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Limit theorems are proved for quadratic forms of Gaussian random fields in presence of long memory. We obtain a non central limit theorem under a minimal integrability condition, which allows isotropic and anisotropic models. We apply our limit theorems and those of Ginovian (1999) to obtain the asymptotic behavior of the empirical covariances of Gaussian fields, which is a particular example of quadratic forms. We show that it is possible to obtain a Gaussian limit when the spectral density is not in L 2 . Therefore the dichotomy observed in dimension d = 1 between central and non central limit theorems cannot be stated so easily due to possible anisotropic strong dependence in d > 1.

Introduction

Many statistical methods proposed for long memory processes are based on statistics, which can be expressed using quadratic forms (see [START_REF] Beran | Statistics for long memory processes[END_REF], for a review). The empirical covariance sequence (see [START_REF] Hosking | Asmyptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series[END_REF][START_REF] Hannan | The asymptotic distribution of serial covariances[END_REF], the estimation of the long memory parameter using Whittle contrast (see [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series[END_REF][START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittles's estimate[END_REF]Giraitis and Taqqu, 1999, for example) or using the integrated periodogram (see [START_REF] Lobato | Averaged periodogram estimation of long memory[END_REF], some change point detection procedure (see [START_REF] Beran | Testing for a change of the long-memory parameter[END_REF] rely on quadratic forms.

It would be interesting to validate the same statistical tools for the study of random fields having long memory. As a first step, we study in this paper the convergence of the quadratic forms in the d-dimensional (d > 1) case.

Let us introduce our framework. Let X = (X n ) n∈Z d be a stationary L 2 random field having long memory, i.e. its covariance sequence (r(n)) n∈Z d is not a summable series. We assume that X is a Gaussian process and admits the 1 linear representation

X n = E a(x)e i<n,x> dW (x), n ∈ Z d , E = [-π, π] d , ( 1 
)
where W is the Gaussian white noise spectral measure and where the function a is in L 2 (E). < •, • > denotes the inner product in R d . Hereafter, we denote by f the spectral density of X, f is proportional to |a(x)| 2 , and we have r(n) = fn := E e i<n,λ> f (λ)dλ.

(2)

The quadratic forms associated to X and (g i ) i∈N d ∈ ℓ 1 (N d ) are defined as

Q n = 1 n d i∈An j∈An g i-j X i X j (3) 
where A n = {1, . . . , n} d . The statistics Q n can be rewritten as a functional of the periodogram I n of X. Indeed let

I n (t) = (2πn) -d k,l∈A 2 n X k X l e i<k-l,t> ,
we have

Q n = (2π) d E g(t)I n (t)dt, (4) 
where g(t) = (2π) -d j∈Z d

g j e -i<j,t> .

In dimension one (d = 1), many papers deal with the asymptotic behavior of Q n for long memory processes. When the intensity of the memory is not too strong or when specific conditions are imposed to g in order to kill the effect of the long memory involved by f , the convergence rate and the asymptotic normality obtained in short memory are preserved. The asymptotic normality of the quadratic forms is proved by [START_REF] Avram | On bilinear forms in Gaussian random variables and toeplitz matrices[END_REF], [START_REF] Fox | Central limit theorem for quadratic forms in random variables having long-range dependence[END_REF] and [START_REF] Ginovian | On the central limit theorem for Toeplitz quadratic forms of stationary sequences[END_REF] in the Gaussian case and extended by [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittles's estimate[END_REF] to include the non-Gaussian linear case. Avram's result is restricted to f and g in L 2 , but requires only integrability conditions. On the opposite, [START_REF] Fox | Central limit theorem for quadratic forms in random variables having long-range dependence[END_REF], [START_REF] Ginovian | On the central limit theorem for Toeplitz quadratic forms of stationary sequences[END_REF] specify the behavior of f and g around zero. The extension to linear models obtained by [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittles's estimate[END_REF] holds under the assumptions of [START_REF] Avram | On bilinear forms in Gaussian random variables and toeplitz matrices[END_REF] or [START_REF] Fox | Central limit theorem for quadratic forms in random variables having long-range dependence[END_REF].

Under other conditions on f and g fixing the behavior of both functions around zero, [START_REF] Rosenblatt | Weak convergence to the rosenblatt process[END_REF], [START_REF] Fox | Non central limit theorem for quadratic forms in random variables having long-range dependence[END_REF], [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF] prove non central limit theorems for Gaussian processes. The normalization is not standard (i.e. it is not equal to n -d/2 ) and the limiting process is not Gaussian. The extension to linear models is proved in [START_REF] Giraitis | Limit theorems for bivariate Appell polynomials. Part II: Non-central limit theorems[END_REF] in the general context of bivariate Appell polynomials.

Fixing the behavior of f and g around zero, the dichotomy in d = 1 can be summarize as follows. Assume that

f (x) ∼ |x| 2α when x → 0, g(x) ∼ |x| 2β when x → 0.
The limiting distribution depends on the value of (α + β).

• If α + β > - 1 4
then the limit is Gaussian and the normalization is n -1/2

(Q n satisfies a central limit theorem).

• If α + β < - 1 4
then the limiting distribution is not Gaussian and the normalization in this case is n 2(α+β) , which is lower than n -1/2 (Q n satisfies a non central limit theorem).

