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Abstract. This paper presents a simple and fast method for unsuper-
vised trajectory estimation of multiple moving objects within a video
scene. It is entirely based on the motion vectors that are present in
compressed H.264/AVC or SVC video streams. We extract these mo-
tion vectors, perform robust frame-wise global motion estimation and
use these estimates to form outlier masks. Motion segmentation on the
spatio-temporally filtered outlier masks is performed to detect moving
regions in the scene, which are analyzed over time in order to identify
similar objects in adjacent frames. The construction of so-called Object
History Images (OHIs) is proposed to stabilize the trajectories, which are
finally interpolated with X-splines. The system enables real-time analysis
with standard hardware.
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1 Introduction

The detection and tracking of moving objects in video scenes is an interesting and
challenging research topic. Possible applications of such algorithms include video
surveillance, retrieval tasks and scene analysis. Video processing tasks working
at pixel level are usually computationally very expensive.

We aim at providing a method for efficient and fully automatic trajectory esti-
mation of multiple objects, that is applicable to scalable state-of-the-art streams
encoded by H.264/SVC, without implying any constraints on the nature of the
moving objects. We assume that we have separated video scenes without any
cuts or transitions. This can be achieved by first applying a compressed domain
shot boundary detector, one of which was proposed by Bruyne [1] specifically
for H.264 streams.

In general, object tracking in the pixel domain is more robust and performs
better than compressed domain methods, since more and more precise informa-
tion is available. Nevertheless, the motivation for compressed domain analysis
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remains and is driven by fast processing speed and the fact that videos are pri-
marily stored in compressed form. Faster processing becomes possible due to
the fact that motion information is already present in the stream. Decreased
robustness of motion-based, compressed domain approaches usually results from
the noisy nature of the motion vectors, which are optimized in terms of coding
efficiency and represent a sparse and noisy version of the real optical flow.

2 Related Work

A large number of compressed domain object segmentation and tracking al-
gorithms appeared over the years. Some publications concerning pure object
segmentation in the MPEG domain include [2-6].

Babu et al. [2, 3] proposed an accumulation of motion vectors (MVs) over time,
followed by a K-Means clustering to determine the number of objects in the
scene and the EM algorithm for object segmentation. Zeng et al. [4] employ a
block-based Markov Random Field (MRF) model to segment moving objects
from the sparse MV field, which is extracted from H.264 compressed streams.
The proposed method is limited to static cameras.

The proposed tracking approaches in the compressed domain rely either on
MVs, residual information, or both. A lot of these works exploit the informa-
tion found in MPEG-1/2 streams, where MVs and DCT coefficients are easily
accessible. Hesseler et al. [7] perform the tracking initialization on decoded I-
frames and use histograms of MVs of the MPEG-2 stream to perform tracking.
The method does not support rotating objects and changes in size. Lie et al. [8]
proposed a system that tracks single macro-blocks (MBs) under consideration
of residual information. Trajectories are afterwards merged to obtain a mov-
ing object segmentation. Other MPEG-2 based methods have been proposed in
[9-15].

Though most of the mentioned work can generally be ported to the H.264-
AVC/SVC domain, some basic assumptions are no longer valid. The often used
AC and DC coefficients (e.g., [9,13-15]) of intra-coded blocks in H.264/AVC are
transformed from spatially intra-predicted values instead of the original pixel
values, so full decoding is necessary. Concerning our goal of unsupervised, com-
pressed domain scene analysis, other shortcomings of former approaches include
manual tracking initialization (e.g., [12, 15]), no support for camera motion (e.g.,
[11,15]) and no support for multiple, occluding objects (e.g., [10]).

A few approaches specific to MPEG-4 and H.264-AVC/SVC have been pro-
posed in the literature. Sutter et al. [16] presented a lightweight tracking al-
gorithm for MPEG-4/FGS. No indication for the performance in the case of
multiple occluding objects are given and the system has to be initialized by the
user. You et al. [17] perform tracking of feature points selected by the user. The
matching of these points uses the dissimilarity energies related to texture, form,
and motion. Therefore, they partially decode the stream around the Region-of-
Interest (ROI) back to pixel level and fully decode I-frames.
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3 Compressed Domain Trajectory Estimation

The presented approach consists of the stages depicted in Fig. 1. We extract the
MVs from the compressed stream, perform global motion estimation (GME),
filter the outliers and perform object detection on the resulting masks. A simple
matching algorithm is then applied to solve object correspondence. We introduce
Object History Images (OHIS) as a tool to stabilize the trajectories. Finally, the
center of gravity-based trajectories are represented by smooth splines. In the
following, we further explain each of these steps. Our method does not imply

MVs
SVC/AVC MVs GME | outlier masks o Mask
stream (c] > filter

masks

Trajectory | points| Object |objects| Object
interpolation hi detection

Fig. 1. Overview of trajectory estimation steps

constraints on the nature of the objects and can cope with moving cameras.
However, as also stated in [7], object detection and tracking that relies solely on
block-based MVs implies some requirements on the video scene. Our method is
subject to the following limitations:

— The scene background should be largely static in itself. Problematic areas
are water or trees in the wind. In the case of present camera motion, the
background should be well textured to limit the impact of noisy MV fields.

