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Abstract – Recently, a new class of Space-Time Trellis Codes was 
proposed as having the best performance. These codes are 
‘balanced’ because they use the points of the constellation with 
the same probability. In this correspondence, we propose a new 
and simpler method than exisiting method to design these class 
for QPSK modulation and several transmit antennas. New and 
better balanced codes for 3 and 4 transmit antennas are also 
proposed. 
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systems, design method. 

1. INTRODUCTION 

Space Time Trellis Coded Modulation (STTCM) was 
introduced in 1998 by Tarokh et al. [1] by combining channel 
coding with the Multiple Input Multiple Output (MIMO) 
concept to improve the data rate and the reliability of wireless 
communications. Many performance criteria have been 
established to maximize both diversity and coding gain of 
STTC. The rank and determinant criteria for slow fading 
channels with the Euclidian distance and the product distance 
criteria for fast fading channels have been proposed in [1]. In 
[2] Chen introduced the trace criterion which governs the 
coding for systems with a great product of the numbers of 
transmit (Tx) and receive (Rx) antennas.  

Based on above criteria, many different STTC for 2 Tx 
antennas have been found by a systematic code search [3–6]. 
The performance study of these codes was carried out over 
slow and fast Rayleigh fading channels to identify the most 
efficient ones [7]. It has been shown that over slow fading 
channels, the codes constructed with the trace criterion give 
similar or even better results that the codes constructed with 
the rank and the determinant criteria. Over fast fading 
channels, “trace criterion codes” as Chen’s codes outperform 
the other tested codes. In the same way, some codes for 3 Tx 
antennas have been published in [5], [8]. One can remark that 
all the codes which achieve the best performance have the 
same property: they use the points of the constellation with the 
same probability if the data are generated by a binary 
memoryless source with equally probable symbols. Therefore, 
these codes where called “Balanced-STTC” (B-STTC) [9]. A 
first construction method of B-STTC has been proposed in [9-
11]. Thus, the search of good STTCs can be reduced to this 
class. In this paper, a new and simple method which can be 

easly generalised for 2n-PSK and nT transmit antenna is given. 
Besides, new Balanced STTC are presented with better 
performance than the previously published codes.  

The rest of the paper is organised as follows: section 2 
presents briefly the Space-Time Trellis Coding. In section 3, 
the performance criteria of STTC are reminded. In section 4, 
the properties of balanced codes are introduced. Examples of 
published balanced codes are given It is also shown that most 
of them are balanced. In section 5, a method to design B-
STTC is presented for QPSK modulation and nT transmit 
antennas. Finally, the paper compares the performance of 
published codes and new optimal balanced codes.  

2. SPACE TIME TRELLIS CODING 

We consider the general case of 2n-PSK space-time trellis 
encoder. Fig. 1 shows this encoder for n=2. 

 
Figure 1.  ST trellis encoder with 4-PSK and nT antennas.  

This encoder has one input block of n bits and ν memory 
blocks of n bits. At each time t ∈ℤ , the bits of a block are 

replaced by the n bits of the previous block. The thi  bit 
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ib − + , i = 1. . . n, of the thj  block, j = 1. . . (ν + 1), is 

associated to nT multiplier coefficients , 2n
k
i jc ∈ℤ , k = 1. . . nT, 



 

where nT is the number of transmit antennas. A ST trellis 
encoder is thus usually defined by its generator matrix C of   
nT × n(ν + 1) coefficients: 
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The encoder outputs for the kth antenna are computed as  
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and sent to the kth antenna. The modulated streams for all 
antennas are then transmitted simultaneously. 

3. DESIGN CRITERIA 

Design criteria have been proposed in [1-2] to exploit the 
spatial diversity and to offer optimal coding gain. Cases of 
slow and fast Rayleigh fading channels are mainly studied. 

