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Very weak estimates for a rough Poisson-Dirichlet problem with natural vertical boundary conditions

Vuk Milisic

Introduction

Cardio-vascular pathologies of the arterial wall represent a challenging area of investigation since they are one of the major cause of death in occidental countries. In this context, we are strongly interested in the accurate description of blood-flow characteristics in stented arteries. Specifically, we aim to understand the influence of a metallic wired stent (a medical device that cures some of these pathologies) on the circulatory system: our goal is to give a detailed description of the flow upward, inward and backward the region of stent's location. Actually the stent could be seen as a local perturbation of a smooth boundary of the flow field. The change, from perturbed to smooth, strongly contradicts the hypothesis of periodicity faced by the author in [START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF][START_REF] Bresch | Towards implicit multi-scale wall laws[END_REF].

Although this problem was tackled in [START_REF] Jäger | On the interface boundary condition of Beavers, Joseph, and Saffman[END_REF][START_REF] Jäger | On the roughness-induced effective boundary condition for an incompressible viscous flow[END_REF], our formalism follows ideas presented in [START_REF] Sanchez-Palencia | Homogenization techniques for composite media[END_REF] for interior homogenization problems, and it should be easy to extend it to other linear elliptic operators. A first step in this direction was made in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] for a simplified Poisson problem: we set up a formal approach to handle natural boundary conditions at the inlet and the outlet of a straight rough domain; then we proved rigorously, via specific a priori estimates, that the boundary layer approximation -built by adding some vertical correctors -converges to the exact solution of the rough problem. These estimates validated our approach.

In [START_REF] Jäger | On the interface boundary condition of Beavers, Joseph, and Saffman[END_REF][START_REF] Jäger | On the roughness-induced effective boundary condition for an incompressible viscous flow[END_REF], the authors introduced, via very weak solutions [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF], L 2 estimates of the error between various approximations and the exact rough solution. These estimates were established in a piecewise-smooth domain Ω 0 , limit of the rough geometry, when the roughness size ǫ goes to zero. For a fixed ǫ, this approach allows to estimate the error of an effective wall law approximation defined only in the smooth domain. In [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], we did not obtain optimal estimates in the L 2 norm. The major difficulty was some dual norm of a normal derivative as explained below. The present work fills this gap.

In section 2, a short presentation of the problem and the material introduced in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] are presented. The difficulties that this paper overcomes are then faced in the next sections: firstly, the microscopic approximations live on unbounded domains and thus belong to weighted Sobolev spaces. As a result, one needs to derive very weak solutions on a quarter-plane, in these spaces (see section 3). Then one should connect these microscopic very weak estimates to the macroscopic problem we are really interested in. At this scale, the approximations live in the bounded domain Ω 0 and regular solutions belong to a specific subspace of H 1 (Ω 0 ). While this correspondence was introduced for fractional test spaces in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], here it is extended to the trace spaces specific to the regular solutions above (section 4). In section 5, we analyse the convergence of the full boundary layer approximation towards the exact solution using arguments introduced in the previous sections; optimal estimates are obtained. Then for the first order wall-law, the convergence rate is shown to be equal to the one obtained in the periodic case [START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF]. In a last part, we provide a numerical validation of the theoretical results. We compare various multi-scale approximations with a numerical solution of the complete rough problem. This comparison is made in Sobolev norms for various values of ǫ. An accurate control of the mesh-size with respect to ǫ and a P 2 Lagrange finite element provide twofold results: the full boundary layer approximation shows the maximal convergence rate that one can expect from our numerical discretization, however, the standard averaged wall-law shows poorer results than expected.

The framework 2.1 The rough domain

We set a straight horizontal domain Ω ǫ , defined by

Ω ǫ := x ∈ R 2 s.t. x 1 ∈]0 : 1[ and ǫf x 1 ǫ < x 2 < 1 , (1) 
where f is a Lipschitz continuous function, 1-periodic. Moreover we suppose that f is bounded and negative definite, i.e. there exists a positive constant δ such that 1 -δ < f (y 1 ) < δ for all y 1 ∈ [0, 2π]. The lateral boundaries are denoted by Γ in and Γ out , and their restrictions to ]0, 1[, Γ in p (resp. Γ ′ out ). The rough bottom of the domain is called

Γ ǫ := x ∈ R 2 s.t. x 2 = ǫf x 1 ǫ ,
while the top is smooth and denoted by Γ 1 . In the interior of the domain one sets the square piecewise-smooth domain Ω 0 :=]0, 1[ 2 , whose lower interface is denoted by Γ 0 , (see fig. 1).
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The exact rough problem

In order to identify more precisely the influence of vertical non-periodic boundary conditions, we consider a singular perturbation of a linear profile: we look for solutions of the problem,

find u ∈ H 1 (Ω ǫ ) such that      -∆u ǫ = 0, in Ω ǫ , u ǫ = U , on Γ 1 , u ǫ = 0 on Γ ǫ , ∂ ν u ǫ = 0, on Γ in ∪ Γ out . (2) 
When ǫ goes to zero we recover the linear profile u 0 = U x 2 , while this profile is explicit what follows shall apply with few modifications to the case of an implicit function u 0 which solves the problem:

     -∆u 0 = 0, in Ω ǫ , u 0 = U , on Γ 1 , u 0 = 0 on Γ ǫ , ∂ ν u 0 = 0, on Γ ′ in ∪ Γ ′ out .
One can show (see [START_REF] Jäger | On the roughness-induced effective boundary condition for an incompressible viscous flow[END_REF][START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF]) that u ǫ -u 0 L 2 (Ω 0 ) ≤ k ǫ, within the very weak solution framework à la Nečas, that will be detailed below (see section 3).

First order approximation

When one wants to improve the accuracy of the zero order approximation, one extends u 0 linearly using a Taylor formula in the neighbourhood of the fictitious interface Γ 0 . So we have u 0 = U x 2 for every x in Ω ǫ . As the Dirichlet condition is no more satisfied on Γ ǫ , one should solve a microscopic problem that reads: find β, whose Dirichlet norm is finite, such that

     -∆β = 0, in Z + ∪ Γ ∪ P , β = -y 2 , on P 0 , β is y 1 -periodic . (3) 
where 1 right). In the literature this problem is widely studied (see [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF][START_REF] Neuss | Effective laws for the poisson equation on domains with curved oscillating boundaries[END_REF][START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF]), so we only sum up the main properties of β. 

Z + :=]0, 1[×R + , P := {y ∈ R 2 s.t. y 1 ∈]0, 1[, f (y 1 ) < y 2 < 0} and P 0 := {y ∈ R 2 s.t. y 1 ∈]0, 1[, y 2 = f (y 1 )} (see fig.
β(y 1 , 0)dy 1 .
The convergence is exponential and one has a Fourier decomposition:

β(y) = ∞ k=-∞
β k e 2π(-|k|y 2 +iky 1 ) , ∀y ∈ Z + , where

β k := 1 0 β(y 1 , 0)e 2πiky 1 dy 1 .
If u ǫ were periodic, we could set the first order approximation to be

u 1,∞ ǫ,# := u 0 + ǫ 1 + ǫβ ∂u 0 ∂x 2 (x 1 , 0) β x ǫ -βx 2 . ( 4 
)
But this does not satisfy the homogeneous Neumann boundary conditions on Γ in ∪ Γ out when approximating the solution of (2). In [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] we introduced a vertical corrector. We denote it by ξ in ; it solves the problem:

     -∆ξ in = 0, in Π, ∂ ν ξ in (0, y 2 ) = -∂ ν β (0, y 2 ), on E, ξ in = 0, on B. (5) 
where we set Π := 

∪ +∞ k=0 [Z + ∪ Γ ∪ P + ke 1 ]. The
Z + + ke1 Γ Π Z + + e1 P + e1 P + ke1 y2 y1 Π ′ E' B' e2 e1
Figure 2: Semi infinite microscopic domains: Π, the rough quarter-plane and Π ′ , the smooth one usual Sobolev space:

W m,p α (Ω) := v ∈ D ′ (Ω) s.t. |D λ v|(1 + ρ 2 ) α+|λ|-m 2 ∈ L p (Ω), 0 ≤ |λ| ≤ m
where ρ is a distance to the point (0,-1) exterior to the domain Π. Shifting the latter point to (0, 0) gives an equivalent norm so that we will not distinguish between these two distances. We refer to [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF][START_REF] Kufner | Weighted Sobolev spaces[END_REF][START_REF] Amrouche | Weighted sobolev spaces and laplace's equation in R n[END_REF] and references therein, for the detailed studies of the weighted Sobolev spaces in the context of elliptic operators.