The case α + β = 1 4 is investigated in [START_REF] Ginovian | On the central limit theorem for Toeplitz quadratic forms of stationary sequences[END_REF] (up to a slowly varying function in f and g which vanishes at zero). In this case, the limit remains gaussian.

In the d-dimensional case (d > 1), a central limit theorem has been proved by [START_REF] Ginovian | Nonparametric estimation of the spectrum of homogeneous Gaussian Fields[END_REF], in the same spirit as [START_REF] Avram | On bilinear forms in Gaussian random variables and toeplitz matrices[END_REF] (i.e. f and g are in L 2 and satisfy an integrability condition). This result is recalled in Section 2.1. When f or g are not in L 2 , some central limit theorems have been proved under some specific conditions on these functions, see Theorem 3.1 in [START_REF] Doukhan | Central and non central limit theorems for quadratic forms of a strongly dependent gaussian field[END_REF] and Lemma 3.3 in [START_REF] Boissy | Parameter estimates for fractional autoregressive spatial processes[END_REF].

On the other hand, few results are available on non-central limit theorems in dimension d > 1. In [START_REF] Doukhan | Central and non central limit theorems for quadratic forms of a strongly dependent gaussian field[END_REF], the asymptotic of Q n is investigated when the memory of X is "isotropic" (see [START_REF] Lavancier | Long memory random fields[END_REF] Definition 1), i.e. the memory of X is due to |x| 2α in the expression of f where | • | denotes the Euclidian norm. The authors obtain a non-central limit theorem very similar to [START_REF] Fox | Non central limit theorem for quadratic forms in random variables having long-range dependence[END_REF]. However the investigation of "anisotropic" memory and more general functions g (including the particular case of the empirical covariance) is of great interest for statistical applications. In [START_REF] Lavancier | Long memory random fields[END_REF], different classes of random fields having long memory are described: The important role of anisotropic processes in terms of modeling is illustrated.

Our paper is organized as follows. In Section 2, after a reminder of the central limit theorem obtained by [START_REF] Ginovian | Nonparametric estimation of the spectrum of homogeneous Gaussian Fields[END_REF], we present a non-central limit theorem under a general integrability condition on f and g. We show that this condition is satisfied by a large class of isotropic and anisotropic models (including all previous results). Since random fields in d > 1 may exhibit much more different types of long memory than processes in d = 1, the dichotomy between central and non central limit theorems is not so simple to formulate. As already highlighted in Remark 4.2 of [START_REF] Dobrushin | Non central limit theorems for non-linear functionals of gaussian fields[END_REF], a spectral singularity outside zero may lead to new limiting results. This fact is illustrated through examples in Section 2.3.

In Section 3, we apply limit theorems for quadratic forms to the convergence of the empirical covariance series. Contrary to the classical setting in dimension one, we show that it is possible to obtain a Gaussian limit in dimension d > 1 when f is not in L 2 .

2 Convergence of quadratic forms

Central limit theorem

We recall in this section the central limit theorem obtained by [START_REF] Avram | On bilinear forms in Gaussian random variables and toeplitz matrices[END_REF] in dimension d = 1 and extended by [START_REF] Ginovian | Nonparametric estimation of the spectrum of homogeneous Gaussian Fields[END_REF] to d > 1. This result will be useful in section 3, where the asymptotic behavior of the covariance series is investigated.

Theorem 1 [START_REF] Avram | On bilinear forms in Gaussian random variables and toeplitz matrices[END_REF], [START_REF] Ginovian | Nonparametric estimation of the spectrum of homogeneous Gaussian Fields[END_REF]). Let X be a random field as in (1) and denote f its spectral density. Let Q n , defined in (3), be the quadratic form associated with g and X. If f ∈ L p and g ∈ L q with p ≥ 2, q ≥ 2 and 1/p + 1/q ≤ 1/2, then

n d/2 (Q n -E(Q n )) L -→ N 0, 2(2π) 3d E f 2 (t)g 2 (t)dt , (5) 
where L -→ denotes the convergence in law.

This result provides a large setting since no specific form for functions f and g is required, but only integrability conditions. In return, f and g are restricted to L 2 . A similar result is obtained in [START_REF] Doukhan | Central and non central limit theorems for quadratic forms of a strongly dependent gaussian field[END_REF], Th. 6.2., but under semi-parametric assumptions on f and g.

When f or g are not in L 2 but a compensation between them occurs, a central limit theorem may still arise as in [START_REF] Fox | Non central limit theorem for quadratic forms in random variables having long-range dependence[END_REF] for d = 1. To our knowledge, two situations in dimension d > 1 have been investigated so far. In dimension d = 2, assuming f and g have a tensorial product form around zero, [START_REF] Boissy | Parameter estimates for fractional autoregressive spatial processes[END_REF] obtain a central limit theorem, which can be straightforwardly extended to d > 2. In [START_REF] Doukhan | Central and non central limit theorems for quadratic forms of a strongly dependent gaussian field[END_REF], Th. 6.1, the authors prove the same result when f has an isotropic form around zero and when g is regular enough and g(0) = 0.

It is known that the lonely condition 0 < E f 2 (t)g 2 (t)dt < ∞ is not sufficient to obtain a central limit theorem, as proved in [START_REF] Ginovian | On the central limit theorem for Toeplitz quadratic forms of stationary sequences[END_REF], Prop. 2.2. A general setting leading to a central limit theorem (included f or g not in L 2 ) is still missing. This issue is not investigated in this paper.