The transmitted nT dimension symbols 
1 2

1... T

f

T
n

t t t t Ls s s s+ +
 =    , 

where [·] T denotes the transpose operator, are assumed to be 
grouped in a frame of length Lf . For each case, criteria are 
derived from the minimization of the Pairwise Error 
Probability (PEP), i.e. the probability of transmitting the        

nT × Lf dimension coded frame 1...
f

T

t t t t Ls s s s+ +
 =
  and 

deciding erroneously in favour of another nT × Lf  dimension 

coded frame 
1 2

1... T

f

T
n

t t t t Le e e e+ +
 =    . The nT × nT product 

matrix A = B.B∗∗∗∗  is introduced, where B∗∗∗∗ denotes the 
hermitian of the nT × Lf  difference matrix B = E − S. 
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For slow Rayleigh fading, if rank(A).nR ≤  3, two criteria 
are proposed [1], [12]:  

- A has to be a full rank matrix for any codeword c and 
e.  

- The coding gain is given by: Rn

d

N( d )dη −=∑  where 

N(d) is defined as the average number of error events 
with determinant d. The best code must has the 
minimum value of η . 

In [2], Chen proposes a new criterion valid in the case of 
slow and fast Rayleigh fading channels if rank(A)nR > 3. 
Under this assumption, the PEP is minimized if the sum of all 
the eigenvalues of the product matrix is maximized. For a 
square matrix, the sum of all the eigenvalues is equal to the 
trace of the matrix A. 
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For each pair of coded frames, the matrix A and then tr(A) 
can be computed.The minimum trace is the minimum of all 
these values tr(A). When rank(A)nR > 3, the minimization of 
the PEP amounts to use a code which has the maximum value 
of the minimum trace. In [12], it is also stated that to minimize 
the FER, the number of error events with minimum trace has 
to be minimized. 

4. BALANCED CODES 

4.1. What is  a ‘balanced code’?  

This concept of ‘balanced codes’ has been proposed in     
[9-11]. It is based on the observation that the best STTC 
proposed in the literature present the same property: the 
generated symbols of the MIMO constellation are equally 
probable.  

If the binary input data is generated by a memoryless binary 
source S = {0, 1} with equally probable symbols, then, in the 
case of 2n-PSK modulation, from a given state                      

X = [ ]1 2 2... ∈ℤT L
Lx x x  of the L=n(v+1) length shift register 

realized by (v+1) blocks of n bits, the MIMO symboles          

Y =  1 2 2
...  ∈  ℤ T

nT

T n
ny y y  generated by the STTC encoder 

shown in fig. 1 is 

Y = G X  (5) 

where G is the generator matrix (1). This is a deterministic 
relation. Therefore, the STTC is defined by a map :   

2 2
: T

n

nLΦ →ℤ ℤ   (6) 

which associates to the state X a unique codeword Y. Note that 

2 2
( ) T

n
nLΦ ⊆ℤ ℤ  represents the set of generated codewords Y.  

By definition, a STTC is balanced, if and only if each 

generated codeword 2( )LY ∈ Φ ℤ  has the same number of 
occurrences:  

0 2
T
n

n*n(Y ) n ,  Y= ∈ ∀ ∈ℕ ℤ    (7) 

If 2 2
( )Φ =ℤ ℤ T

n
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column of the matrix G. 
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T
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Φ
Φ =

ℤ
ℤ   and each 2( )LY ∈ Φ ℤ  

has the same number of occurrences, the code is half 
balanced.  



 

The number of different codewords generated by relation 

(5) is given by 2( ( ))Lcard Φ ℤ  which is a power of 2. 

 Due to the random memoryless source S = {0, 1} with 
p(0)=p(1)=1/2, from a given state X, the shift-register  the 
encode can has only 2n  equally probable next states. The 
matrix T of the transition probabilities between these states 
corresponds to a Markov chain. Due to the symmetry of the 
matrix T, the steady-state probabilities of the states X are all 
equal. For a balanced code, by using (5), the generated 
codewords Y are also equally probable. In other words, the 
generated symbols of the constellation are equally probable. 

4.2. Published codes  

Most of the good published and best STTCs belong to the 
class of balanced codes. In this section, a no exhaustive list of 
known codes is presented for some configurations of STTCs. 
In table I, several known QPSK codes, 2 transmit antennas 
with 4-state and 16 states are presented. It is easy to verify that 
all these codes are fully balanced. For each 4-state code given 
in Table 1, the 4 columns Gj of the generator matrix G create 

the group 2
4ℤ  i.e. 

