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ABSTRACT

A real environment identification system is basea observations which are often non
stationary. A mechanical machine generating acowstjnals or an underwater environment are
examples of systems characterized by non-statiosignals. Their analysis in the time-frequency
domain is well adapted so that it offers appropdastructures which are good candidates for the
information post-processing. The system architectsirdefined through three blocks (detection of
regions of interest, observations segmentation ssmhration, analytical characterization). This
architecture is mainly based on joint use of tirffrequency and local phase analysis. More
precisely, the phase information will be locallyabyzed, using generalized instantaneous moments,
on the time-frequency regions previously seledteahks to the
the time-frequency grouping algorithm.

This architecture permits an efficient scheme dlves the constraints brought by this type of
signals with a complex time-frequency behavior agdhe human operator to reduce his tasks in
the decision process. Examples from underwatenbeh@nderwater mammals vocalizations) will
prove the efficiency of the proposed approach.

. INTRODUCTION

The field of signal analysis is a very importargreént in a system of representation and/or
information extraction. Considering the general -stationary character of the observations
encountered in real applications, their analysignre-frequency domain constitutes the best suited
technique to identify the relevant structures fdoimation processing. There are a large number of
approaches developed in time-frequency analysid. fla spite of their diversity, it is commonly
used to classify the time-frequency methods@s-parametricor parametricrepresentations. The
non-parametric representations are mainly repreddny the Cohen’s class distribution [1]. There
are numerous other works attempting to providee€hiame-frequency visual information (see [2]
for some widely followed directions). In order tetter describe the time-frequency content of a
given class of signals, the parametric time-fregyemethods have been also introduced [2], [3].
While they are relatively efficient for a given sa class their adaptation to other signal clagses
very difficult and, sometimes, even impossible. @rample is the polynomial phase modeling [4]
which could be difficultly applied to analyze fastrying time-frequency structures.

A common deficiency of both types of TFRs is thargnally use of the phase information.
Namely, since the large majority of the methods meenly looking only for the instantaneous
frequency law (IFL; ie, the first derivative of tistantaneous phase law), the phase law remains
almost unexplored. The usual TFR ignores the plwasspite of its richness. For example, the
spectrogram is a magnitude time-frequency repratent

Recently, the phase in the time-frequency domainolmes to be studied thanks to the
complementary information about the analyzed sigmhich is brought out [5]. The idea is



straightforward : while the phase is one of thedlmental parameters of a signal, its exploitation
might lead to a more efficient characterization.

In this paper we propose the joint use of mageitiishe-frequency information and the phase
of the signal. The work context is the extractidntime-frequency information from uncertain
systems. Digital modulation identification and ams& of natural signals form both an uncertain
systems since the overall properties are unkndweir, €stimation being the purpose of the analysis.
Contrary to [4] the phase will be evaluated in dnginal time-domain with help of information
provided by the magnitude TFR. Proceeding in thesy,ywe show that the phase analysis will be
less affected by the noise or other componentitn#éime case of direct estimation of the phase.

The paper is structured as follows. In the secRowe present a short overview of the
conventional time-frequency tools. In the sectiowe investigate the properties of the phase in
analyzing time-frequency structures. In the seclowe describe the concept of time-frequency-
phase analyzer. The results provided in sectidiugrate the benefits of this concept. We conclude
in section 6.

[1.OVERVIEW OF CONVENTIONAL TIME-FREQUENCY ANALYSIS

The time-frequency analysis is a very challengiesearch field thanks to its importance for
the understanding of real-life signals. A good riptetation of a signal guarantees the efficiency of
its processing. For this reason a lot of researithsignal processing concentrated their attermion
time-frequency methods. It would be a very difficialsk to synthesis all of works done in the past
twenty years and it is not the purpose of thisisactWe are just proposing a general framework,
starting from [6], that allows us to point out oonamon problems arising in this field. In the most
general case any TFR of a multi-component signal

()= A (1)
can be expressed as
TFR(tw)= iz;ﬁ(m—@( 9)0, FT{ éZ"QK(”)} + CrossTerr )
k=1

whereFT stands for the Fourier transfor & is the first-order derivative of the phase lawtha k™

component of the signal (ie the IFL of this compahe*w is the spectral convolution operatolis

the lag used for the computation of the TFR @ud, 7) is a function measuring the spreading of the
time-frequency energy of tHd" component around its IFL. This function is helpifulthe mono-
component signal case in order to appreciate tHerpgances of a considered TFR [6]. It measures
the inner-interference terms (ie the artifact gatest in the case of non-linear IFL) and, ideakys t
function should be 0.