Main result : non-central limit theorem

The following theorem gives the convergence of the quadratic forms under the general condition (H) below on f and g. Contrary to the previous studies in the one dimension case or in dimension d > 1, this condition does not require to specify the behavior of f around its singularities. Such a condition is satisfied by many examples as shown in Section 2.3.

Let ζ be a function defined on R d , hereafter we denote by ζ (p) (p ∈ N) the periodic function with period 2πp (with respect to each component), that coincides with ζ on the set pE d ,

ζ (p) (x) = ζ(x) ∀x ∈ [-pπ, pπ] d . (6) 
Theorem 2. Let X be the linear field defined by ( 1) and Q n the quadratic form defined by (3).

Assume that for all x ∈ E a(-x) = a(x), and g(-x) = g(x). Moreover, assume that

a(x) = ã(1) (x)L 1 (x), g(x) = g(1) (x)L 2 (x),
where ã is a homogeneous function of degree

α (i.e. ∀c > 0, ∀x ∈ E, ã(cx) = c α ã(x))
, where g is a homogeneous function of degree 2β and where L 1 and L 2 are bounded functions, continuous at zero and

L i (0) = 0 (i = 1, 2). If the following assumption (H) is satisfied (H): R 2d ã2 (x)ã 2 (y) R d |g(t)| d k=1 1 (1 + |x k + t k |)(1 + |y k -t k |) dt 2 dxdy < ∞, then n d+2α+2β (Q n -E(Q n )) L 2 -→ L 2 1 (0)L 2 (0) R 2d ã(x)ã(y) R d g(t)H(x + t)H(y -t)dtdW (x)dW (y), ( 7 
)
where

H(z) = d j=1 e iz j -1 izj .
It seems that (H) is almost necessary for the convergence, since it guarantees that the integral in (7) exists.

The proof is relegated to Section 2.4. The main tool consists in rewriting Q n as a double stochastic integral. Then the convergence in quadratic mean is deduced from a simple convergence in L 2 (R 2d ). Note that contrary to the proofs for non central limit theorems in [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF] and [START_REF] Doukhan | Central and non central limit theorems for quadratic forms of a strongly dependent gaussian field[END_REF], we do not apply the scheme of convergence of [START_REF] Dobrushin | Non central limit theorems for non-linear functionals of gaussian fields[END_REF], especially their Lemma 3 which involves a spectral measure convergence assumption.

Some class of models satisfying the hypothesis (H)

The setting of random fields allows many kind of dependencies (see [START_REF] Lavancier | Long memory random fields[END_REF]). Apart from its intensity, the dependence can be isotropic or can occur all over several particular directions, depending on the form of the spectral density. Since we did not want to restrict ourselves to one particular case, Theorem 2 involves a general integrability condition, i.e. assumption (H). We check in this section that this hypothesis is not too restrictive. Indeed, we prove that in all the preceding studies about quadratic forms of Gaussian fields, this condition is fulfilled. Moreover, it allows to extend to new cases, mainly when the dependence is not isotropic.

As a consequence of the following Lemmas and according to Theorem 2, a non-central theorem for Q n arises for all the cases treated in this section.

Lemma 3. Assume that there exists some positive constants c and c ′ such that

|ã(x)| ≤ c d i=1 |x i | α/d |g(x)| ≤ c ′ d i=1 |x i | 2β/d . ( 8 
)
If moreover α > -d/2, β > -d/2 and α + β < -d/4, then (H) is fulfilled.
Remark 1. The result of our Theorem 2 in the setting of Lemma 3 is the same as the convergence stated in dimension 1 by [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF] (Th. 1). The assumptions in Lemma 3 allow the filter a(x) to be isotropic, i.e. equivalent at zero, up to a constant, to |x| α . This is the hypothesis done in Theorem 5.1 of [START_REF] Doukhan | Central and non central limit theorems for quadratic forms of a strongly dependent gaussian field[END_REF] where, moreover, it is assumed β = 0.

Proof. We have to check that the function defined on (R d ) 4 by

(x, y, s, t) → ã2 (x)ã 2 (y)|g(t)||g(s)| d k=1 (1 + |x k + t k |)(1 + |y k -t k |)(1 + |x k + s k |)(1 + |y k -s k |) is integrable on (R d ) 4 .
From the hypothesis of Lemma 3, it is enough to prove that for all k = 1, . . . , d

(t k , s k , x k , y k ) → |x k | 2α/d |y k | 2α/d |t k | 2β/d |s k | 2β/d (1 + |x k + t k |)(1 + |y k -t k |)(1 + |x k + s k |)(1 + |y k -s k |)
is integrable on R 4 . Such integrals are studied in Lemma 1 of [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF]: Under the assumptions of Lemma 3 on α and β, this integral is finite.

When the functions a and g involved in Theorem 2 do not satisfy (8), condition (H) may be investigated thanks to power counting theorems (cf. Theorem 2 in [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF]). The following lemma focus on a particular situation in dimension d = 2: When ã admits one or two independent lines of singularities.

Lemma 4. Assume that d = 2 and that g follows the same conditions as in (8).