4
2
4

1

( ) mod  4 / {0,1}
j

j j j
j

x G x
=

=

  ∈ = 
  
∑ ℤ . 

Therefore, for each 4
2X ∈ℤ , a different 2

4Y ∈ℤ  is generated, 

so n(Y)=1 2
4 Y∀ ∈ℤ . The 16-state code are also fully 

balanced and each point of constellation, is used 4 times, so 
n(Y)=4 2

4 Y .∀ ∈ℤ  

TABLE  I. SOME KNOWN QPSK B-STTC (nT = 2)  

Code 4-state 16-state 

Tarokh 
0 0 2 1

2 1 0 0

 
 
 

 
0 0 2 1 0 2

2 1 0 2 2 0

 
 
 

 

Chen (rank 
criterion) 

0 2 1 0

2 2 0 1

 
 
 

 
0 2 1 1 2 0

2 0 2 1 2 2

 
 
 

 

Chen (trace 
criterion) 

0 2 1 2

2 3 2 0

 
 
 

 
1 2 1 2 3 2

2 0 3 2 2 0

 
 
 

 

Baro 
2 0 1 3

2 2 0 1

 
 
 

 
2 0 2 1 0 2

2 1 0 0 0 2

 
 
 

 

Hong, 
Fàbregas 

0 2 2 3

2 2 1 2

 
 
 

 
2 0 2 3 2 2

2 2 1 2 0 2

 
 
 

 

Jung/lee 
2 0 3 2

2 2 1 2

 
 
 

 
2 0 2 3 3 2

2 1 0 2 2 2

 
 
 

 

Table II shows some QPSK STTCs for 3 and 4 Tx antennas 
proposed by Chen in [8] and Bernierin  [13]. In this case, fully 
balanced codes generate respectively the elements of 3

4ℤ  and 
4
4ℤ  with the same number of occurances: n(Y)=1, 3

4Y∀ ∈ℤ  

and 4
4Y∀ ∈ℤ . The codes noted by “NB” are no-balanced, 

those noted by “B” are balanced and those noted by  ‘”FB” 
are fully balanced. 

TABLE  II. SOME KNOWN QPSK STTC (nT = 3 and nT = 4) 

nT States Code G  

3 16 Chen (trace 
criterion) 

1 2 1 2 3 2

2 0 3 2 2 0

1 2 2 0 1 2

 
 
 
  

 B 

  Chen (rank 
criterion) 

0 2 0 1 2 2

0 0 1 2 3 3

2 0 2 0 1 3

 
 
 
  

 NB 

 64 Chen (trace 
criterion) 

0 2 3 2 3 0 3 2

2 2 1 2 3 0 2 0

2 0 0 2 2 3 1 1

 
 
 
  

 FB 

 256 Bernier 

2 0 2 0 3 2 2 2 0 2

2 2 3 0 0 2 2 1 2 2

3 2 0 2 0 2 2 1 2 0

 
 
 
  

 FB 

4 16 Chen (trace 
criterion) 

1 2 1 2 3 2

2 0 3 2 2 0

1 2 2 0 1 2

1 2 2 0 3 2

 
 
 
 
 
  

 B 

 64 Chen (trace 
criterion) 

0 2 3 2 3 0 3 2

2 2 1 2 3 0 2 0

2 0 0 2 2 3 1 1

1 2 2 0 2 1 3 2

 
 
 
 
 
  

 NB 

 128 Bernier 

2 0 2 3 2 0 0 2 1 0

3 2 1 2 2 2 1 0 2 0

3 2 2 2 3 0 2 2 1 0

1 2 1 2 0 2 0 2 1 0

 
 
 
 
 
  

 FB 

There exists some no-balanced published codes which have 
good performance. However, it is possible to find better codes 
in the class of balanced codes. In fact, in a next section, for 
each published no-balanced code, an example of a balanced 
code which better performance is given.  

5. A GENERAL METHOD TO DESIGN QPSK 
BALANCED STTC WITH nT ANTENNAS 

5.1. General properties of balanced codes 

Property 1: If a MIMO code wih a L-length shift register is 
fully balanced then L ≥ Lmin = n.nT. One can observe that 

2
T
n

n
minL dim( )= ℤ . 