The CrossTermsn (2) stands for the cross-terms issued fronctirabination of the TFRs of
each possible combination of components. The mgjai works in time-frequency analysis
attempts to reduce the level of these terms. Inasg, the consequence of such intention is the
increasing of the importance of the functi@QnEvery method is subject of relative strong or kvea
assumptions. Very often, these assumptions tramstbe considered TFR in a parametric one
restricting also its area of application (ie thedy of signal that allow us to efficiently use the
method). For this reason there is no a general odetbr efficient extraction of time-frequency
information. This establishment is a critical isstiegee cannot make any assumption. In our case,
characterization of a process in a blind configta®an restricts drastically the a priori hypotlsesi
that can be made. The existing approach in this mat test many TFRs trying to find the “best”
one, but the choice of the criterion still remaandifficult task.

The next example illustrates the problems rela&tetie choice of a best TFR in an uncertain
configureuration. In this sense, we consider twptai modulations TFRs that can be meet in a real
scenario [7]. The ideal laws of modulation are giuethe figure 1.a.
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Figure 1 - Several TFRs of a mixed signal

For this mixture of two digital modulation types wieow the results obtained by several well-
known TFRs. In the case of Smoothed Pseudo Wigiikr-Distribution (figure 1.b) we remark the
good resolution but the phase transitions corredipgnto the PSK are erased by the smoothing.
These transitions are better represented in the afithe Short-Time Fourier Transform — STFT
(Figure. 1.c) but the paid price is the poor resotu For this signal, a good result seems to be
provided by the scalogram (Figure. 1.d). Howevitha considered TFRs provide only qualitative
information about the signal. Estimation of thegmaeters or separation of the modulations are the
kind of tasks inappropriate for these TFRs. Thenntaason is the representation ambiguities
generated by the trade-off between resolution aridacts level. For example, it is almost
impossible to separate the third PSK packet andittstefrequency step of the second FSK packet
(see Figurel. b, c, d circular marker).

As shown by the expression (2) the existing TFRs enly the information provided by the
first-order derivative of the phase. For this regsahe interpretation of time-frequency
representation is often subject to ambiguitiesilllistrate this, let us consider two different sagm
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whose effect in TFR domain is quite similar (Figu2e
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Figure 2- Two different signals producing a similsF effect

Obviously, the both TFRs show that the WVD is aloldollow the time-frequency content
variation over time. But they fail to establish th&ture of each signal. One can say that the signal
are of the same type but it is false as the exjue$3) states.

In conclusion, the standard TFRs cannot provigectimplete information about the analyzed
process. A solution to solve this problem is toetakto account the phase as discussed in the next
section.



1. COMPLEMENTARITY OF TIME-FREQUENCY AND TIME-PHASE
REPRESENTATIONS

The instantaneous phase law (IPL) is a fundamerashmeter of any signal, because it
describes its features. It is defined as the ageainof the ratio between imaginary and real pafrts
the signal (or in-quadrate Q and in-phase | compt)e

p(t)=IPL, = arctar{ :;neE ZEg{ J

The complete description of a signal provided g phase is illustrated by the following
example in the case of a cubic frequency modulatefimed by

(4)

S[ n] _ ej(—3.3+.31543— 6.3710n%+ 3.14T6nY)

,n=0,.,511 (5)

The WVD of this signal (Figure. 3.a) offers infaation about the IFL but it is affected by the
“intra-ference” terms (inner-terms). The exact liSldepicted in Figure. 3.c and is obtained by the
derivation of the IPL. Due to the derivation, théial phase information is lost.

a. Wigner-Ville Distribution b. Theoretical IPL (solid line); Estimated IPL (dashed line)
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Figure - Description of signal features by IPL

The IPL has been extracted by unwrapping the agetanof Q/I ratio. As we can remark in
the Figure. 3.b the polynomial phase estimatiorthig law provides all the signal parameters.
Nevertheless, this procedure is not robust in nsiggals (Figure. 3.d) even if the noise is rekiv
low (20 dB). For this reason, the polynomial phasadeling approaches are subject of a great
attention [4]. In spite of the variety of proposetthods, problems still remain especially in a
multi-component signal case and when the polynomiadiel is not appropriate. This is the reason
why we address the problem of T-F analysis in aparametric way (ie without any assumption
about the signal type).