If, for p = q, ã(

x 1 , x 2 ) = |x 1 + px 2 | αp |x 1 + qx 2 | αq , and if α p > -1/2, α q > -1/2, β > -1 and α p + α q + β < -1/2, then (H) is fulfilled. Proof. Checking (H) is equivalent to prove that R 8 |x 1 + px 2 | 2αp |x 1 + qx 2 | 2αq |y 1 + py 2 | 2αp |y 1 + qy 2 | 2αq |t 1 | β |t 2 | β |s 1 | β |s 2 | β 2 k=1 (1 + |x k + t k |)(1 + |y k -t k |)(1 + |x k + s k |)(1 + |y k -s k |) dtdsdxdy (9)
is finite. We apply Theorem 2 of [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF]. Let us introduce some notations. The integral above can be written :

R 8 |L 1 (u)| 2αp |L 2 (u)| 2αq |L 3 (u)| 2αp |L 4 (u)| 2αq × |L 5 (u)| β |L 6 (u)| β |L 7 (u)| β |L 8 (u)| β 16 k=9 (1 + |L k (u)|) -1 du, ( 10 
)
where u = (x 1 , x 2 , y 1 , y 2 , t 1 , t 2 , s 1 , s 2 ) and the L k 's are the linear functionals involved in (9). For instance

L 1 (u) = x 1 + px 2 , L 5 (u) = t 1 , L 9 (u) = x 1 + t 1 .
Let T = {L 1 , . . . , L 16 } and let γ k be the exponent associated to L k in (10). For instance,

γ 1 = 2α p , γ 5 = β, γ 9 = -1. Consider now the subsets W ⊂ T such that span(W ) ∩ T = W . A subset W is said padded if any L k ∈ W is a linear combination of the L i 's in W -{L k }.
The integrability of (9) near 0 is obvious since 2α p > -1, 2α q > -1 and β > -1. According to Theorem 2 in [START_REF] Terrin | A noncentral limit theorem for quadratic forms of Gaussian stationary sequences[END_REF], the integrability at infinity is achieved if for every padded

W considered above but T , d ∞ (W ) := rank(T ) -rank(W ) + T -W γ k < 0.
The maximum value for d ∞ (W ) is obtained with W = {L 9 , . . . , L 16 }. In this case d ∞ (W ) = 8 -6 + 4α p + 4α q + 4β. This leads to α p + α q + β < -1/2.

Proof of Theorem 2

Proof. Let Z be a Gaussian random spectral measure associated to the measure µ. [START_REF] Major | Multiple Wiener-It Integrals[END_REF] defines

R 2d f (x, y)dZ(x)dZ(y)
for all f ∈ H µ where H µ denotes the space of functions f :

R d × R d → C such that f (-x, -y) = f (x, y) and |f (x, y)| 2 dµ(x)dµ(y) < ∞. The second order moment of this integral satisfies, for all f in H µ , E f (x, y)dZ(x)dZ(y) 2 ≤ 2 R 2d |f (x, y)| 2 dµ(x)dµ(y). (11) 
And the so-called Ito formula follows: For all f 1 and f 2 in H µ ,

f 1 (x)f 2 (y)dZ(x)dZ(y) = f 1 (x)dZ(x) f 2 (y)dZ(y)-f 1 (x)f 2 (x)dµ(x). (12) 
Now, let us rewrite Q n as a double stochastic integral. According to (1),

Q n -E(Q n ) = 1 n d k∈An l∈An g k-l (X k X l -r(l -k)) = E g(t) 1 n d k∈An l∈An e i<k-l,t> (X k X l -r(l -k)) dt. ( 13 
)
From the Ito formula ( 12) <k,x>+<l,y>) dW (x)dW (y),

X k X l -r(l -k) = E a(x)e i<k,x> dW (x) E a(y)e i<l,y> dW (y) - E e i<l-k,x> a 2 (x)dµ(x) = E 2 a(x)a(y)e i(
where µ, the spectral measure of ǫ, is proportional to the Lebesgue measure λ.

Assume that g(-x) = g(x) and a(-x) = a(x), then the function

(x, y) → a(x)a(y) 1 n d E g(t) k∈An e i<k,x+t> l∈An e i<l,y-t> dt (14) 
belongs to H λ . Therefore we can rewrite (13) as

Q n -E(Q n ) = E 2 a(x)a(y) 1 n d E g(t)H n (x + t) H n (y -t) dt dW (x)dW (y), (15) 
where H n (t) = k∈An e i<k,t> .

In (15), we make the change of variables x → x/n, y → y/n, t → t/n. Since the Gaussian measure W satisfies, for all Borelian set A, W (n -1 A) = n -1/2 W (A) and since ã and g are homogeneous, we get

n d+2α+2β (Q n -E(Q n )) = nE 2 ã(n) (x)ã (n) (y)L 1 x n L 1 y n ψ n (x, y)dW (x)dW (y),
where

Ψ n (x, y) = nE g(n) (t)L 2 t n 1 n d H n x + t n 1 n d H n y -t n dt.
As a consequence, according to (11), it suffices, for proving (7), to show that the following integral tends to zero as n → ∞:

nE 2 ã(n) (x)ã (n) (y)L 1 x n L 1 y n Ψ n (x, y)-ã (n) (x)ã (n) (y)L 2 1 (0)Ψ(x, y) 2 dxdy where Ψ(x, y) = L 2 (0) R d g(t)H(x + t)H(y -t)dt.
From the decomposition A n B -CD = (A n -C)B + (B -D)C, the L 2 -norm above is lower than the sum 2(I 1 + I 2 ) where

I 1 = nE 2 ã(n) (x)ã (n) (y)Ψ n (x, y) -ã(n) (x)ã (n) (y)Ψ(x, y) 2 × L 1 x n L 1 y n 2 dxdy
and

I 2 = nE 2 L 1 x n L 1 y n -L 2 1 (0) 2 ã(n) (x)ã (n) (y)Ψ(x, y) 2 dxdy.
The following lemma will be useful.