In the first part of this study [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], we have rigorously shown the results regarding ξ in :

Theorem 2.1. There exists a unique solution ξ in ∈ W 1,2 α (Π) of problem [START_REF] Bresch | Towards implicit multi-scale wall laws[END_REF] where α is such that |α| < α 0 := √ 2/π, moreover

|ξ in (y)| ≤ k (1 + ρ 2 (y)) 1 2 (1-1 2M ) , ∀y ∈ Π s.t. ρ(y) > 1
where M is a positive constant such that M < 1/(1 -2α) ∼ 10.

This theorem is based on Poincaré-Wirtinger estimates for the Sobolev part and a Green's representation formula in a quarter-plane Π ′ . Combining this two arguments, one obtains estimates on the decreasing properties of ξ in . In the same way we define the vertical boundary layer corrector for Γ out that solves the problem:

     -∆ξ out = 0, in Π -, ∂ ν ξ out (0, y 2 ) = -∂ ν β (0, y 2 ), on E, ξ out = 0, on B -. (6) 
where we set Π -≡ ∪ +∞ k=1 [Z + ∪ Γ ∪ P -ke 1 ], the bottom being denoted by B -= ∪ +∞ k=1 {y ∈ P 0 -ke 1 }. In Theorem, 2.1, as everywhere else in the rest of the paper, the properties derived for ξ in are equally valid for ξ out . Thanks to these correctors, one completes the previous boundary layer approximation by writing:

u 1,∞ ǫ := u 0 + ǫ 1 + ǫβ ∂u 0 ∂x 2 (x 1 , 0) β x ǫ -βx 2 + ξ in x ǫ + ξ out x 1 -1 ǫ , x 2 ǫ . (7) 
This approximation satisfies the problem:

                   -∆u 1,∞ ǫ = 0, on Ω ǫ , ∂ ν u 1,∞ ǫ = ∂ ν ξ in 1 ǫ , x 2 ǫ on Γ out , ∂ ν u 1,∞ ǫ = ∂ ν ξ out 1 ǫ , x 2 ǫ on Γ in , u 1,∞ ǫ = U + ǫ ∂u 1 ∂x 2 (x 1 , 0) β -β + ξ in x 1 ǫ , 1 ǫ + ξ out x 1 -1 ǫ , 1 ǫ on Γ 1 , u 1,∞ ǫ = 0, on Γ ǫ
In other words, we correct the O(1) error on the normal derivatives of the boundary layer β on Γ in ∪ Γ out by the normal derivatives of the correctors at a distance y 1 = 1 ǫ of the vertical boundary E. On Γ 1 , the main errors are due to ξ in and ξ out , the contribution of β(x/ǫ) -β being exponentially small on Γ 1 .

In [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] we set up adequate tools to handle a priori estimates for the error. We adapt them to the specific boundary conditions in problem (2), and claim Theorem 2.2. The boundary layer approximation u 1,∞ ǫ satisfies the error estimates in the Dirichlet norm:

∇(u ǫ -u 1,∞ ǫ ) L 2 (Ω ǫ ) ≤ kǫ min(1+α; 3 2 -1 2M )
where the constant k is independent of ǫ and the constants α and M are defined as in Theorem 2.1.

While in Theorem 5.1 [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], the convergence order is only ǫ, here, it is improved because the perturbed profile is only linear: there are no second order errors in the sub-layer. The proof follows exactly the same ideas as in Theorem 5.1 in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF]. The estimates for the very weak solutions presented in Theorem 5.2 in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] are not optimal and this is the main concern of the present article. 

′ = {z ∈ R 2 s.t. z 1 ∈ R and z 2 > l ′ + |z 1 -l ′ | =: a(z 1 )} whereas the change of variables from Π′ l ′ towards R 2 l ′ is given by w = W(z) s.t. w 1 = z 1 , w 2 = z 2 -|z 1 -l ′ |.
Later on we will also need the regularised version of domains above

Π ′ l,s := y ∈ Π ′ l s.t. y 2 > s y 1 -l , Π′ l ′ ,s := z ∈ Π′ l ′ s.t. z 2 > l ′ + (z 1 -l ′ ) 2 + s 2 =: a s (z 1 ) , (8) 
and the corresponding boundaries are set according to this definition. The mapping straightening Π′ l ′ ,s to R 2 l ′ is set as w = W s (z):

w 1 = z 1 , w 2 = z 2 -(z 1 -l ′ ) 2 + s 2 .

Weak solutions

We consider the solution of the problem:

find v in W 1,2 0 (Π ′ l ) solving ∆v = 0, in Π ′ l , v = g, on ∂Π ′ l , (9) 
where g is a function belonging to

W 1,2 1 2 
(∂Π ′ l ). We emphasise here that, as in Chap. 5 [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF], we require a little more regularity on g than the usual fractional norm. As we work with weighted Sobolev spaces and we control the tangential derivatives of the data, the existence and uniqueness results for weak solutions are nor standard neither so straightforward. As they will be used extensively in what follows we provide a detailed presentation.

In order to give a variational formulation of problem (9), we need to construct lifts of the boundary data in the weighted Sobolev context. As we apply changes of variables above, we have to insure the compatibility of weights with respect to these mappings. Thus we present a detailed adaptation of the results for the half plane introduced in [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF].

To solve problem [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF] we use the Poincaré-Wirtinger estimates because the weighted logarithmic Hardy estimates are not valid in the specific case where α + n/p is an integer in W n,p α (Π ′ l ) (see [START_REF] Amrouche | Weighted sobolev spaces and laplace's equation in R n[END_REF][START_REF] Amrouche | Dirichlet and neumann exterior problems for the n-dimensional laplace operator an approach in weighted sobolev spaces[END_REF] and references therein).

Weighted Sobolev extensions

The first change of variables presented above, z(y), is a rotation of the domain around the origin: it preserves the distances to the origin. Once straightened in R 2 l ′ we are exactly in the position to construct extensions introduced by Hanouzet in Theorem II.2 of [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF], so we set:

         Ψ(w) = Φ w 2 -l ′ 1 + w 2 1 + (l ′ ) 2 , ∀ w ∈ R 2 l ′ V (w) = |t|<1 K(t)g(t(w 2 -l ′ ) + w 1 )dt,
where Φ is a cut-off function such that

SuppΦ ∈ [0, 1 4 [, Φ(0) = 1, Φ ∈ C ∞ ([0, 1 4 ]),
and K is a regularising kernel i.e. K ∈ C ∞ 0 (] -1 : 1[) and R K(s)ds = 1. Our lift then reads:

R(g)(w) = Ψ(w)V (w), ∀ w ∈ R 2 l ′ .
Then one has:

Lemma 3.1. For every function g ∈ W 1,2 1 2 
(R) one has:

R(g) W 1,2 0 (R 2 l ′ ) ≤ k g W 1,2 1 2 (R×{l ′ }) , (10) 
where the constant k is independent on l ′ .