Example 3 shows that a signal is completely charaed by its IPL. Therefore, if the phase
is appropriatelyused it can help us to eliminate the ambiguitiethe T-F plane. Namely, the phase
has to be carefully interpreted in the multi-comgaincontext. If we consider the signals (3), we
remark, in Figure. 4.a, that the phases estimaited4y contain all the information about the T-F
behavior of the mixed signal but the useful infotima (ie the phase delay parameters) is “hidden”.
Fast transitions appearing in the first derivatofethe phase (Figure. 4.a) are associated to the
cross-terms and they mask the phase delay apparitio



a. 1st derivative of the phase-noiseless case b. 1st derivative of the phase-SNR=33 dB
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Figure 4 - Complementarity of time-frequency antktiphase information

However, since the cross-terms generate phasetiwasshaving a regular variation, we can
find the phase delay transitions by locking foegular peaks. One might think that it is similar to
the analysis of the cross-terms directly in the WplBne (Figure. 2). Of course, the results would
be similar but this procedure is very poor whengtgnal is embedded in noise. This is shown in
Figure. 4.b : due to the noise it is almost impalssio distinguish between the cross-terms and the
phase transitions (for a SNR about 33 dB !). Nédwaess, the TFR of this signal (Figure. 4.c) is
almost untouched by the noise : the signal compsreae robustly represented.

Consequently, in order to find the phase infororatf a component, the proposed idea is to
use the complementarity between the time-frequesmag the time-phase representations. The
concept based on this idea is addressed in thesaetibn.

V. TIME-FREQUENCY-PHASE ANALYZER

As figure 3 shows the instantaneous phase incluglesthe information about the
corresponding signal. On the other hand, figurehdws that analysis of the phase using the
operator (4) is limited in the case of multi-componsignals and even for a relative reduced noise.
Complementarily, the time-frequency information well suited for analysis of the multi-
component signals and it is less sensitive to thisen Consequently, for the analysis of the
instantaneous phase of each component being partstgnal, we propose the use of the time-
frequency representation and of a phase estimaperator. The choice of these items is explained
as follows.

A. Initial Time-Frequency Representation

Given an unknown multi-component noised signdis, first natural operation is to represent
the signal in an initial representation space (IR®hce the unknown signal is generally non-
stationary, non-parametrics TFRs are naturally ibst candidates. Among the existing TFRs,
everybody could choice its representation. Howegance the aim is to represent the signal
component, artifacts should be avoided. For trasaa, the WVD is not really well advised for IRS
generation purpose. Alternatively, the spectrogisia typical example belonging to the TFR class
based on a time windowing procedure. However, sithisekind of procedure introduces artificial
phase transitions, we prefer to avoid such procéserefore, we build the IRS only around a
filterbank-based partition of the signal’'s spectruim order to highlight the signal details we
propose a Gabor-type filterbank whose transfer tians are overlapped in frequency [8]. The
effect of this filterbank-processing is mathemadlycaxpressed as :

Ws :{ sOh| k=1,.. Ni\lers}
h(t)= IFFT{ e*ZnZuZ(fffk)Z} o

where IFFT stands for the Inverse Fourier transform
The interest of the filterbank analysis-based ephcs obvious. Since the analyzed signal has



generally a complex T-F structure, its represeniaith several sub-bands leads to a reduction of the
representation complexity. Analyzing a signal igigen sub-band and around its neighborhood
allows us to identify signal structures much eatian searching in all T-F plan. As identification
criterion, we can use the local energy criteriopragposed in [9], for example. The idea is to depic
time-frequency structures whose energy is highan th local threshold and that are composed by
contiguous energy atoms. Hence, given two atsnands,, s, s O W < having partially overlapped
time-frequency supports, we generally associate tlteethe same componentf one, part of or all

the following conditions are satisfied :