Lemma 5.

(i) ∀ z = (z 1 , . . . , z d ) ∈ nE, 1 n d H n z n ≤ d j=1 π 1 ∧ 1 |z j | . (ii) ∀ z = (z 1 , . . . , z d ) ∈ R d , |H(z)| ≤ d j=1 2 1 ∧ 1 |z j | . (iii) For a.e. z ∈ R d , lim n→∞ 1I nE (z) 1 n d H n z n -H(z) = 0.
Proof of Lemma 5. Since for all j, |z j | ≤ nπ,

1 n d H n z n = d j=1 1 n e i z j n e izj -1 e i z j n -1 = d j=1 sin(z j /2) z j /2 z j /2n sin(z j /2n) ≤ d j=1 π 1 ∧ 1 |z j | .
Similarly, for all z ∈ R d ,

|H(z)| = d j=1 e izj -1 iz j = d j=1 sin(z j /2) z j /2 ≤ d j=1 2 1 ∧ 1 |z j | .
Finally, for proving (iii), suppose first that d = 1. If z = 0,

1 n d H n z n -H(z) = 1 n e i z n e iz -1 e i z n -1 - e iz -1 iz ≤ 2 |z| e i z n iz n(e i z n -1) -1 .
The norm in the right hand side term is equivalent to |z|/n when n goes to infinity, hence it tends to 0. In dimension d, (iii) is proved by induction thanks to the decomposition

AB -CD = (A -C)B + (B -D)C.
Let us first prove that I 1 asymptotically vanishes. Since L 1 is bounded, it suffices to prove the convergence to 0 of

I 11 = nE 2 ã2 (n) (x)ã 2 (n) (y) nE Φ (11) n (t, x, y)dt 2 dxdy, (16) 
with

Φ (11) n (t, x, y) = g(n) (t) L 2 t n -L 2 (0) 1 n d H n x + t n 1 n d H n y -t n
and

I 12 = nE 2 ã2 (n) (x)ã 2 (n) (y)L 2 (0) 2 nE Φ (12) n (t, x, y)dt 2 dxdy, (17) 
with

Φ (12) n (t, x, y) = g(n) (t) 1 n d H n x + t n 1 n d H n y -t n -H(x + t)H(y -t)
In both I 11 and I 12 , the 2π-periodicity of g, H n and H allows us to reduce the domain of integration nE (with respect to t) to

nD x,y = {|x -t| < nπ} ∩ {|y + t| < nπ} ∩ nE.
Therefore, (i) of Lemma 5 can be applied and since L 2 is bounded,

nE Φ (11) n (t, x, y)dt ≤ c nDx,y |g (n) (t)| d k=1 1 ∧ 1 |x k + t k | 1 ∧ 1 |y k -t k | dt,
where c is a positive constant. Hence,

I 11 ≤ c ′ R 2d ã2 (x)ã 2 (y) R d |g(t)| d k=1 1 (1 + |x k + t k |)(1 + |y k -t k |) dt 2 dxdy.
Besides, according to (i) of Lemma 5,

1I nE 2 (x, y)1I nDx,y (t 1 )1I nDx,y (t 2 )ã 2 (n) (x)ã 2 (n) (y)Φ (11) n (t 1 , x, y)Φ (11) n (t 2 , x, y) ≤ c ã2 (x)ã 2 (y)|g(t 1 )||g(t 2 )| L 2 t 1 n -L 2 (0) L 2 t 2 n -L 2 (0) .
From the continuity of L 2 at 0, this term tends to zero for any fixed (x, y, t 1 , t 2 ) ∈ R 4d . Therefore, thanks to assumption (H), the Lebesgue's dominated convergence theorem applies and lim n→∞ I 11 = 0.

The convergence of I 12 is proved similarly. From (i) and (ii) of Lemma 5, we have nE Φ (12) n (t, x, y)dt ≤ c nDx,y

|g (n) (t)| d j=1 1 ∧ 1 |x k + t k | 1 ∧ 1 |y k -t k | dt and I 12 ≤ c ′ R 2d ã2 (x)ã 2 (y) R d |g(t)| d k=1 1 (1 + |x k + t k |)(1 + |y k -t k |) dt 2 dxdy,
where c and c ′ are positive constants.

Besides, for almost every (x, y, t 1 , t 2 ) ∈ R 4d , according to (iii) of Lemma 5,

1I nE 2 (x, y)1I nDx,y (t 1 )1I nDx,y (t 2 )ã (n) (x)ã (n) (y)Φ (12) n (t 1 , x, y)Φ (12) n (t 2 , x, y) n→∞ ----→ 0.
The Lebesgue's dominated convergence theorem applies thanks to (H) and I 12 tends to zero when n → ∞.

It is easy to see that I 2 tends similarly to zero.