Proof. According to the definition of the norm associated to

W 1,2 0 (Π ′ l ), R 2 l ′ ΨV ρ 2 dw ≤ k R 2 l ′ Ψ ρ 2 |t|<1 g 2 (t(w 2 -l ′ ) + w 1 )dtdw ≤ k R×[0, 1 4 ] 1 + w 2 1 + (l ′ ) 2 1 + w 2 1 + (l ′ ) 2 + x 2 (1 + w 2 1 + (l ′ ) 2 ) Φ 2 (x)• • |t|<1 g 2 (tx 1 + w 2 1 + (l ′ ) 2 + w 1 )dtdxdw 1 ≤ k R g 2 1 + w2 1 + (l ′ ) 2 d w1 ≤ k g W 1,2 1 2 (R) ,
where we used the change of variables x = (w 2 -l ′ )/ 1 + w2 1 + (l ′ ) 2 and a shift w1 := tx 1 + w 2 1 + (l ′ ) 2 + w 1 in a second step as suggested in Lemma II.2 [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF]. If g is a regular function, the gradient is estimated as:

|∇(ΨV )| ≤ |(∇Ψ)V | 1 + w 2 1 + (l ′ ) 2 + |Ψ∇V |, ∀w ∈ R 2 l ′ s.t. w 2 ≤ 1 4 1 + w 2 1 + (l ′ ) 2
So the first integral proceeds as above, whereas in the second part, performing the same changes of variables, one gets:

R 2 l ′ Ψ 2 |∇V |dw ≤ k R 2 l ′ Ψ 2 |t|<1 g ′ (t(w 2 -l ′ ) + w 1 )(1 + t) 2 dtdw ≤ k R×[0, 1 4 ] 1 + w 2 1 + (l ′ ) 2 Φ 2 (x) |t|<1 g ′ tx 1 + w 2 1 + (l ′ ) 2 + w 1 2 dtdxdw 1 ≤ k R 1 + w2 1 + (l ′ ) 2 (g ′ ) 2 d w1 ≤ k g W 1,2 1 2 
(R)

extending this to W 1,2 1 2 
(R) functions by density arguments ends the proof.

In order to use these estimates in Π ′ l we have to guarantee that they apply also when the domain is a quarter-plane.

Lemma 3.2. For every g ∈ W 1,2 1 2 (∂Π ′ l ) there exists a lift denoted by R(g) in W 1,2 0 (Π ′ l ) such that R(g) W 1,2 0 (Π ′ l ) ≤ k g W 1,2 1 2 
(∂Π ′ l ) , where the constant k is independent on l.

Proof. As mentioned above the rotation does not change the distances, so one has to consider the mapping from R 2 l ′ to Π′ l ′ (resp. R×{l ′ } to ∂ Π′ l ′ ) from both sides of [START_REF] Hecht | Laboratoire Jacques-Louis Lions[END_REF]. The straightening by the continuous piecewise linear transform w = W(z) is defined in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]; one has that

R 2 l ′ |∇ w R(g)|dw = Π′ l ′ (∇ z W -1 ∇ z W -T ∇ z R(g), ∇ z R(g)) det(∇ z W)dz. The eigenvalues of ∇ z W -1 ∇ z W -T read λ ± = (3 ± √ 5
)/2, they are positive definite and independent on l ′ . Thus there exists a constant k such that

R(g) W 1,2 0 (Π ′ l ) ≤ k R(g) W 1,2 0 (R 2 l ′ ) .
On the other hand, one should focus on the equivalence of trace norms between W 1,2

1 2 (∂ Π′ l ′ ) and W 1,2 1 2 (R × {l ′ }): on ∂ Π′ l ′ , 1 + ρ 2 (z) = 1 + (z 1 ) 2 + (l ′ + |z 1 -l ′ |) 2 .
This gives the existence of a constant k independent on l ′ s.t.

1 + z 2 1 + (l ′ ) 2 ≤ ρ(z) ≤ k(1 + z 2 1 + (l ′ ) 2 ), ∀ z ∈ ∂ Π′ l ′
In turn this implies that

∂ Π′ l ′ g 2 (1 + ρ 2 (z)) 1 2 + (1 + ρ 2 (z)) 1 2 (g ′ ) 2 dσ(z) ∼ R×{l ′ } g 2 (1 + w 2 1 + (l ′ ) 2 ) 1 2 + (1 + w 2 1 + (l ′ ) 2 ) 1 2 (g ′ ) 2 dw 1 .
Remark 3.1. The previous lemma applies with only minor changes to the case of the smooth domain sequence (Π ′ l,s ) s∈]0,1] .

A priori estimates

At this point we are ready to prove the existence and uniqueness of a weak solution of problem [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF]. We denote by Ẇ 1,2 0 (Π ′ l ) the subspace of

W 1,2 0 (Π ′ l ) such that: Ẇ 1,2 0 (Π ′ l ) = {v ∈ W 1,2 0 (Π ′ l ) s.t. v = 0 on ∂Π ′ l }.
Proposition 3.1. There exists a unique weak solution v ∈ W 1,2 0 (Π ′ l ), of the problem [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF], moreover one has:

v W 1,2 0 (Π ′ l ) ≤ k g W 1,2 1 2 
(∂Π ′ l ) , where the constant k is independent of l.

Proof. Using the lift of g given above, (9) becomes: find ṽ ∈ Ẇ 1,2 0 (Π ′ l ) s.t. ∆ṽ = -∆R(g). Testing this equation by ϕ ∈ D(Π ′ l ) one has that (∇ṽ, ∇ϕ) = -(∇R(g), ∇ϕ), by density of D(Π ′ l ) functions in Ẇ 1,2 0 (Π ′ l ), the r.h.s. is a linear form on Ẇ 1,2 0 (Π ′ l ) and the l.h.s. is a bi-linear bi-continuous form on the same functional space. Thanks to Poincaré-Wirtinger estimates in a quarter-plane the semi-norm is actually equivalent to the W 1,2 0 (Π ′ l ) norm. Thus one has the existence and uniqueness by the standard Lax-Milgram theorem. Moreover, one has that ṽ W 1,2

0 (Π ′ l ) ≤ k R(g) W 1,2 0 (Π ′ l ) ≤ k ′ g W 1,2 1 2 (∂Π ′ l )
, where all the constants do not depend on l. Subtracting R(g) one gets the desired result.

Regularised problems

In the rest of the paper, we need a little more regularity in order to construct a Green's formula adapted to the Lipschitz domain Π ′ l (see the very clear and detailed explanations of § 1.5.3 in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]). Thus in this paragraph, we construct regular approximations of problem [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF]. This is done by approximating Π ′ l by a sequence (Π ′ l,s ) s∈[0,1] of C ∞ domains defined above. For every given function g ∈ W 1,2

1 2 (∂ Π′ l ′ ), one sets g s ∈ W 1,2 1 2 
(∂ Π′ l,s ) by writing

g s (z 1 , a s (z 1 )) := g(z 1 , a(z 1 )) = g(z 1 ), ∀z 1 ∈ R
and, where it is not ambiguous, we will drop the s and use g instead of g s .

Lemma 3.3. The approximating sequence of data

(g s ) s∈[0,1] is stable with respect to the W 1,2 1 2 (∂ Π′ l ′ ) norm: g s W 1,2 1 2 (∂ Π′ l,s ) ≤ k g W 1,2 1 2 
(∂ Π′ l ′ ) , whereas for the lifts one has

R s (g s ) W 1,2 0 ( Π′ l ′ ,s ) ≤ k ′ g W 1,2 1 2 (∂ Π′ l ′ ) ,
and the sequence (R s (g s ))

s converges to R(g) in the W 1,2 0 ( Π′ l ′ ) norm: ∀η ∃δ > 0 s.t. 0 < s < δ =⇒ R s (g s ) -R(g) W 1,2 0 ( Π′ l ′ ) ≤ η.
Proof. For s small enough, one has:

a(z 1 ) ≤ a s (z 1 ) ≤ 2a(z 1 ), ∀z 1 ∈ R.
Similarly it is easy to show that |a ′ s | ≤ |a ′ |. This gives the first claim. The proof of the second claim is identical the proof of Lemma 3.2. We extend R s (g s ) in Π′ l ′ \ Π′ l ′ ,s by g. It is easy to prove that there exists a constant k s.t.

