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ABSTRACT 

The first and most obvious rapprochement between the areas 

of signal processing (SiP) and that of dynamical systems 

(DS) is their very fundamental interest: the analysis, predic-

tion and control of real world physical systems, either natu-

ral or man-made. This occurred quite fast at the level of 

analysis and modeling tools, either research area borrowing 

with great ease methods and concepts from another, from 

elementary to the very complex levels. The main purpose of 

this paper is to review several such convincing examples, 

presenting them from a global perspective. The question of 

the chaotic systems, a subclass of DS, is also addressed. 

While already used in large bandwidth communications, 

their influence is shown to be extendable even further. On 

this line, their use in sea electromagnetic echo is presented. 

The article ends with conclusions, which analyze the pros 

and the cons, and perspectives, which are aimed at future 

research axis. 

1. INTRODUCTION 

A relatively large number of physical systems, either natural 

or man-made, are studied under two paradigms: either in the 

traditional and reductionist way, either from a holistic, sys-

temic perspective. Usually, the classical signal processing 

(SiP) techniques, aimed at extracting pieces of information 

about the analyzed system (or signal) falls in the first cate-

gory. This is not to say that the two domains are dichotomic. 

At the contrary, they strongly interfere, by the very nature of 

their object of study. 

Many often encountered systems which may be ana-

lyzed and modeled under a systemic paradigm are nonlinear 

and a part of them are even chaotic ones. One could enumer-

ate: the meteorological phenomena, the eco-systems, the so-

cial and economical systems, the financial markets, several 

electronic circuits (like oscillators), chemical reactions, and 

communications and urban/highway traffic etc. 

Many of these may be very easily modeled by using a 

dynamical system (DS) perspective. On the other hand, their 

analysis using the classical reductionist analysis tools may 

become overwhelming. 

Another common point of dynamical systems and signal 

processing techniques lies in the study of nonlinearity. The 

latter benefits of an increasing interest from researchers in 

signal processing area, allegedly being the “buzzword of the 

day”. It is its considerable modeling power, which may be 

applicable to even very complex systems, which justifies this 

research trend, despite the underlying difficulties. On the 

other hand, the dynamical systems had assumed, for many 

years now, hypothesis of nonlinear behaviors in their studies. 

As such, is very appealing and it should be easy for signal 

processing researchers to benefit of this existing expertise. 

One such example, where nonlinearity is not only as-

sumed and intensely studied, but is also a prerequisite, is the 

study of chaotic systems. The chaotic systems are either dis-

crete or continuous time dynamical (whose state is time-

varying) systems which exhibits apparent disorder, similar to 

randomness, while still remaining completely deterministic. 

In fact, the proper sense of the term “chaotic” should be read 

as “extreme dependence of initial conditions”. The figures 

representing such systems often have very interesting and 

complicated shapes, widely known as “strange attractors”, 

most of them being, in fact, fractals. 

The sensitivity to the initial conditions translates in in-

creasing divergence in system evolution. After n  steps, this 

divergence is assumed to bind to an exponential model: 

 ( ) ( ) exp( )n nf x f x nε ε λ+ − =  (1) 

where λ  is the Lyapunov exponent. This quantity is positive 

for chaotic systems. 

Some chaotic models, as will be shown, already made 

their way into traditional signal processing areas, such as in 

radar noise modeling. However, they remain a relatively new 

concept for signal processing researchers. Good introductory 

works are, by example, [1] and [2]. 

2. APPLYING DS KNOWLEDGE TO SIP 

One of the first breakthroughs of the DS theory into a 

domain traditionally belonging to the signal processing area 

is the proposed use of chaotic models for the high-resolution, 

low grazing angle sea clutter returns [3], in the case of 

coastal maritime surveillance radars. While still subject to 

discussions and not fully accepted by the scientific commu-

nity, the subject is of great importance nonetheless. 

The traditional ways of doing with sea clutter and the 

degradation of target detection are by use of Neyman-

Pearson or Bayesian hypothesis testing criteria. They require 

the probability distribution of noise amplitude (and of the 

target echo) to be properly modeled. While for target echo a 



number of models have been defined, notably the Swerling 

models [4], the noise was generally accepted as white an 

Gaussian. 

The problem is that, for large bandwidth radars and for 

low grazing angles, the Gaussian hypothesis is far from true. 

This misassumption greatly penalized the detection perform-

ance of the first large bandwidth coastal radars, despite the 

higher resolution leading to a better SNR. 