Property 2: Let us consider a fully balanced MIMO code 
with a L-length shift-register. Then, for any additional column 
matrix 1 2

T
n

n
LG + ∈ℤ , the resulting MIMO code with a (L+1)-

length shift-register is also balanced.   

Property 3: A code matrix G with Lmin-length shift register is 
fully balanced if and only if the set of generated MIMO 

symbols min

min 2( )L
LH = Φ ℤ  is the group 

2
T
n

n
ℤ  with i.e. :  



 

{ }
min

2
1

( ) mod  2 / 0,1   T
n

j L
nn

j j j
j

x G x
=

=

   ∈ = 
  
∑ ℤ . In this case, the 

set of columns  {G1, …, 
minLG  } is a base of 

2
T
n

n
ℤ . 

Property 4: [ ] 20 2 TnC = ℤ  is a subgroup of 4
Tn

ℤ  such as 

[ ]0v v, v C .= − ∀ ∈  Each element [ ]0v C∈  can be written as 

2v p= , with 2 .Tnp∈ℤ  The coset [ ] [ ]0pC p C= +  is called 

“relative to v ”. 

5.2. Design of QPSK fully balanced codes 

Due to Property 2, it is enough to design fully balanced codes 
with L = Lmin. This new method to design fully balanced codes 
must respect the  rules:  

1. Choose a first no null column [ ]1 1 02G p C .= ∈  Due to 

Property 4, G1 = -G1, so { }1 10,H G=  is a subgroup of 

4 .Tn
ℤ  

2. Each new chosen column of G  must contribute to create a 

new subgroup Hi+1 of 4
Tn

ℤ  with card(Hi+1) = 2card(Hi).  

Thus, in order to obtain a fully balanced STTC, the columns 
of G can be selected as follows:  

- if i<L min columns of G  have been already chosen in 4
Tn

ℤ  and 

{ }
1

 mod  4 / 0,1
j i

j j j i
j

x G x H
=

=

  ∈ = 
  
∑  is a subgroup of 4

Tn
ℤ , 

then the column Gi+1  of G must belong to 4 \Tn
iHℤ  and must 

be selected in cosets relative to vectors which belong to 

[ ]0C ∩Hi. This method ensures that the created set 

1 1( )i i i iH H H G+ += +∪  is a subgroup of 
2
T
n

n
ℤ . The algorithm 

ends when i = Lmin.  

Remark : It is easy to note that to create a fully balanced 
code with Lmin-length shift register, the opposite elements of 
chosen and generated elements must not be selected because 
the sum between one element and its opposite is the identity 
element. Thus, in the method in [11], after the choice of one 
vector, the opposite of this element must be discarded (i.e. it 
must not be further selected). The new method has the 
advantage that for each chosen element, its opposite is also 
generated and so, no vector must be discarded. Thus, the 
construction of B-STTC is simplier than the method in [11] 

In order to obtain balanced codes (not necessary fully 
balanced) the algorithm can be stopped at i0 ≤ Lmin – 2. The 
obtained code is balanced but not fully balanced. One can add 
a new column 

0 01 4
Tn

i iG \ H .+ ∈ℤ  Once again, the obtained code 

is balanced but not fully balanced. If necessary, several 

elements of 
0i

H can also be added as columns of the matrix G. 

The resulting code is also balanced but not fully balanced. 

5.3. Example : design of fully balanced QPSK STTC with 2 
transmit antennas  

The partition of 2
4ℤ  in 4 cosets is given in table III. 

TABLE III : PARTITION OF 2
4ℤ IN COSETS 

0 0 2 2 
0

0

C
 
 
 

  
0 2 0 2 

0 0 2 2 
0

1

C
 
 
 

  
1 3 1 3 

1 1 3 3 
1

0

C
 
 
 

  
0 2 0 2 

1 1 3 3 
1

1

C
 
 
 

  
1 3 1 3 

 
The algorithm used to generate a fully balanced code with 

L=Lmin is proceed as follows :  
In agrement with rule 1, the first no null vector G1 = 2p1 

must be selected in [0]C . Thus, the subgroup { }1 10,H G=  of 
2
4ℤ  is generated. At least one element of [ ]0C  must be chosen. 