— Moving objects should neither be too numerous nor should they occupy the
whole viewable image area.

If these constraints are met, the global motion estimation will deliver valid and
reliable results, which builds the basis for further processing.

3.1 H.264 AVC/SVC Test Sequences

H.264/AVC (MPEG-4/Part 10) is the successor of MPEG-2 and gains more and
more popularity due to its superior performance and efficiency. H.264/SVC [18]
is the scalable extension to AVC. Figure 3a shows an example of the macro-
block partitions and MVs of a B-slice of the AVC-compatible base layer with a
resolution of 480x272 pixels, extracted from a SVC stream with Full-HD (1080p)
resolution at top level. Except for Hall Monitor and Surveillance, all of our test
sequences are encoded in this format. Hall Monitor and Surveillance are single-
layer streams with 352x288 pixels and 480x360 pixels, respectively.

We used the SVC reference software JSVM [19] in version 9.8 for our experi-
ments. In case of High-Definition (HD) streams with spatial scalability, we only
process the AVC-compatible base layer to save computing time. We encoded all
streams with temporal scalability, enabled by the hierarchical B-picture predic-
tion of SVC, with a Group-of-Picture (GOP) size of 8.



4 Trajectory Estimation in the H.264 Domain

3.2 Global Motion Estimation (GME)

We adopted a similar robust motion estimation algorithm as proposed in [20]
and [21], which proved to deliver good results. It basically consists of an iterative
re-weighted least squares estimation of the well known 2-D 6-parameter affine
model and is followed by a camera motion characterization. We estimate the
global motion for each video frame.

In order to obtain the MV values in quarter-pel precision, the entropy coding
of H.264 has to be reversed as the only decoding step. For each B-frame MB,
depending on the prediction mode (LIST_0, LIST_1, direct or bi-prediction), we
get a MV from LIST_0 and one from LIST_1. The choice between LIST_0 or
LIST_1 MVs as active estimation support has shown to be arbitrary, since the
distance to the reference frames in both temporal directions is the same (hierar-
chical prediction structure of SVC). We further process only forward-predicted
LIST_1 MVs. To obtain uniform results, we scale all MVs by the distance to
its respective reference picture. To obtain an estimate for I-frames, we take the
mirrored LIST_0 vectors from the subsequent B-frame in display order as an
estimation basis. MBs in skip-mode are excluded from the estimation support.

The 2-D 6-parameter affine motion model is given by

dy = a1 + as(z — z0) + as(y — yo) (1)
dy = a4 + G,5(1' — .TO) + aG(y - yO)a

where (x9,70) denotes the reference point in the image (e.g., the image center)
and (z,y)T the MB center. We estimate the model in the weighted least squares
sense with a Gaussian weighting function. The process is repeated iteratively
and outliers are discarded after each iteration. It showed that convergence is
reached after approximately 4 iterations. The result of the GME process is the
vector 8 = (pan, tilt, zoom,rot), containing the frame-wise camera operation
parameters. A mapping from the parameters ai..ag to pan..rot is performed
according to [21].

3.3 Outlier Masks

The outlier masks which are output of the GME process contain noise (see Fig. 2)
due to the block-based estimation process. Spatio-temporal filtering of the raw
outlier masks is performed to alleviate the influence of miss-detected MVs. The
temporal filtering window is set to the intra-period of the coded video, which
is 8 frames in our experiments. Within this window, outlier MBs are median-
filtered along their motion trajectories, followed by morphological filters to fill
small holes in object masks and to remove background-noise.