Convergence of the empirical auto-covariance function

We present an application of the preceding theorems to the asymptotic law of the empirical covariance function in

Z d . Indeed, for h ∈ Z d , r(h) = 1 n d i∈An X i X i+h
is a particular case of (3) with g(t) = (2π) -d e i<h,t> . We will consider further

r(h) = 1 n d i∈An X i -Xn X i+h -Xn
where Xn = n -d i∈An X i and we denote in the following r(h) = E(X i X i+h ). We are dealing with linear fields as (1). In dimension 1, this framework provides a dichotomy in the asymptotic behavior of r(h) depending on whether the spectral density of X belongs to L 2 or not (see [START_REF] Hosking | Asmyptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series[END_REF]). We prove later on the same kind of division in dimension d, although some kind of intermediate behavior can arise. Let us note that this dichotomy does no longer hold in d = 1 when X is not linear, see for instance [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] in the case of a LARCH process or [START_REF] Giraitis | Whittle estimator for finite-variance non-Gaussian time series with long memory[END_REF] for the consequences on the Whittle estimator.

When f ∈ L 2 , we prove that r(h) and r(h) follow the same central limit theorem. This is the object of Proposition 6.

When f / ∈ L 2 , the asymptotic behavior of r(h) and r(h) may differ and we focus on r(h) which is a proper quadratic form. In this setting, the asymptotic law comes from Theorem 2 where β = 0, provided condition (H) is satisfied. Therefore, the normalization and the limit in law depend on the filter a. We summarize in Proposition 7 and in the beginning of section 3.2 the two situations already studied in Lemma 3 and Lemma 4 before.

But Theorem 2 does not apply in the example of Lemma 4 when α p α q = 0 and β = 0. This corresponds to the particular situation when the long memory occurs only along one direction in dimension 2. In this case, we study the asymptotic behavior of r(h) in Proposition 9. It appears that a non-central limit theorem holds in the sense that the normalization is not n d/2 . Yet, contrary to the classical non central limit results for r(h) (see references therein), the limiting law is Gaussian. This shows that the covariance series of a linear field may be asymptotically gaussian even if its spectral density does not belong to L 2 .

General results in dimension d

Let us first present the central limit theorem for r(h) and r(h) when f ∈ L 2 . Proposition 6. Let X be the linear field defined by (1).

If f ∈ L 2 , then, for all h ∈ Z d , n d/2 (r(h)r(h)) and n d/2 ( r(h)r(h)) converge both in law to a Gaussian random variable with zero mean and variance 2(2π) d f 2 2h , where f 2 2h stands for the (2h)-th Fourier coefficients of f 2 as defined in (2).

Proof. The central limit theorem for r(h) follows from Theorem 1 where p = 2, q = +∞ and g(t) = (2π) -d e i<h,t> .

For r(h), we prove that almost surely, n d/2 (r(h) -r(h)) = o(1). Indeed,

n d/2 (r(h) -r(h)) = 1 n 3d/2 k1∈An k2∈An X k1 X k2+h .
Using representation (1) of X, this term is equal to

1 n 3d/2 E f (x)e i<h,x> k∈An e i<k,x> 2 dx = 1 n d/2 E f (x)e i<h,x> d j=1 F n (x j ) dx
where F n denotes the Fejer kernel on [-π, π]. Now, from the Cauchy-Schwarz inequality, this last term is lower than

1 n d/2 E f 2 (x) d j=1 F n (x j ) dx.
Since f 2 ∈ L 1 , the Lebesgue's Theorem implies that the integral above is a o(n d ). Therefore, n d/2 (r(h) -r(h)) = o(1) and the central limit theorem for r(h) is inherited from the one for r(h).

Let us recall that the notation ã( 1) is defined at the beginning of Section 2.2. The following proposition provides central and non central limit for r(h), depending on the parameter α, when condition (18) below is fulfilled. This framework includes isotropic and anisotropic models. The result shows the same kind of dichotomy than in dimension d = 1. In section 4.2, some anisotropic models that do not follow this dichotomy are presented.

Proposition 7. Let X be the linear field defined by (1).

Assume that for all x ∈ E a(-x) = a(x) and that a(x) = ã(1) (x)L 1 (x), where ã is a homogeneous function of degree α > -d/2 and L 1 is a bounded function, continuous at zero and non-null at 0. If

|ã(x)| ≤ c d i=1 |x i | α/d (18)
for some positive constant c, then for all h ∈ Z d ,

• if α > -d/4, n d/2 (r(h) -r(h)) L -→ N 0, 2(2π) d f 2 2h , (19) 
where f 2 2h is the (2h)-th Fourier coefficients of f 2 as defined in (2).

• if α < -d/4, n d+2α (r(h) -r(h)) L -→ L 2 1 (0) R 2d ã(x)ã(y)H(x + y)dW (x)dW (y), ( 20 
)
where

H(z) = d j=1 e iz j -1 izj .
Proof. In the case α > -d/4, the convergence result is a consequence of Proposition 6. For α < -d/4, Lemma 3 applies since β = 0 and condition (H) in Theorem 2 is fulfilled. Let us justify the simplification of the limit in (20). Here g(t) = (2π) -d e i<h,t> , so g(t) = 1 and L 2 (0) = (2π) -d . The simplification comes from the main term I 12 in the proof of theorem 2, where we use the identity

nE 1 n d H n x + t n 1 n d H n y -t n dt = (2π) d 1 n d H n x + y n .
The pointwise convergence of this last term relies on (iii) of Lemma 5 and an application of the Lebesgue's theorem concludes the proof of (20).