R s (g s ) W 1,2 0 ( Π′ l ′ ) ≤ k g W 1,2 1 2 (∂ Π′ l ′ ) .
Up to a subsequence, the compact imbedding of W 1,2 0 ( Π′ l ′ ) into W 0,2 -1 ( Π′ l ′ ) implies strong convergence in the latter norm. The main focus is the semi-norm convergence. As seen in the lemma above the norms are consistent when passing from Π′ l ′ to R 2 l ′ , and the same holds when passing from Π′ l ′ ,s to R 2 l ′ for the same reason. Making the change of variables W s , one can re-express both lifts in R 2 l ′ as:

           R s (g) = Φ w 2 -l ′ 1 + w 2 1 + (l ′ ) 2 V (w), R(g) = Φ w 2 + ω s (w 1 ) -l ′ 1 + w 2 1 + (l ′ ) 2 V (w 1 , w 2 + ω s (w 1 )),
where

ω s (w 1 ) = s 2 + w 2 1 -|w 1 |.
For the rest of the proof we set w = (w 1 , w 2 + ω s (w 1 )). We decompose I := ∇ w (R s (g) -R(g)) in four pieces:

I := 4 j=1 I j :=∇ w (Ψ( w) -Ψ(w))V ( w) + ∇Ψ(w)(V ( w) -V (w)) + (Ψ( w) -Ψ(w))∇V ( w) + Ψ(w)∇(V ( w) -V (w)).
The first three terms can easily be estimated by s γ g W 1,2 1 2 (R) where γ is some positive constant, thanks to techniques used in [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF] for fractional trace spaces. In our case those terms are even easier to treat because no fractional norm has to be used. The term I 4 is more delicate because there is no derivative left, so we have to use the continuity of weighted translation operators; here we give the sketch of the proof:

I 4 ≤ 2 Ψ(w) |t|<1 K(t) g ′ (t w2 + w 1 ) -g ′ (tw 2 + w 1 ) dt + Ψ(w) |t|<1 K(t)g ′ (t w2 + w 1 )tω ′ s (w 1 )dt =: I 4,1 + I 4,2 ,
the term I 4,2 is estimated again as the other terms, we focus on I 4,1

J := R 2 l ′ I 2 4 dw ≤ 2k R×[0, 1 4 ] Φ 2 (x) g ′ tx 1 + w 2 1 + (l ′ ) 2 + ω s (w 1 ) + w 1 -g ′ tx 1 + w 2 1 + (l ′ ) 2 + w 1 2 dt,
where, as before, we set x := (w 2 -l ′ )/ 1 + w 2 1 + (l ′ ) 2 . Then we use a version of Lemma II.2. in [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF] extended to all types of powers of the integration weight to conclude that:

J ≤ k 1 + w2 1 + (l ′ ) 2 g ′ ( w1 + tz ω(t, z, w1 )) -g ′ ( w1 ) 2 dtdzd w1 ,
where ω(t, z, w1 ) = ω(w 1 (t, z, w1 )). At this point, we can follow the proof of Theorem 2.1.1 in [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF] that states the continuity of the translation operator in L p . The only difference is that the term tz ω(t, z, w1 )) itself depends on the integration variables. This dependence problem is overcame by noting that

∀η > 0, ∃δ > 0 s.t. |tz ω(t, z, w1 ))| ≤ s 4 < δ, ∀(t, z, w1 ) ∈] -1, 1[× 0, 1 4 × R,
this in turn implies that on the set of continuity points of g ′ , one has

g ′ ( w1 + tz ω(t, z, w1 )) -g ′ ( w1 ) < η 3 ,
and the rest follows exactly as in Theorem 2.1.1 in [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF].

Convergence

Now we state the existence and uniqueness of the regularised problem: find

v s ∈ W 1,2 0 (∂Π ′ l,s ) s.t. ∆v s = 0, in Π ′ l,s , v s = g, on ∂Π ′ l,s . (11) 
Proposition 3.2. For every fixed s ∈ [0, 1] there exists a unique weak solution v s ∈ W 1,2 0 (Π ′ l,s ) of problem [START_REF] Jäger | On the interface boundary condition of Beavers, Joseph, and Saffman[END_REF], satisfying

∀η > 0 ∃δ > 0 s.t. s < δ =⇒ v s -v W 1,2 0 (Π ′ l ) < η, where v s is extended by g in Π ′ l \ Π ′ l,s .
The proof is a straightforward consequence of Proposition 3.1 applied to the regular domain Π ′ l,s and of Lemma 3.3 for the convergence part. If we now restrict ourselves to the case where g ∈ E(Π ′ l ), this latter space being dense in

W 1,2 1 2 (Π ′ l ) (see for instance Theorem I.1 in [9]
), we get more regularity, namely:

Lemma 3.1. If g ∈ E(∂Π ′ l ) then v s , the unique solution of problem (11), belongs to H 2 loc (Π ′ l,s ) for every fixed s ∈]0, 1]. Proof. It is easy to show that if g ∈ E(∂Π ′ l ), then R s (g) ∈ E(Π ′ l )
and thus by standard interior regularity results one gets that ṽs := v s -R s (g), which belongs to Ẇ 1,2 0 (Π ′ l,s ), is actually in H 2 loc (Π ′ l,s ) [START_REF] Evans | Partial differential equations[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF]. Moreover because of the Dirichlet condition and the C ∞ regularity of the boundary, the regularity of ṽs can be extended up to the boundary by the same method.

Weighted Rellich estimates

Above, we constructed the tools necessary to adapt the very weak solutions presented in Chap. 5 in [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF], to the weighted context.

Proposition 3.3. Let s ∈]0, 1] be fixed. If g ∈ E(Π ′ l,s ) then v s ∈ H 2 loc (Π ′ l,s
) and one has moreover

∂ ν v s W 0,2 1 2 (∂Π ′ l,s ) ≤ k g W 1,2 1 2 
(∂Π ′ l,s ) .

The operator T defined from E(Π ′ l,s ) as

T (g) = ∂ ν v s is extended by continuity into a mapping from W 1,2 1 2 (∂Π ′ l,s ) on W 0,2 1 2 
(∂Π ′ l,s ) and one has that

T (g) W 0,2 1 2 (∂Π ′ l,s ) ≤ k g W 1,2 1 2 (∂Π ′ l,s ) ,
where the constants k do not depend on l.

Proof. We rotate again Π ′ l,s by π/4 radians to switch to the chart (z 1 , z 2 ): the boundary of ∂ Π′ l,s is expressed as (z 1 , a s (z 1 )). We set the partition of unity,

+∞ r=0 ϕ r (z) = 1, ∀z ∈ Π ′ l,s ,
the functions ϕ r being defined as:

                     ψ r := e - " ρ-2 r ρ-2 r-1 " 2 ½ [2 r-1 ,2 r ] (ρ) + ½ [2 r ,2 r+1 ] (ρ) + e - " ρ-2 r+1 ρ-2 r+2 « 2 ½ [2 r+1 ,2 r+2 ] (ρ), r ≥ 1, ψ 0 := ½ [0,2] (ρ) + e - " ρ-2 ρ-4 " 2 ½ [2,4] (ρ), ϕ r := ψ r r+1 j=r-1 ψ j , ∀r ≥ 1, ϕ 0 := ψ 0 ψ 0 + ψ 1 , (12) 
where by ½ S we denote the characteristic function of a given set S. Then we define h r := (0, -ϕ r (z)ρ(z)), and h := +∞ r=0 h r .