Different others probability density functions have been 

proposed for the sea clutter amplitude, serious candidates 

being Weibull [5], lognormal [6] or K-compound [7]. 

However, all of them failed to achieve general consensus. 

More, the estimation of their underlying parameters is often 

tedious. 

In this context, supported by results obtained while ana-

lyzing the published 8 [8] radar dataset, professor Haykin 

made the hypothesis of an underlying purely deterministic, 

albeit chaotic, model of the sea clutter. His first results [3] 

were encouragingly, showing sea clutter exhibiting some 

well-known characteristics of dynamical systems, such as 

positive Lyapunov exponent and a fractal dimension. 

However, the presented results were questioned, when a 

number of publications [9] shown their ambiguity. The main 

source of confusion lied in the very similar behavior that 

some particular purely random (i.e. stochastic, not chaotic) 

processes exhibit. It is the case of 1/ f  processes, whose 

spectral density is: 

 
(2 1)( ) Hs f f − +=  (2) 

where (0,1)H ∈  is the Hurst parameter. 

While the outcome is still debatable in terms of theoreti-

cal soundness, other scientists [10] developed Haykin’s 

original idea, by proposing a new kind of chaotic model: 
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which is a generalization of (1). 

The latter paper shown surprisingly good results in terms 

of naval target detection, based on the different values that 
1(1 )qβ −= −  in the presence or absence of a target (see 

Figure 1). Values between 0.8  and 1 indicate that a target is 
present in the analyzed resolution cell. 

Another interesting and very useful applications of meth-

ods originating in the DS field is presented in [11]. This time, 

one of the most central concepts of the signal processing is 

put under the loupe: the stationarity. 

This concept, while mathematically formalized in a rig-

orous way, is largely interpretable in the framework of a par-

ticular application. 

 

Figure 1: Values of β for 14 range resolution cells; the 

higher values denotes presence of target 

By example, when random processes are considered, sta-

tionarity stands for temporal invariance of signal’s statistics. 

On the other hand, when deterministic signals are studied, 

signal’s stationarity means the invariance of its spectral prop-

erties. Finally, claiming that a signal is stationary or not is 

only pertinent with respect to a particular interval of time or 

frequencies, the pertinence of which depends on the problem 

at hand. This “localization” clearly contradicts with the per-

manence notion associated with the stationarity concept. The 

same signal may appear as stationary or not, function of the 

length of analyzing interval which, basically, defines the 

scale at which the signal is studied. 

In an intuitive way, for a given average spectrum, a sta-

tionary signal should present no temporal structure, i.e. no 

predictability. This should manifest for stationarry signals 

only, in the phase of their spectra. 

Based on this observation, a mathematical, albeit practi-

cal, definition of stationarity may be given. It uses the notion 

of surrogates, which are signals having the same power spec-

trum as the original signal, but are stationnarized. This is 

achieved by replacing the phase of original signal’s spectrum 

by a random phase, completely destroying its temporal struc-

ture (see Figure 2). A time-frequency representation shows a 

completely dispersed spectral content (see Figure 3). 

The concept of surrogates originates in the field of DS, 

being a tool for testing the nonlinearity [12] and the chaotic-

ity [13]. 

As acknowledged, the surrogates are stationary signals, 

having the same spectrum amplitude as the original signal, 

but their spectrum phase is noise. The original signal is then 

compared against its surrogates. To compare, several tools 

may be used: the Kullback-Leiber and the log-spectral diver-

gences [11], neural networks, SVM etc. 

The results of this procedure are shown in ... (for ampli-

tude-modulated noise and for a frequency sinusoidal modu-

lated deterministic signal) on three scales: macro (upper), 

medium (middle) and micro (lower). The first and the third 

are identified as stationary, wile the middle one is not. 



 

Figure 2: A signal with sinusoidal frequency modulation 

(left) and one of its substitutes 

 

Figure 3: Spectrograms of the original signal, a surrogate, 

and the mean over multiple surrogates and the spectrum 

 

Figure 4: Samples and spectrograms of amplitude modu-

lated noise (left) and frequency sinusoidal modulated sig-

nal 

3. APPLYING SIP KNOWLEDGE TO DS 

Most of the usual signal processing techniques quickly find 

their application in the DS domain, as they are valuable in-

formation extraction and characterization tools. At te very 

basic level, there are the purely mathematic ones, such as 

ARMA modeling, PCA, ICA etc. 