Some anisotropic examples in dimension d = 2

Starting with the anisotropic case studied in Lemma 4, we confirm that new limiting results can be obtained as suggested by [START_REF] Dobrushin | Non central limit theorems for non-linear functionals of gaussian fields[END_REF] (Remark 4.2). If we suppose that a(x) = ã(1) (x)L(x), where L is a bounded function, continuous and non-null at 0 and

ã(x 1 , x 2 ) = |x 1 + px 2 | αp |x 1 + qx 2 | αq ,
with α p > -1 2 , α q > -1 2 and (p, q) ∈ R 2 , then, under the assumptions of Lemma 4 n 2+2αp+2αq (r(h)r(h))

L -→ Z
where Z is defined as the limit in ( 20). This convergence is a simple application of Theorem 2. Condition (H) is fulfilled thanks to Lemma 4 and the simplification of the limit holds for the same reasons as for Proposition 7.

The assumptions of Lemma 4, in the case when β = 0, imply the existence of two lines where the spectral density is unbounded. When α p = 0 or α q = 0 (or p = q), that is when the long memory occurs along only one direction, Lemma 4 does not imply (H) when β = 0. This case provides a new limiting behavior for r(h) as stated in Proposition 9.

Before stating this result, we deduce in the following lemma the covariance structure of X when the spectral density is unbounded along a line that goes through the origin. We say that the process has a long memory along one direction if its covariance function is not summable along this direction.

Lemma 8. Let p ∈ R and for all (

x 1 , x 2 ) ∈ R 2 , f (x 1 , x 2 ) = 1 2π f (x 1 + px 2 ),
where f is an even, non-negative, and 2π-periodic function on R.

Let us denote, for all

(h 1 , h 2 ) ∈ Z 2 , σ(h 1 , h 2 ) = [-π,π] 2 e i(h1x1+h2x2) f (x 1 , x 2 )dx 1 dx 2 and σ(h 1 ) = π -π e ih1x f (x)dx.
Then, for all (h 1 , h 2 ) ∈ Z 2 , we have

σ(h 1 , h 2 ) = σ(h 1 ) if h 2 = ph 1 , sin((h2-ph1)π) (h2-ph1)π σ(h 1 ) otherwise.
The proof of this lemma is given at the end of this section.

Proposition 9. Let X be a stationary Gaussian process in dimension d = 2.

Let us suppose that its spectral density is

f (x 1 , x 2 ) = 1 2π f (x 1 + px 2 ),
where p ∈ Z and where f , defined on [-π, π], is a spectral density in dimension d = 1. Assume moreover that for -1/2 < α < 0 and for all x ∈ [-π, π], f (x) = L(x)|x| 2α where L is a bounded function, continuous at zero and nonnull at 0. Then,

• if α > -1/4, n(r(h) -r(h)) L -→ N 0, 2(2π) 2 f 2 2h , (21) 
where f 2 2h is the (2h)-th Fourier coefficients of f 2 as defined in (2).

• if α < -1/4 and if h 2 = ph 1 , n (4α+3)/2 (r(h) -r(h)) L -→ N 0, σ 2 α,p , (22) 
where σ 2 α,p = lim n→∞ n 4α+3 V ar(r(h)). Proof. In the case α > -1/4, the result is a consequence of Proposition 6. Let us focus on α < -1/4. We restrict the proof to the case p ≥ 0 since p ≤ 0 can be treated in the same way.

We prove the result thanks to a central limit theorem for triangular arrays stated in [START_REF] Romano | A more general central limit theorem for m-dependent random variables with unbounded m[END_REF].

An alternative proof could be to start from the representation of r(h) in terms of a double stochastic integral as in (15), then to use the necessary and sufficient conditions for the convergence of such an integral given in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] and [START_REF] Nualart | Central limit theorems ofr multiple stochastic integrals and Malliavin calculus[END_REF]. But checking these conditions leads to hard computations, which would not simplify or shorten the present proof.

So, let us take advantage of the natural triangular array structure that arises in our setting. Indeed, let Y i1,i2 = X i1,pi1+i2 and let i

= i 1 , j = i 2 -pi 1 , we have r(h 1 , h 2 ) = 1 n 2 n i1=1 n i2=1 X i1,i2 X i1+h1,i2+h2 = 1 n 2 n-p j=-pn+1 i∈Bj Y i,j Y i+h1,j-ph1+h2 , where B j = {i | 1 ∧ 1-j p ≤ i ≤ n-j p ∨ n}. Therefore r(h 1 , h 2 ) is the triangular array r(h 1 , h 2 ) = (p+1)n-p j=1 Ỹn,j where Ỹn,j = n -2 i∈Bj-pn Y i,j-pn Y i+h1,j-pn-ph1+h2 .
Let us summarize the properties of Ỹn,j .

