiometric (15)

where µ and λ are positive input parameters weighting the
proportion of each term. Ek is the energy for the kth modality
to be fused. The minimization can be performed using the
following gradient descent:

((Bk1)∗0)
p+1 = ((Bk1)∗0)

p + t(∇Ek)p (16)

with t the parameter driving the gradient descent and p the index
of iteration; therefore, (B∗

k0)
p is the kth fused modality at the

pth iteration, and (B∗
k0)

p+1 is this same modality at the next
iteration. The final image results from a tradeoff between the
constraints modeled by the various terms. This tradeoff depends
on the real input parameters (µ and λ). The radiometric term
constrains the fused modalities to fit the linear combination
between Pan and MS at the high spatial resolution in the
iterative process, whereas, as previously discussed, it is not
exactly true even at the low resolution. We experimented this
method and found it very performing in urban areas, where the
correlation between MS modalities and Pan is high. However,
in case of natural landscapes, the algorithm fails and introduces
a local distortion in the colors. Even with the weighting factors
for the ARSIS terms, the radiometric assumption reduces the
fusion performance.

We also paid attention to another functional with a new
a priori assumption, which is developed in [47]. Energy also
articulates around the sum of three terms, shown as follows:

Ek = α1ElinkedTOdata + α2Ephysics + α3Esmoothness (17)
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where α1, α2, and α3 are positive weighting parameters.
Minimization is performed with the Metropolis algorithm.
ElinkedTOdata is similar to the one proposed in [46]. It enforces
the spectral consistency between the original low-resolution
MS image and the synthesized high-resolution image. This
is achieved using a smoothing filter to degrade the spatial
resolution. Since a multiscale assumption is driving this term, it
can be related to an ARSIS concept method. Similarly, Ephysics

reminds the geometric term in [46]; however, the variance is
used instead of the gradient.

The term of smoothness is the most problematic. It was
originally defined to struggle against the blocky effect induced
by the technical constraints in implementing ElinkedTOdata.
However, such a term dramatically limits innovation. Small-
scale variations and features that should appear at the high-
est spatial resolution are smoothed away by this term, which
decreases visual quality. Authors were aware of it and wrote,
“this could simply imply that the smoothness constraint
[. . .] was not a good a priori assumption about the ground
truth.”

C. Projection–Substitution Combined With the ARSIS
Concept Assumption

We recall that the spectral distortion in projection–
substitution methods is caused by a modification of low fre-
quencies of each original MS. Several authors combine IHS
and multiscale approaches such as wavelet transforms. Refer-
ences [48]–[51] used the wavelet transform to select only high
frequencies of Pan to inject into (I1)

upsamp
0 . The advantage of

this approach is to respect the consistency property [10], [24],
[37], as it preserves low frequencies of the original MS images
by preserving the low frequencies of (I1)

upsamp
0 . The colors

of fused products are faithful to the original color composite
images. Moreover, the visual impression of the synthesized
image is very good since the whole structures of Pan are
introduced.

However, the existence of dissimilarities, as illustrated in
Section II, is not tackled by any of these models. None of these
methods uses a local approach to check whether a structure
should appear in the new intensity or fused modalities. If one
refers to the example of Fig. 2, the path will appear in the fused
images.

In conclusion, recent hybrid developments, which exploit
both projection–substitution and relative spectral contribution
principles, tend to gather these two categories into a unique
one. In both cases, the fused product (Bk1)∗0 is a function of
all original Pan and MS images. The only difference is that
projection–substitution methods synthesize all MS modalities
at the same time and not separately as for the relative spectral
contribution ones.

VI. CONCLUSION

A fused product reaches a good quality only if the char-
acteristics and differences between input images are taken
into account. Figures in this paper show that dissimilari-
ties existing between these two data sets originate from two

causes—different times and different spectral bands of acqui-
sition. Remote sensing physics should be carefully considered
while designing the fusion process. Because of the complexity
of physics and the large number of unknowns, authors are led
to make assumptions to drive their development.

Weaknesses and strengths of each reported method have been
discussed. The conclusion of this critical survey of literature
is that the choice in the assumptions for the development of a
method should be carefully done, with the risk to drastically
weaken fusion performance in certain situations.

The higher the correlation between Pan and each MS modal-
ity, the better the success of projection–substitution and relative
spectral contribution methods. By construction, these methods
introduce low frequencies into an MS modality coming from
other modalities. The consequence is a radiometric distor-
tion whose importance is linked to this correlation coefficient
value.

Even with the last efforts made to decrease the spectral dis-
tortion of these two types of methods by introducing the ARSIS
concept assumption, this artifact cannot completely disappear
if it keeps on exploiting the linear combination linking the
Pan modality to all MS ones, even to a smaller extent. The
tradeoff between spectral and spatial quality is not a fatality,
and we think that an ideal fusion method should be able to
simultaneously reach quality in both domains.

This critical survey of literature leads us to promote ap-
proaches using multiscale or multiresolution algorithms, i.e.,
fusion developments made within the ARSIS concept. Such
algorithms split the high from the low frequencies. Provided the
choice of an efficient multiscale algorithm avoiding aliasing,
the consistency property is checked, and the spectral distortion
is limited.

The remaining artifacts are linked to a bad synthesis of
the MS high frequencies. A global synthesis does not appro-
priately take local occultations and contrast inversions into
account. Such defaults of global ARSIS methods are also
limited if the correlation coefficient between Pan and each
MS modality is high. Several works demonstrate that a lo-
cal approach is capable of handling these effects. However,
it may generate local heterogeneity in the fused images. A
possible solution lies in the combination of local and global
approaches [52], which will produce fused images with a
tradeoff between the advantages and drawbacks of the two
approaches.

Among the local dissimilarities raised in Section II, the most
unknown is certainly that illustrated in Fig. 3, when an object
is perceivable in an MS modality, whereas it is not visible in
the Pan image. In this particular situation, high-resolution MS
details of this object cannot be inferred from the Pan modality.
The only available information concerning this object belongs
to the considered MS image. Therefore, the ideal fusion method
should be able to refer to the intrapyramidal MS information,
coming from lower scales, to extrapolate the high details of this
particular structure.

In summary, we think that the methods calling upon the
ARSIS concept are the only way to tend toward the ideal fusion
method. Results obtained up to now by these methods are not
perfect; nevertheless, they are at least as good as those from
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other methods [53]. The major advantage compared to the other
types of methods is that the ARSIS concept is a framework
respecting the physical properties of the original MS images
that are prevented from large spectral distortion and still offers
a large number of opportunities for development.
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