Thanks to Proposition 3.1, v s ∈ H 2 loc ( Π′ l ′ ,s ); one is allowed to set locally the Rellich formula ( [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF], p. 245). When adapted to the Laplace operator, it reads:

∂ Π′ l,s ((h r • ν) Id 2 -(h ⊗ ν + ν ⊗ h)∇v s , ∇v s ) dσ(z) = Π′ l ′ ,s (div h r Id 2 -(∇h r + (∇h r ) T )∇v s , ∇v s ) dz + Π′ l ′ ,s (h r • ∇v s )∆v s dz. We have that (ν, h r ) = ϕ r (z)(1 + (a ′ s ) 2 ) -1 2 ρ(z) ≥ kϕ r ρ(z) (13) 
because |a ′ s | < 1. Developing the boundary term in normal (ν) and tangent (τ ) directions, one has that, in fact,

∂Π ′ l,s (h r • ν)(∂ ν v s ) 2 + 2(h r • τ )∂ τ v s ∂ ν v s -(h r • ν)(∂ ν v s ) 2 dσ(z) = - Π′ l ′ ,s (div h r Id 2 -(∇h r + (∇h r ) T )∇v s , ∇v s ) dz.
The first term in the r.h.s. above is estimated from below thanks to [START_REF] Jäger | Asymptotic analysis of the laminar viscous flow over a porous bed[END_REF], the second and the third ones by their absolute value, giving:

∂Π ′ l,s ϕ r (z)ρ(z)(∂ ν v s ) 2 dσ(z) ≤ ∂Π ′ l,s 2ϕ r ρ(z)(|∂ τ v s ||∂ ν v s | + (∂ ν v s ) 2 ) dσ(z) - Π′ l ′ ,s ( div h r Id 2 -(∇h r + (∇h r ) T ) ∇v s , ∇v s ) dz.
Then we sum with respect to r and apply the Beppo-Levi theorem for the boundary terms. For the interior r.h.s. above, due to the specific choice of cut-of function in [START_REF] Jäger | On the roughness-induced effective boundary condition for an incompressible viscous flow[END_REF], one can pass to the limit with respect to the summation index r applying the Lebesgues theorem. These justifications allow us to write

Π′ l ′ ,s ρ(z)(∂ ν v s ) 2 dσ(z) ≤ ∂ Π′ l,s 2ρ(z) |∂ ν v s ||∂ τ v s | + (∂ ν v s ) 2 dσ(z) - Π ′ l,s div 0 ρ Id 2 -(∇ + ∇ T ) 0 ρ ∇v s , ∇v s dz,
note that it is important here that the derivatives of h contain only ρ but no cut-of function, this explains why we don't estimate the interior terms before summing over r. By Cauchy-Schwartz one gets that

∂ ν v s 2 W 0,2 1 2 (∂ Π′ l,s ) ≤ k g W 1,2 1 2 (∂ Π′ l,s ) ∂ ν v s W 0,2 1 2 (∂ Π′ l,s ) + v s W 1,2 0 ( Π′ l ′ ,s )
Thanks to the Young inequality and Proposition 3.1, one obtains the first estimate of the claim. Because the r.h.s. only depends on the W 1,2

(∂Π ′ l,s )-norm, the result can be extended to every function g belonging to W 1,2 

∂ ν v s W 0,2 1 2 (∂Π ′ l,s ) ≤ k g W 1,2 1 2 (∂Π ′ l ) , (ii) there exists ̟ ∈ W 0,2 1 2 (∂Π ′ l,s ) s.t. ∂ ν v s ⇀ ̟, in W 0,2 1 2 
(∂Π ′ l,s ), (iii) for every function u ∈ W 1,2 0 (Π ′ l ) one has at the limit s ≡ 0, the Green's formula:

Π ′ l ∇v • ∇u dy = ∂Π ′ l ̟u dσ(y),
where v is the solution of problem [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace[END_REF].

Proof. Part (i) comes from Proposition 3.3 combined with Lemma 3.3. Again we approximate

g ∈ W 1,2 1 2 
(∂Π ′ l ) by g δ ∈ E(∂Π ′ l ) and we call v δ s the unique solution of problem [START_REF] Jäger | On the interface boundary condition of Beavers, Joseph, and Saffman[END_REF] with data g δ given on Π ′ l,s . By continuity of the solution of problem [START_REF] Jäger | On the interface boundary condition of Beavers, Joseph, and Saffman[END_REF] with respect to the data, one easily shows that

∇(v δ s -v s ) L 2 (Π ′ l,s ) ≤ k R s (g δ ) -R s (g) W 1,2 0 (Π ′ l,s ) ≤ k ′ g δ -g W 1,2 1 2 (∂Π ′ l,s ) ≤ k ′′ g δ -g W 1,2 1 2 (∂Π ′ l )
thanks to the weighted Rellich estimates above, one has also that

∂ ν v δ s -∂ ν v s W 0,2 1 2 (∂Π ′ l ) ≤ k g δ -g W 1,2 1 2 (∂Π ′ l )
.

And because g δ is regular, v δ s ∈ H 2 loc (Π ′ l,s ). This allows us to write the Green's formula for every h ∈ D(Π ′ l,s ):

Π ′ l,s ∇v δ s ∇h dy = ∂Π ′ l,s ∂ ν v δ s h dσ(y)
Thanks to strong convergence shown above, one can let δ go to the limit and get:

Π ′ l,s ∇v s ∇h dy = ∂Π ′ l,s ∂ ν v s h dσ(y) (14) 
note that working only with W 1,2 (∂Π ′ l,s ) one can not write directly the Green's formula: v s is not regular enough. Thanks to the last estimate of Lemma 3.3, one has that

lim s→0 Π ′ l,s ∇v s ∇h dy = Π ′ l ∇v∇h dy
Thus a limit for the boundary term in the r.h.s. of ( 14) exists. We express the boundary term for a fixed s in Π′ l ′ ,s in z coordinates, and we choose h to be only a function of z 1 on the boundary. Moreover ν := (sgn(z 1 ), -1) is the limit outward normal, (resp. νs := (a ′ (z 1 ), -1)) and we write

lim s→0 R ∇v(z 1 , a s (z 1 )) • νh(z 1 ) dz 1 = Π ′ l ∇v∇h dy + + lim s→0 R ∇v(z 1 , a s (z 1 )) • {ν -νs }h(z 1 ) dz 1 .
The last term can be estimated through the Cauchy-Schwartz inequality

R ∇v(z 1 , a s (z 1 )) • {ν -νs }h(z 1 ) dz 1 ≤ g W 1,2 1 2 (∂Π ′ l ) (sgn -a ′ s )h W 0,2 -1 2 (∂Π ′ l )
Applying the Lebesgues theorem, the last term in the latter r.h.s. goes to zero. Indeed, note that, by Poincaré-Wirtinger arguments, there exists a constant k s.t.

h W 0,2 -1 2 (∂Π ′ l ) ≤ k h W 1,2 0 (Π ′ l )
.

By density and continuity arguments, one extends the Green's formula to all functions in W 1,2 0 (Π ′ l ).