From Lemma 8, we have

r(h 1 , h 2 ) = r(h 1 ) if h 2 = ph 1 , 0 otherwise. ( 23 
)
where r is the covariance function associated with f . Consequently (Y i,j ) is a zero mean Gaussian process such that

E(Y i,j Y i+h1,j+h2 ) = r(h 1 ) if h 2 = 0, 0 otherwise.
The process Ỹn,j , viewed as a function of ((Y i,j-pn ) i∈Z , (Y i+h,j-pn-ph1+h2 ) i∈Z ), is thus a (h 2ph 1 )-dependent process. Moreover, we can compute the moments of Ỹn,j thanks to the representation of the moments of Gaussian variables in terms of Wick's product. Since we have assumed h 2 = ph 1 , we obtain

E( Ỹn,j ) = 0, E( Ỹn,j1 Ỹn,j2 ) = n -4 i1,i2∈Bj-pn r2 (i 2 -i 1 ) if j 1 = j 2 = j, 0 otherwise and E( Ỹ 4 n,j ) = 3n -8   i1,i2∈Bj-pn r2 (i 2 -i 1 )   2 + + 6n -8 i1,i2,i3,i4∈Bj-pn r(i 2 -i 1 )r(i 3 -i 2 )r(i 4 -i 3 )r(i 4 -i 1 ).
We are now in position to apply Theorem 2.1 in [START_REF] Romano | A more general central limit theorem for m-dependent random variables with unbounded m[END_REF] which gives sufficient condition for the convergence in law of a triangular array of m-dependent random variables to a normal distribution. Following the same notations as in this theorem, we choose δ = 2 and γ = 0 and we look for ∆ n , K n and L n such that

• E( Ỹ 4 n,j ) ≤ ∆ n for all j,
• V ar a+k-1 j=a Ỹn,j ≤ k K n for all a and for all k ≥ (h 2ph 1 ),

• V ar

(p+1)n-p j=1 
Ỹn,j ≥ ((p + 1)np) L n .

According to [START_REF] Romano | A more general central limit theorem for m-dependent random variables with unbounded m[END_REF], the convergence in law holds whenever K n /L n = O(1) and ∆ n /L 2 n = O(1). From Theorem 2.24 of [START_REF] Zygmund | Trigonometric series[END_REF], we have r(h) ∼ c α h -2α-1 when h → ∞ where c α is a constant depending on α and L(0).

Let us first suppose that h 2 = ph 1 . When p ≥ 2, the above domain of integration can be cut up as follows (the case 1 ≤ p ≤ 2 is not detailed but can be treated similarly):

σ(h 1 , h 2 ) = 1 2π(h 2 -ph 1 ) (I 1 + I 2 ),
where The domain of integration in I 1 can be split into -π < s < π and s ∈ [-π, -π + eπ] ∪ [π, π + eπ]. From the 2π-periodicity of f , this is easy to check that, when summing up I 1 and I 2 , all the integrals involving e in their range of integration sum up to zero. Hence I 1 + I 2 reduces to and it is handled according to the parity of ⌊p⌋ and j. Since f is a 2π-periodic function, f (u + jπ) = f (u) when j is even and f (u + jπ) = f (uπ) when j is odd.

I 1 = -i -(p-1)π - ( 
When ⌊p⌋ is even, the sum (25) above is then This proves the result of the lemma for h 2 = ph 1 in the case ⌊p⌋ even. When ⌊p⌋ is odd, the sum (25) is Now, in (24), we split the domain of the first integral into -π < s < 0 where f (s + ⌊p⌋π) = f (s + π) and 0 < s < π where f (s + ⌊p⌋π) = f (sπ). We apply respectively the change of variables s = s + π and s = sπ. This allows to exhibit the integral 2 π -π f (s) sin(h 1 s + (h 2ph 1 )π)ds. With the help of (26), some trigonometric computations show that the remaining terms coming from this change of variables simplify with the remaining term in (24).

Therefore, when h 2 = ph 1 , the result of the lemma is proved for all p.

The proof when h 2 = ph 1 is simpler and it can be conducted in the same way.

e

  ih1u f (u) e i(h2-ph1)πe i(h2-ph1) u+π p du andI 2 = -i (p-1)π -(p-1)π e ih1u f (u) e i(h2-ph1) u+π p e i(h2-ph1) sin(h 1 u + (h 2ph 1 )π) s = u -⌊p⌋ and e = p -⌊p⌋, ⌊p⌋π) (sin(h 1 s + h 2 ⌊p⌋π + (h 2ph 1 )π)

  ⌊p⌋π) (sin(h 1 s + h 2 ⌊p⌋π + (h 2ph 1 )π)

  When plugging in this latest result in (24), it simplifies and I 1 + I sin(h 1 s + (h 2ph 1 )π)ds = 2 sin((h 2ph 1 )π) π -π f (s) cos(h 1 s)ds.

Since (i ∈ B j ) ⇒ (1 ≤ i ≤ n), an integral test leads to ∆ n = O(n -8α-8 ) and K n = O(n -4α-4 ). For L n , let us compute directly the equivalent of the variance. From the decomposition in terms of Wick's product, we obtain

In view of ( 23) and since h 2 = ph 1 , most of the terms in the sum above vanish. We finally obtain

The latest sum involves positive terms which are equivalent to c 2 α k -4α-2 (n-pk) when k → ∞. As a consequence, V ar (p+1)n-p j=1 Ỹn,j ∼ σ 2 α,p n -4α-3 , where σ 2 α,p is a positive constant. This leads in particular to L n = O(n -4α-4 ). The conditions in Theorem 2.1 in [START_REF] Romano | A more general central limit theorem for m-dependent random variables with unbounded m[END_REF] are fulfilled and the convergence in law holds.

Proof of Lemma 8. When p = 0, the result is obvious. Let us assume, without loss of generality, that p ≥ 1.

Let the change of variables u = x 1 + px 2 and v = x 2 :