Two types of  B-STTC were introduced in [11] :  

• Types I: codes with only 1 no null vector in [ ]0C .  

• Types II: codes with 2 no null vectors in [ ]0C .  

For type I codes:  

The second element G2 has to create a new subgroup  

2 1 2 1 2{0, , , }H G G G G= + . For this type of code, because no 

other element of [ ]0C  can be selected, therefore [ ]12 pG C∈ . 

The choice of G3 must create a new subgroup 

3 2 2 3( )H H H G= +∪   without adding a vector of [0]C . 

Therefore G3 must be also selected in [ ]1pC  among the two 

elements which do not belong to H2. Due to the combinations 
between G1, G2 and G3, H3 = [ ]1[0] pC C∪  is created. The last 

vector G4 is selected among the two no generated cosets, i.e. 
2
4 3\ .Hℤ  Thus, {G1, ... , G4} is a base of 2

4ℤ  and the matrix G 
of a fully QPSK B-STTC is obtained.  

For type II codes:  

 The matrix G of these codes have 2 no null columns         
G1, 2 [0] ,G C∈  so [ ]2 0H C= . It remains to select two different 

cosets between the 3 remaining cosets. In each chosen coset, 
one vector must be selected. Indeed, because 3 [0]G C∉ , 

3 [0] [0] 3( )H C C G= +∪  is a new subgroup of 2
4.ℤ  Finally, 

because 4 3,G H∉   2
4 3 3 4 4( ) .H H H G= + =∪ ℤ   



 

5.4. Example: design of fully balanced  QPSK STTC with 3 
transmit antennas 

For these codes, each generated element belongs to 3
4ℤ . It 

is possible to make the partition of the additive group 3
4ℤ  in a 

normal subgroup [ ]
3
20 2C = ℤ  of 3

4ℤ  and 7 cosets such as 

[ ] [ ]0pC p C= + with [ ]{ }3
2 \ 0 0 0 .

T
p∈ℤ  

In this case, there are three types of fully B-STTC [11]: 

• Types I: codes with only 1 no null vector in [ ]0
C .  

• Type II: codes with 2 no null vectors in [ ]0
C . 

• Type III: codes with 3 no null vectors in [ ]0
C . 

For type I codes:  

Only the first column G1=2p1 of G belongs to [ ]0
C . It 

generates {0, }.1 1H G= According to the rule 2, G2 must be 

chosen in the coset 
1[ ]pC relative to G1. Thus, {G2, G1+G2} 

which is a quarter of 
1[ ]pC  is also generated. Because no new 

element of [ ]0
C  is generated, the third column must be 

selected in the same coset 
1[ ]pC . After the choice of this third 

column 
13 [ ] 2\ ,pG C H∈ half of the coset 

1[ ]pC  and half of [ ]0
C  

are generated. There are two solutions to choose the 4th 
column: 

1) 
14 [ ] 3\ .pG C H∈  In this case, the cosets 

1[ ]pC  and [ ]0
C  are 

completely generated. The column G5 of G is selected in 
another coset. Then, two new cosets are generated and it 
remains four cosets to select the last column G6. 

2) G4 is chosen in the cosets relative to the two new 
generated vectors G2+G3=2p2 and G1+G2+G3=2p3 of 

[ ]0
C . After this choice, half of [ ]0

C and half of three cosets 

1[ ]pC , 
2[ ]pC  and 

3[ ]pC  are generated. The 5th vector G5 is 

selected in the not generated half of the cosets 
2[ ]pC  and 

3[ ]pC . After the choice of G5, [ ]0
C  and the three cosets are 

totally generated. The last column G6 is chosen in one of 
the four other cosets.  

For type II codes:  

 G1=2p1 and G2=2p2 generate { }2 1 2 1 20, , , .H G G G G= +  

The third column G3 of G is selected in one of the three cosets 

1[ ]pC , 
2[ ]pC  and 

1 2[ ]p pC ⊕  (where ⊕  is the sum modulo 2 ) 

relative to the 3 no null generated elements of [ ]0
C . After this 

choice, half of the selected coset and half of [ ]0
C  are 

generated. The choice of the last three columns is similar to 
the case of type I codes.  