Proposition 3.5. Let T be the linear continuous operator from W 1,2

1 2 (∂Π ′ l ) on W 0,2 1 2 
(∂Π ′ l ) s.t. T (g) = ∂ ν v where the normal derivative is to be understood as a weak limit exhibited above. Then T is extended as a map from W 0,2

-1 2 (∂Π ′ l ) on W -1,2 -1 2 (∂Π ′ l ) where W -1,2 -1 2 (∂Π ′ l ) = (W 1,2 1 2 (∂Π ′ l )) ′ . Proof. W 1,2 1 2 (∂Π ′ l ) is dense in W 0,2 -1 2 (∂Π ′ l ). Let g, h be two functions of W 1,2 1 2 (∂Π ′ l ) such that ∆u = 0, in Π ′ l , u = g, on ∂Π ′ l ,
and ∆v = 0, in Π ′ l , v = h, on ∂Π ′ l .
Then the Green's formula from Proposition 3.4 applies twice, giving

∂Π ′ l u( ∂ ν v ) dσ(y) = ∂Π ′ l ( ∂ ν u )v dσ(y).
Thanks to the Rellich estimates, one then gets

∂Π ′ l ( ∂ ν u )h dσ(y) ≤ k g W 0,2 -1 2 (∂Π ′ l ) h W 1,2 1 2 (∂Π ′ l ) , which gives that T (g) W -1,2 -1 2 (∂Π ′ l ) ≤ k g W 0,2 -1 2 
(∂Π ′ l ) , and density arguments complete the proof.

Weighted dual estimates on the normal derivatives

We now return to the study of the vertical boundary layer corrector that solves problem [START_REF] Bresch | Towards implicit multi-scale wall laws[END_REF]. Thanks to Proposition 3.5, we derive one of the key point estimates of the paper: Proposition 3.6. There exists a unique solution ξ in ∈ W 1,2 0 (Π), of problem [START_REF] Bresch | Towards implicit multi-scale wall laws[END_REF]. Moreover there exists a constant k that does not depend on l s.t.

∂ ν ξ in W -1,2 -1 2 (∂Π ′ l ) ≤ k 1 l 1-1 2M ,
where the constant M is defined as in Theorem 2.1.

Proof. The proof is a straightforward application of Proposition 3.5:

∂ ν ξ in W -1,2 -1 2 (∂Π ′ l ) ≤ k ξ in W 0,2 -1 2 (∂Π ′ l ) .
As ξ in is at least C 0 inside the domain, we use the point-wise L ∞ estimates from Theorem 2.1 which give:

ξ in 2 W 0,2 -1 2 (∂Π ′ l ) ≤ k ′ +∞ l 1 ρ 3-1 M dρ.
That provides the desired result.

Remark 3.3. This result express the decrease of the normal derivative of ξ in on a vertical interface located at y 1 = l. These estimates improve the convergence rate obtained in Proposition 4 in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] by a factor of almost 1/l. Indeed we consider here the

W -1,2 -1 2 (∂Π ′ l ) norm,
while in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], only the W -1 2 ,2 0 (∂Π ′ l ) norm was used. In the rest of the article we imbed and exploit the result above into the macroscopic very weak setting.

Correspondence between macro and micro Sobolev norms

In [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], a correspondence was shown between H

1 2 0 (Γ in ∪ Γ out ) and a subspace of W 1 2 ,2 0 (∂Π l ), we extend it here between H 1 0 (Γ ′ in ∪ Γ ′ out ) and a subspace of W 1,2 1 2 
(∂Π ′ l ) test functions. In what follows the same could be written for Γ

′ out . Taking v ∈ H 1 0 (Γ in ′ ) we set ṽ 1 ǫ , x 2 ǫ = ṽ 1 ǫ , y 2 = v(0, x 2 ), ∀x 2 ∈ [0, 1],
and we extend ṽ by zero on ∂Π ′ l . Note that this makes sense because v is zero at x 2 = 0 and x 2 = 1, so that one has Lemma 4.1. For a given function v ∈ H 1 0 (Γ in ′ ) and ṽ defined above, the following equivalence of the Sobolev trace norms occurs:

ṽ W 1,2 1 2 (∂Π ′ l ) ≤ k v H 1 0 (Γ in ′ ) ≤ k ′ ṽ W 1,2 1 2 (∂Π ′ l )
where the constants k, k ′ do not depend on ǫ.

Proof. We start from the macroscopic side, the other way follows the same.

Γ in v 2 (0, x 2 )dx 2 = ǫ 1 ǫ 0 v 2 (0, ǫy 2 )dy 2 = ǫ 1 ǫ 0 ṽ2 1 ǫ , y 2 dy 2 ≤ ǫ sup y 2 ∈[0, 1 ǫ ] 1 + y 2 2 + 1 ǫ 2 ṽ 2 W 1,2 1 2 (E ′ 1 ǫ ) ≤ k ṽ 2 W 1,2 1 2 (∂Π ′ l )
where the constant k is obviously independent on ǫ. Owing that ∂ y 2 ṽ = ǫ∂ x 2 v, the derivative part is shown similarly.

Very weak estimates for boundary layer and wall law approximations

Turning again to the macroscopic error estimates, one defines the error r 1,∞

ǫ := u ǫ -u 1,∞ ǫ
where u ǫ is the exact solution of problem (2) and u 1,∞ ǫ the boundary layer approximation proposed in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. It satisfies the set of equations:

                   ∆r 1,∞ ǫ = 0, in Ω ǫ r 1,∞ ǫ = 0, on Γ ǫ r 1,∞ ǫ = -ǫ ∂u 1 ∂x 2 (x 1 , 0) β -β + ξ in x 1 ǫ , 1 ǫ + ξ out x 1 -1 ǫ , 1 ǫ , on Γ 1 , ∂ ν r 1,∞ ǫ = -∂ ν ξ in 1 ǫ , x 2 ǫ on Γ out , ∂ ν r 1,∞ ǫ = -∂ ν ξ out 1 ǫ , x 2 ǫ on Γ in . (15) 
In order to improve L 2 (Ω 0 ) estimates obtained in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], we use the material above to prove the main result of this paper:

Theorem 5.1. There exists a unique solution r 1,∞ ǫ ∈ H 1 (Ω ǫ ) of problem [START_REF] Kufner | Weighted Sobolev spaces[END_REF]; it satisfies the estimate:

r 1,∞ ǫ L 2 (Ω 0 ) ≤ kǫ min( 3 2 +α,2-1 2M ) ,
the constants α and M being defined in Theorem 2.1.

Proof. For any given function F ∈ L 2 (Ω 0 ), we solve the regular problem:

find v ∈ H 1 D (Ω 0 ) := {u ∈ H 1 (Ω 0 ) s.t. u = 0 on Γ 0 ∪ Γ 1 } such that      -∆v = F, in Ω 0 , ∂ ν v = 0, on Γ ′ in ∪ Γ ′ out , v = 0, on Γ 0 ∪ Γ 1 .
According to Theorem 4.3.1.4, p. 198 [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]

, v ∈ H 2 (Ω 0 ) ∩ H 1 D (Ω 0 ) so that v ∈ H 1 (∂Ω 0 ) and, thanks to boundary conditions on Γ 0 ∪ Γ 1 , v ∈ H 1 0 (Γ in ∪ Γ out ).
We are now in the position to apply the Chapter 5 of [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF] to write that:

Ω 0 r 1,∞ ǫ F dx = -r 1,∞ ǫ , ∂ ν v Γ 0 ∪Γ 1 + ∂ ν r 1,∞ ǫ , v Γ in ∪Γout ,
where by the brackets we denote the duality pairing H -1 , H 1 0 (Γ in ∪Γ out ) and by the parentheses we denote the scalar product in L 2 (Γ 0 ∪ Γ 1 ). By standard interior regularity results one easily gets that ξ in ∈ H 2 loc (Π) (resp. ξ out ∈ H 2 loc (Π)) so that the normal derivatives

∂ ν ξ in 1 ǫ , • ǫ ∈ L 2 (0, 1), resp. ∂ ν ξ out 1 ǫ , • ǫ ∈ L 2 (0, 1) .
for every fixed ǫ. Thus the duality pairing becomes an integral:

∂ ν r 1,∞ ǫ , v = - Γout ∂ ν ξ in 1 ǫ , x 2 ǫ v(x)dσ(x) - Γ in ∂ ν ξ out 1 ǫ , x 2 ǫ v(x)dσ(x) = -ǫ 1 ǫ 0 ∂ ν ξ in 1 ǫ , y 2 ṽin 1 ǫ , y 2 + ∂ ν ξ in 1 ǫ , y 2 ṽout 1 ǫ , y 2 dy 2 ≤ ǫ ∂ ν ξ in W -1,2 -1 2 (∂Π ′ 1 ǫ ) ṽout W 1,2 1 2 (∂Π ′ 1 ǫ ) + ∂ ν ξ out W -1,2 -1 2 (∂Π ′ 1 ǫ ) ṽin W 1,2 1 2 (∂Π ′ 1 ǫ ) ≤ ǫ ∂ ν ξ in W -1,2 -1 2 (∂Π ′ 1 ǫ ) + ∂ ν ξ out W -1,2 -1 2 (∂Π ′ 1 ǫ ) v H 1 0 (Γ ′ in ∪Γ ′ out )
where ṽin and ṽout are the microscopic test functions associated to the trace of v on Γ ′ in ∪Γ ′ out as in section 4. One then concludes this part setting l = 1/ǫ in Proposition 3.6. The L 2 (Γ 0 ∪ Γ 1 ) scalar product has been estimated in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], using a priori estimates for the Γ 0 part whereas the Γ 1 part uses again L ∞ estimates from Theorem 2.1.

A direct consequence of this result is Theorem 5.2. The first order wall law solving

               ∆u 1 = 0, in Ω 0 , u 1 = U , on Γ 1 , u 1 = ǫβ ∂u 1 ∂x 2 , on Γ 0 , ∂ ν u 1 = 0, on Γ in ∪ Γ out , (16) 
satisfies the error estimate

u ǫ -u 1 L 2 (Ω 0 ) ≤ kǫ 3 2 ,
where the constant k is independent on ǫ.

The proof follows exactly the same line as in Theorem 5.3 in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF], but the result is improved thanks to the Theorem 5.1 above.

Numerical evidence

We define the rough bottom of the domain by setting f in (1) as:

f (y 1 ) = -1 + 1 2 sin(2πy 1 ), ∀y 1 ∈ [0, 1].
This is obviously a Lipschitz smooth function compatible with the hypotheses of the claims.

In what follows we look for a numerical validation of theoretical convergence results above: we compute for every fixed ǫ ∈ [0, 1] -u ǫ h a numerical approximation of u ǫ solving a discrete counterpart of problem (2).

u 1,∞ ǫ,#,h , the periodic full boundary layer approximation (it does not contain any vertical corrector) defined in (4) -u 1,∞ ǫ,h , the full boundary layer approximation including vertical correctors defined in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] u 1 h , the averaged wall-law presented in [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF], and u 0 the zero order approximation.

We use the finite element method code freefem++ [START_REF] Hecht | Laboratoire Jacques-Louis Lions[END_REF], in order to compute u ǫ h , β h , ξ in,h and ξ out,h . The P 2 Lagrange finite elements interpolation is chosen.

Microscopic correctors As β, ξ in and ξ out are defined on infinite domains, we have to truncate these and set up proper boundary conditions on the corresponding new boundaries. For β, this was analysed in [START_REF] Jäger | Asymptotic analysis of the laminar viscous flow over a porous bed[END_REF] so that we only need to solve

           -∆β L = 0, in Z + ∪ Γ ∪ P ∩ {y ∈ R 2 + y 2 < L}, β L = -y 2 , on P 0 , β L is y 1 -periodic , ∂ ν β L = 0, on {y 2 = L}.
The approximation β L is exponentially close to β with respect to L in the Dirichlet norm (see Proposition 4.2 [START_REF] Jäger | Asymptotic analysis of the laminar viscous flow over a porous bed[END_REF]). For the vertical correctors we set the domain Π

L := Π ∩ [-1, L] 2 (resp. Π L -:= Π -∩ [-L, 1
] 2 and we solve the problem

           -∆ξ L in = 0, in Π, ∂ ν ξ L in (0, y 2 ) = -∂ ν β (0, y 2 ), on E, ξ L in = 0, on B, ∂ ν ξ L in = 0, on {y 1 = L} ∪ {y 2 = L} =: G L , (17) 
the symmetric problem for ξ L out being omitted. By Proposition 4 in [START_REF] Bonnetier | Blood flow modelling in stented arteries: new convergence results of first order boundary layers and wall-laws for a rough neumannlaplace problem[END_REF] and Proposition 3.6 above, one easily deduces the convergence result: Proposition 6.1. There exists a unique solution ξ L in ∈ W 1,2 0 (Π L ) solution of problem [START_REF] Neuss | Effective laws for the poisson equation on domains with curved oscillating boundaries[END_REF], moreover one has

ξ L in -ξ in W 1,2 0 (Π L ) ≤ kL -α , ξ L in -ξ in W 0,2 -1 (Π L ′ ) ≤ kL -1+ 1 2M
where the constants k, k ′ are independent of L and α and M are defined as in Theorem 2.1.

Π L ′ is the restriction of Π L to R + × R + .
In figures 6 and 8, we display the meshes obtained after adaptative procedure, described below, for β L and ξ L out . The total number of vertices used in the meshes for discretising β L h , ξ L in,h and ξ L out,h are 39000, 78000 and 79000. In the simulation of β L h the horizontal top is set to L := 10. For ξ L in,h and ξ L out,h the vertical interface is set to L := 20. The contours of corresponding solutions β L h and ξ L out,h are displayed in figures 7, 9 and 10, whereas the normal derivative ∂ ν β L h and -∂ ν ξ L in,h are shown to coincide along {0} × [-3 4 , 1] in figure 3. We perform a single microscopic computation. Then we re-scale the boundary layer to the macroscopic domain setting We quantify the interpolation error with respect to ǫ.

β L ǫ,h (x) := β L h x ǫ , ξ L in,ǫ,h (x) := ξ L in,h x ǫ , ξ L out,ǫ,h (x) := ξ L out,h x ǫ , ∀x ∈ Ω ǫ .
(β L ǫ,h -β) • ǫ L 2 (Ω 0 ) ≤ √ ǫ β L h -β L L 2 (Z + ) + β L -β L 2 (Z + ) ≤ k √ ǫh s m β L H s (Z + ∪Γ∪P )
where s is a constant dependent on the boundary's regularity, and h m a fixed maximum mesh size on the microscopic level, independent on ǫ. In the same way one can set

(ξ L out,h -ξ out ) • ǫ L 2 (Ω 0 ) ≤ ǫ ξ L out,h -ξ L out L 2 (Π L -) + ξ L out -ξ out L 2 (Π L -) ≤ kǫ h 2 m ξ L out H 2,ν (Π L -) + kL ξ L out -ξ out W 0,2 -1 (Π L ′ -) ≤ k ǫ,
where ν is a real parameter depending on the angle of the corner of Π -at (0, f (0)), and H 2,ν the weighted space defined p.388 Definition 8.4.1.1 [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], that takes into account the corner singularity of second derivatives of ξ L out . These estimates give an upper bound on the convergence rate for the full boundary layer u 1,∞ ǫ , namely:

u ǫ h -u 1,∞ ǫ,h L 2 (Ω 0 ) ≤ u ǫ h -u ǫ L 2 (Ω 0 ) + u ǫ -u 1,∞ ǫ L 2 (Ω 0 ) + u 1,∞ ǫ -u 1,∞ ǫ,h L 2 (Ω 0 ) ≤ H 2 u ǫ H 2,ν (Ω ǫ ) + kǫ 3 2 , ( 18 
)
where H is a macroscopic mesh size presented in the next paragraph.