Es >¢lUEs >¢ (7)

whereE stands for the energy aadis a threshold computed locally ;
- Jta-to) +(fa- 1) sy 8)

where (s, fsi ) are the time and frequency centers of the sigg&l=1,2) andy is a time-frequency
distance threshold;

dEses

} ‘ 10 <7 9)

whereEsoesis the time-frequency energy comprised betweeands,, 77 is threshold measuring the
degree of energy continuity. If the gradient of &mergy between the both atoms is below a certain
threshold, one can conclude that both atoms beltige same component

The use of these criteria allows associating ithe-frequency atoms as suggested in the next

figure.
;_" E ,l"'l

Figur-e_ 5- Regrouping time-frequency atoms

The both atoms illustrated in Figure. 5.a couldnberged with help of criteria (7)-(9) —
Figure. 5.b. The choice of criteria (7)-(9) is atteaof time-frequency regrouping strategy which is
selected according to the application (see [1],[B]] [9] for some existing methods).

There are a large number of works combining catdi7)-(9) and filterbank analysis.
However, there are situations when the criteria(8})are limited. Such a case arises when the
atoms are too far in time-frequency plane. Enesgpdtween the atoms is spread out many sub-
bands and they cannot be regrouped. This is ilitestrfor the signal used in the figure 1 (Figure.
6.a).

i Fiterbank-based TFR (ENR=5 5 dB)
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Figure 6 Limitations of classical T-F regroupingteria



As we observe in Figure. 6.b the two encircled atainthe FSK are too far to be associated
by the criteria (8) and (9). In the same time (Fég.c) the last part of the PSK and the firstrato
of the FSK will be associated since they are véoges This kind of situation will be solved by the
phase evaluation in an appropriate way.

B. Phase analysis operator

We saw previously that the time-frequency IRS mles robust T-F information about the
analysis process but it remains deficient whendbmponents are too far (the case of the fast
modulations) or too close (in this case, the fim#solution of the filterbank acts). A possible
solution to eliminate the ambiguities is to apgig fphase operator analysis (defined, for example,
by (4) but other methods could be imagined [10]3. we explained in the section 3, the direct
application of the operator (4) is not judiciouséease of either interferences either the noise. The
idea we propose is to apply this operatoly for the signal corresponding to the time-frequency
region we are about to analyze it. In the same,timerder to avoid the noise and the artifacts as
much as possible, it is necessary to define thggonein an appropriate manner. Intuitively (see
Figure. 7), the design of the region around theneation line of the atoms is more appropriate than
the simple rectangular definition. In other wond#th help of the IRS, we can define the T-F region
according to the content of data inside it.

flh

i

Figure 7 - Content-based definition of T-F region

This content-based design of T-F regiRnallows us to define the parameters of a time-
frequency filter. The method we used is based @nrtbn-unitary time-warping concept [11].
Namely, the filter is designed by analogy of th& Fhethodology but for a time axis that follows
the nature of the region. The result will be anufsp responsh,, that matches very efficiently the
features of the signal bounded Ry Applying this filter on the original signalis equivalent with
the extraction of the signal located inside thifog :

Sz = sUh, (10)

Since the ultimate goal of this operation is thingation of the phase via (4), we impose that
the filter h,, be able to conserve the phase feature of thenatigignal. An interesting idea is device
in [11] where a forward-backward strategy is usedorder to design filters with zero phase
characteristic. That is, thanks to [11], we carraettcorrectly the signal corresponding to two or
more detected atoms in the IRS. Let denote witthe phase of the signat. For this function we
can define thecontinuity concept in the considered time-frequency regioathdmatically, this
could be done with help of singularity conceptolr context, the continuity concept could be used
in the following way. If the phasgk contains one or many singularities it means thatpthase of
the signalxg has fast variation. This is typical for atoms dmgjing to distinct components.
Alternatively, if the phase is slowly varying wencaonclude that the atoms belong to the same
component. Mathematically, the concept of phasedasontinuity test can be formulated as
follows.



FOR allt

FOR k=1,..,N
d“a,

IF |—=(t)[=
dtk ( ) >'u

IFg(t-0t)zq (t+0t)=
= t - separating point of two atoms
ELSE= t- phase transition (eg PSK)
ELSE= the atoms belong to a continue T-F stuue

wherey is a threshold applied in th&-order derivative time-phase domain. Note thatéf atoms
are simple Gabor atoms ones (eg. PSK or FSK conmpe)nthe first order derivative is sufficient to
apply this continuity criterion.