On a higher level, more specific techniques are used, 

such as the spectral and spectrogram representation methods. 

An illustrative application is presented in [14], showing the 

analysis of a Duffing oscillator’s impulse response. The au-

thor prefers these tools instead of the more traditional “bone 

curves” because they clearly give the information concerning 

the evolution of the system in time. 

A remarkable contribution of time-frequency (and, gen-

erally speaking, signal processing) methods is in distinguish-

ing between a chaotic and a random system. In fact, this re-

mains an open issue for the scientific community and there is 

not any absolute reliable criterion. 

A possible use of time-frequency representation has been 

presented recently by [15], exploiting one fundamental char-

acteristic of deterministic chaotic systems: the approximate 

(but not identical) recurrence of their behavior and sequence 

of states. 

While the recurrences and their occurrences remain un-

predictable, it is possible to average their time-frequency 

representations, thus filtering out the measurement noise and 

the intrinsic instability of the system, while enhancing the 

common, deterministic part. 

The first step is to identify these recurrences. A method 

specific to the DS, the time delay embedding [15] is used for 

this purpose. Its central idea is that the evolution of all pa-

rameters of a dynamical system may be approximated by a 

temporal embodiment of just only one known parameter. 

This translates in constructing the following vectors: 

 2 ( 1), , ,...,
T

n n n n n dz z z zτ τ τ+ + + − =  z  (4) 

where d  is the embedding dimension and τ  is the delay 

value, and 0 1, ,...z z  are the values of the known parameter. 

The neighborhood of radius ε  of nz  is defined as: 

 { }: ,1 ( 1)def

n k k n k L dε τ= − < ≤ ≤ − −N z z z (5) 

Figure 5 shows an example for the state x  of the cha-

otic Lorenz attractor of parameters (10,28,8 / 3) . The 

black points are the samples between the extreme elements 

of vector (4), which starts, each time, in the reference point 

or in one of its neighbours. 

 

Figure 5: The reference point (black disk) and two of its 

neighbours (white disks), along with the associated em-

bedded vectors (black points) 

These samples (marked with black points) form the vec-

tors 1 2 ( 1), , ,...,
T

def

n n n n n dz z z z τ+ + + − =  s .  

Intuitively, the Figure 5 shows that the waveforms ns  

occur irregularly, but they are somehow similar. For each 

neighborhood nN , the matrix 
1 2
, ,...,

Nn k k k
 =  D x x x  

where 
i ik k n= −x s s  is defined. Then, the covariance ma-

trix is computed: 
1 T

n n nN −=C D D  whose eigenvalues are 

iλ  and corresponding eigenvectors are iu . The Neighbour-

hood-based Spectral Estimator is then computed as: 



 
2

1

1
( ) | ( ) |

wL

NSE i i

iw

P V
L

ω λ ω
=

= ∑  (6) 

where ( )iV ω  is the Fourier transform of iu . 

When the reference point is varied in time, successive 

representation of spectra (6) forms the NSE time-frequency 

representation. An example is shown in Figure 6 (left). The 

black points show the highest-amplitude frequency (the spec-

tral mode) at a given time bin. Compared with the same rep-

resentation, but of a random process (right), the one corre-

sponding to the chaotic system exhibits short, but continuous, 

albeit irregular, lines of local maxima. 

 

Figure 6: NSE time-frequency representations for a cha-

otic (left) and random (right) process, along with the 

mode frequencies 

These characteristics may help in distinguishing between 

a chaotic and a random process, respectively. 

4. CONCLUSIONS AND PERSPECTIVES 

The techniques and the concepts exposed in the paper 

have only an illustrative purpose. One could easily imagine 

that the possible applications are almost countless and that 

the perspectives are widely open. 

The interactions between DS and SiP domains are strong 

and are becoming stronger. While is not realistic to imagine 

the future of this research axis, some major arising opportu-

nities are summarized below: 

1. Greatly extend the range of studied systems, by in-

cluding meteorological phenomena, sea clutter, 

chemical reactions etc.; 

2. Making use of the expertise already available in DS 

when it comes to complex systems and their behav-

ior, and particularly the focus on nonlinearity; 

3. Taking advantage of the power of DS as a modeling 

tool: while simple systems ma exhibit astonishing 

complex and unpredictable behavior and, reversely, 

quite complex systems may find simple-to-interpret 

DS models; 

4. The possibility to apply deterministic, although 

chaotic models, to phenomena traditionally consid-

ered as random. 
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