Rough solutions When computing numerical approximations of u ǫ , one has to play with 3 concepts that are interdependent: h the mesh-size, ǫ the roughness size, and corner singularities that depend on the shape of the domain.

In the periodic case considered in [START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF], and for f ∈ C ∞ (]0, 1]), in order to avoid that the roughness size goes under the mesh-size, one could discretise the solution on a mesh such that h ≤ c ǫ. Due to estimates on the interpolation error and H 2 (Ω ǫ ) regularity, one obtains a good numerical agreement for convergence rates between theoretical and numerical results (see [START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF]).

In the non-periodic setting, corner singularities occur near Γ out . In order to obtain convergent numerical approximations of u ǫ near Γ out , one should refine the mesh in the neighbourhood of (1, ǫf (1/ǫ)). At the same time, in the regular zones, the mesh-size should stil be refined at least linearly with respect to ǫ (as in the peridic setting [START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF]). This complicates the local size of elements with respect to the size of the mesh ([8] p.384). Thus, simply setting We plot in fig. 11, the meshes obtained thanks to our iterative scheme for ǫ ∈ { 1 2 , 1 3 }. In fig. 12, we display the corresponding solutions u ǫ h . Next, we construct boundary layers using microscopic correctors above. We compute the errors u ǫ h -u 0 , u ǫ h -u 1 , u ǫ h -u 1,∞ ǫ,#,h and u ǫ h -u 1,∞ ǫ,h in the L2 (Ω 0 ) norms, and display them as a function of ǫ in fig. 5. The numerical convergence rate, obtained by interpolating results above as a powers of ǫ, is displayed in table 1. Discussion When the vertical correctors are not present, the boundary layer approximation is not only less accurate but also the rate of convergence is less than first order, the difference is visible in L 2 (Ω 0 ) but is significant in the H 1 (Ω 0 ) norm. Nevertheless, and as explained above, when using a single microscopic computation of the correctors for every ǫ, it is not possible to get better convergence results than ǫ 3 2 . This is actually what we obtain for our more accurate approximation u 1,∞ ǫ,h . This validates our theoretical results. The surprising phenomenon that we are at this point not able to justify is the poor convergence rate of the wall law u 1 , that should according to our estimates be ǫ worse convergence rate than u 0 in the H 1 (Ω 0 ) norm. The results of Theorem 2.2 are fairly approximated for what concerns the H 1 (Ω 0 ) error of u 1,∞ ǫ,h .

• H 1 (Ω 0 ) ǫ u ǫ h -u 1,∞ ǫ,# u ǫ h -u 1,∞ ǫ u ǫ h -u 1 u ǫ h -u 0 1 
norm / approx. u ǫ h -u 0 u ǫ h -u 1 u ǫ h -u 1,∞ ǫ,#,h u ǫ h -u

Conclusion

Our approach provides an almost complete understanding of the non-periodic case for lateral homogeneous Neumann boundary conditions in the straight case, (no curvature effects of the rough boundary [START_REF] Neuss | Effective laws for the poisson equation on domains with curved oscillating boundaries[END_REF]). A forthcoming paper should adapt these results to the case mentioned in the introduction: a smooth boundary forward and backward the rough domain via domain decomposition techniques. Another extension to the Stokes system should follow as well. 
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 1 Figure 1: (macroscopic) Rough, smooth and (microscopic) cell domains

Lemma 2 . 1 .

 21 There exists a unique solution of problem (3). Moreover, lim y 2 →∞ β(y 1 , y 2 ) = β for every y 1 , and β := (0,1)

  vertical boundary is denoted by E := {y ∈ Π, y 1 = 0} and the bottom by B := ∪ +∞ k=0 {y ∈ P 0 ± ke 1 } (cf. fig 2). In what follows we will write Π ′ := R 2 + , B ′ := R + × {0} and E ′ := {0} × R + . For the rest of the paper, we define the

Figure 3 :

 3 Figure 3: Normal derivatives ∂ ν β L and ∂ ν ξ L out on E, the vertical interface

Figure 4 :

 4 Figure 4: Mesh sizes h min and h max as functions of ǫ

Figure 5 :

 5 Figure 5: Errors in the L 2 (Ω 0 h ) (left) and the H 1 (Ω ǫ h ) (right) norms with respect to ǫ

Figure 6 :

 6 Figure 6: The microscopic periodic cell after adaptative mesh refinement

Figure 7 :

 7 Figure 7: The microscopic periodic cell corrector β L

Figure 8 :

 8 Figure 8: The microscopic domain of ξ L out after adaptative mesh refinement

Figure 10 :Figure 11 :

 1011 Figure 10: A zoom near the corner singularity of the microscopic corrector ξ out,h

  Note that this result holds in fact for any polynomial of ρ and what follows could be extended as well to any weighted Sobolev space. One only needs to choose the proper scaling for the cut-off functions ϕ r with respect to the weight.

	1 2	(∂Π ′ l,s ) by density and continuity.
	Remark 3.2. Proposition 3.4. If (v s ) s∈[0,1] is a sequence of solutions of problems (11), then the next
	properties hold:	
	(i) There exists a constant k dependent neither on s nor on l such that

Table 1 :

 1 The errors convergence rates displayed as powers of ǫ

	1,∞
	ǫ,h

  1 2 , 1/3} using a decomposition method

	IsoValue	IsoValue
	0.024999	0.0249994
	0.0749991	0.0749995
	0.124999	0.124999
	0.174999	0.175
	0.224999	0.225
	0.274999	0.275
	0.324999	0.325
	0.374999	0.375
	0.424999	0.425
	0.474999	0.475
	0.525	0.525
	0.575	0.575
	0.625	0.625
	0.675	0.675
	0.725	0.725
	0.775	0.775
	0.825	0.825
	0.875	0.875
	0.925	0.925
	0.975	0.975

Figure
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: The rough solution computed for ǫ ∈ {

1 

2 , 1/3} using a decomposition method

. Observed in[START_REF] Bresch | High order multi-scale wall laws : part i, the periodic case[END_REF], u 1 performs even
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uniformly h := cǫ does not provide accurate convergence results. On the other hand, one aims to have a strong control on the mesh size far from the corner: for instance in these zones, the mesh-size could be fixed on a uniform grid. These considerations led us to use an overlapping Schwartz algorithm [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF]; we split Ω ǫ in two parts: Ω 0 is discretised with a structured grid of size H := kǫ γ (γ is discussed later), whereas a second domain reads

and contains the rough sub-layer. On Ω 1,ǫ we perform mesh adaptation in order to capture geometrical and corner singularities. The maximum/minimum mesh-sizes are set:

where h K is the diameter of triangle K in the triangulation T K of Ω 1,ǫ . At each step m of the Schwartz algorithm, we solve two problems. We set U m ǫ to be the solution of

and

and we iterate the procedure until

where tol is a constant set to 10 -10 . During this step both meshes are kept fixed.

Then we refine the sub-layer mesh T K in order to account the corner singularity. This step provides a new mesh-size distribution updating h min and h max . We use adaptative techniques presented p. 92 of the freefem++ reference manual [START_REF] Hecht | Laboratoire Jacques-Louis Lions[END_REF]. This procedure is compatible with the mesh requirements displayed in Theorem 8.4.1.6 p. 392 in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] and guarantees standard interpolation errors with respect to the mesh size.

We iterate these two steps: solve the Schwartz domain decomposition problem and then adapt the mesh. The iterative algorithm stops when h max < H. Through this algorithm we insure both a given mesh size H and a refined mesh near the corner.

We tested different values of γ where setting H = kǫ γ , k a is given constant, choosing γ ≥ 5 4 does no more change convergence results below. We plot in fig. 4, h max and h min as functions of ǫ. The adaptative process gives approximately h min ∼ cǫ 2.29 .