For type III codes:  

In this case, 3 no null columns G1, G2 and G3 selected in 

[ ]0
C  generate entirely [ ]0

C . The 4th column of G is selected 

among one of the other cosets. After this choice, the whole 
coset is generated. The 5th column of G is selected in one of 
the 6 other cosets. After this choice, [ ]0

C  and three other 

cosets are generated. It remains four no generated cosets to 
selecte the last column G6 of the coding matrix G of a fully 
balanced code with L=Lmin. 

6. CODE PERFORMANCE  

In section 4.2. it was shown that many good published 
codes are balanced. Only two presented codes in Table II are 
not balanced :  
- The Chen’s code with 16 states, 3 transmit antennas 

obtained by using the rank and determinant criteria. 
- The Chen’s code with 64 states, 4 transmit antennas and 

obtained by using the trace criterion.   
A systematic computer search in the class of  fully balanced 

codes of type II and III with 16 states and 3 transmit antennas 
was carried out to detect better fully balanced codes. Table IV 
shows some parameters of the Chen’s code and of a new fully 
balanced code .  

TABLE IV. CODES BASED ON THE RANK AND DETERMINANT 
CRITERIA 

 Chen New code 

Generator 
matrix 

0 2 0 1 2 2

0 0 1 2 3 3

2 0 2 0 1 3

 
 
 
  

 

2 0 3 2 2 0

1 0 2 0 0 2

2 2 2 0 1 0

 

 
 
 
  

 

 NB FB 
Rank min 3 3 
Det min 32 32 

η 246.5 198.2 

The minimum rank, the minimum determinant and η  have 
been evaluated for a 8-bit input binary sequence. Both full-
rank generator matrices have the same minimum determinant 
but the new code has a lower η. According to [12], in the case 
of one receiving antenna, the new code must be better than 
Chen’s code because min{rank(A)}.nR ≤  3.   

In the same way, a systematic computer search in the class 
of balanced codes with 64 states has been effectuated to find 
code with greater trace than Chen’s codes for 3 and 4 transmit 
antennas. Table V present two new codes. The trace values  of 
these new balanced codes are respectively 32 and 40 versus 
28 and  38 for Chen’s code.  

The performance of the new STTCs and the best Chen’s 
code was evaluated by simulation. For each code, a frame of 
130 QPSK symbols was used. We assume that the channel 
fading coefficients are independent samples of a complex 
Gaussian process with zero mean and variance 0.5 per 
dimension. The simulation has been effectuated over slow 
fading channels. Fig. 2 shows the performance of the QPSK 
16-state codes with 3 transmit antennas and only 1 received 
antenna. In this case, rank and determinant criteria must be 



 

predominant. This new fully balanced code outperform to the 
corresponding best known code by Chen. 

TABLE V. CODES BASED ON THE TRACE CRITERION 

nT States Code G  2
mind  

3 64 
New 
code 

2 3 0 2 2 2 2 3

2 1 2 1 2 3 0 2

0 2 0 2 2 3 2 1

 
 
 
  

 FB 32 

4 64 New 
code  

2 0 2 0 1 2 2 0

1 2 1 2 3 2 1 2

1 2 1 2 2 0 3 2

3 2 2 0 2 0 1 2

 
 
 
 
 
  

 B 40 
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Figure 2. Performance of  QPSK STTC with 3 Tx  / 1 Rx antennas 
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Figure 3. Performance of  QPSK 64 states STTC with 3 Tx & 4 Tx   / 2 Rx 
antennas 

 

In fig 3. the performance of new codes with 64 states for  3 
and 4 transmit antennas is compared to corresponding Chen’s 
code given in Table II . The simulation is effectuated with 2 
receive antennas. For 3 and 4 transmit antennas, the new 
balanced code outperform the code prposed by Chen in [8].  

7. CONCLUSION 

In this paper, a new and simpler method to design QPSK B-
STTC for several antennas has been proposed. These codes 
generate the points of the MIMO constellation with the same 
probability. It has been shown that most of the good known 
codes belong to this class of codes. For good no balanced 
codes, balanced codes with better performance can be found. 
This method can be simply generalized for any 2n-PSK 
modulation, any number of transmit antennas and any number 
of states of the encoder. 
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