Both time-frequency and time-phase analysis casciEpm the time-frequency-phase (T-F-
Ph) analyzer whose general structure is depictéaeimext figure.

:-..'.'-:'-‘.. rid Ceery + "
n “F FeRiir T-F fifter Estima#ion
A

Figure 8 The concept of time-frequency-phase aralyz

V.RESULTS

In this section, we illustrate how the time-freqogiphase analyzer performs and avoid the
ambiguities existing in the case of a simple timegfiency analysis. For these purposes we consider
the previous examples. Let consider the two-composgnal defined by (3). In order to take
advantage on the complementarity of the time-fraqueand time-phase representations, we apply,
according to the figure. 8, a time-frequency fittgrprocedure as illustrated in the figure 9.b.
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Figure 9 T-F-Ph analysis of signals defined by (3)

The signals issued by filtering as shown in Fig@.é. are analyzed with the phase analysis
operator (4). Since the both components are seghthé phase is correctly estimated. Hence, we
can clearly distinguish the differences betweenhthign signals. In the same time we obtain all the
details about the phase of each component (Fi§uaec) : the time-frequency shapes are correctly
estimated as well as the phase transition (Figucg.

Another example consists in segmentation of th€-PSK signal defined in Figure. 1. As it
Is shown in the Figure. 10, using the T-F-Ph arelyze can correctly separate the components of
each modulation.
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In order to prove the richness of the phase inftionave illustrate the phase of three “tricky”
regions. The first consists of two FSK atoms; ascare remark, the®iphase derivative is constant
which means that both atoms belong to the samalsignthe second case, we consider the last
atom of the FSK and the first PSK packet. In tlase; the phase discontinuity indicates that both
parts of signals do not belong to the same one.sahe establishment for the third case : in spite
of the proximity between components, the phaseodistuity shows unambiguously that there are
two different signals. In the same time the cladsid-Rs (see Figure. 1) are not able to associate
these atoms to the right component.

Applying the T-F-Ph analyzer we successfully segntiee signal according to the modulation
types. Furthermore, this benefit will allow us tstimate the features of each modulation very
important task in the field of signal intelligen¢8IGINT) [7]. Otherwise, the case illustrated in
Figure. 10 can arise in active communication orardtkeld. Due to the parasite communication
signals or artifacts, the pre-processing deviceeoéiver could be subject of wrong detection. This
error can be felt further, during the adaptiveefihg process. In conclusion, in the domain of
communications in non-cooperative and/or signaksehigh density environment, the T-F-Ph
analyzer constitutes a potential solution.

Another application concerns the time-frequencyeiog of underwater mammal vocalizes.
The next figure illustrates the benefits of thedifmrequency-phase concept in the case of a real
signal emitted by a marine mammal recorded in Ba&yiscaya [12].

a. Segme ntation provided hy spectrogram
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Figure 11 Time-frequency filtering based on timegfrency-phase information
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The segmentation of time-frequency components ésfoen the spectrogram (figure 11.a.) is
not correct since the time-frequency energy is magryThis is generally the case of real signals. In
order to solve this problem the time-frequency-ghasncept is successfully used as indicated by
the figure 11.b : thanks to a correct represematicthe time-frequency components, their filtering
is successfully done.

V|. CONCLUSION

The purpose of this paper was to show how the freguency and the time-phase
informations could be used jointly in order to soldifficult situations, untrateable by the



convetional time-frequency concepts. Conceptualhgse information will work towards avoiding
the ambiguities by defining the notion adntinuity of time-frequency structure. It can help us to
solve situations when the conventional T-F analyails. For example, it allows us to connect
components belonging to the same structure evémeifTFR is affected by any type of artifacts
(cross-terms, noise, attenuation, etc.). The jos& of conventional time-frequency representations
and the phase of the signal constitutes the baakgrof the time-frequency-phase analyzer.

Of course, the methods we used in this paper feiment the T-F-Ph analyzer are just
sugestions. Everybody could use his own methodac€aing our future works, two axes will be
addressed. The first one deals with the generatieédition of the initial representation spaceeTh
second one consists in analyzing and proposing eiffi@ent phase analysis operators, especially
from noise robustness and multi-component poivie#.
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