3.4 Object Detection

The filtered outlier masks represent silhouette images and give a rough separa-
tion of the scene in background and foreground objects. We split the masks into
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1d Frame 97 le. Frame 117

la. Frame 37 1b. Frame 57 1c. Frame 77

2a. Outhers 37 2b. Outhers 57 2¢. Qutliers 77 2d Outhers 97 2e. Outliers 117

3a. Flltered 37 3b. Filtered 57 3c. Filtered 77 3d. Filtered 97 3e. OHI of object

Fig. 2. Example of raw and filtered outlier masks. 3a-d) detected objects. Local ob-
ject motion is represented by a vector leaving the centroid, which is represented by a
circle. 3¢) OHI of main object. Sequence street with trees and bicycle © Warner Bros.
Advanced Media Services Inc.

single moving objects by using a simple motion segmentation algorithm simi-
lar to the approach of timed Motion History Images (MHI) from Bradski and
Davis [22].

Motion history images store the motion history for multiple frames in one
single channel image. The MHI is updated by setting the corresponding mask
pixels in the MHI to the current time stamp. Figure 3b shows an example of a
MHI for the street sequence. Each connected region in the MHI sharing the most

a. MV field b. Motion history image

Fig. 3. Example of MVs (a) and a MHI (b) of the sequence street_with_trees_and_bicycle.
Image (a) was magnified and cropped for better visibility.

recent time stamp is considered as one independent object. All regions smaller
than a minimal, pre-defined threshold-size MIN_SIZFE are discarded. We set
MIN_SIZE to a region height or width smaller than 3% of the image height or
width, respectively. Each detected object is labeled and a some object properties
are calculated and stored for further processing: i) The object mask, defined by
the connected region in the tMHI; ii) The centroid; iii) The size, i.e., the number
of pixels in the mask and iv) the object motion parameters (pan..rot).
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The object motion parameters are estimated similarly to the global motion
(see Sec. 3.2), using all MVs covered by the mask. Global motion is compensated
before the estimation and the reference point is set to the center of gravity of the
mask. The quality of these parameters depends on the number of MVs covered
by the object, indicated by the object size. The two translational parameters
aq 2 pan and ay 2 tilt are robust to small estimation supports, whereas the
significance of the parameters zoom and rot decreases.

Examples showing the temporal evolution of the local object motion are given
in Fig. 4 for the man in the street sequence and for the pedestrian in parkrun (see
Fig. 6 for screenshots). The small estimation support in the latter case leads to
very noisy results for zoom and rotation. For the street sequence, the estimation
reflects well the real object motion. The indicated zoom-in and zoom-out around
frames 15-50 and 120-170 represents the objects’ motion towards and away from
the camera. In both figures, the curves for zoom and rot have been scaled for
the sake of better comparability to pan and ¢ilt.
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Fig. 4. Local object motion for sequences parkrun and street_with_trees_and_bicycle.
The parameter zoom is very noisy for the pedestrian in parkrun, because only a very
small number of MBs is covered by the mask.

3.5 Object Matching

At this stage, we have the frame-wise, independent object detection results as
described above. The most important step in the trajectory estimation process
is to track the detected objects over time, i.e., to identify similar objects in
adjacent frames and to define a reference point within the object that represents
its current position. We treat these problems separately in the following.

A temporal analysis of the calculated object properties (see Sec. 3.4 ) allows
to draw certain conclusions about what is happening in the scene:

> mask: Represents regions in motion. Its position gives an indication if the
object enters or leaves the scene.

> size: Continuous changes in size are usually caused either by objects leaving
or entering the scene, by changes of the visible object surface (occlusions), by
changes of the distance to the camera or by a non-rigid object that partially
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stops or resumes moving. Rapid, significant changes in the object size indicate
split-and-merge situations.

> centroid: Center of gravity of moving region. Rapid changes of position also
indicate split-and-merge situations.

> motion: The translational motion parameters pan and tilt indicate the moving
direction and predict the position in the next frame (relative to the camera posi-
tion). If the estimation support is sufficiently large, zoom may give an indication
if the object approaches or moves away from the camera.

Object Correspondence The initialization takes place when the first objects
are detected at time t;. Each object is assigned with a unique label and is kept
in memory along with its properties. The expected position in the following
frame is estimated using the translational motion parameters. At time ¢; + 1, the
algorithm searches a limited area of 20 pixels around the predicted position for
new input objects. If an object with similar size and moving direction is found
in the search area, we assign the same label to it. Otherwise we mark the object
as inactive.

If an object of significantly larger size is found in the search area, we check if
that new object coincides with the predicted position of another object. If this is
true, the objects “merged” and we assign both labels to that joint object. Other-
wise we check for inactive objects that have been lastly detected at this position
(with compensated global motion). If there seems to be no such explanation for
the abrupt change in size, we however copy the same object label to it and set a
flag of uncertainty. Possible other explanations include fast objects re-appearing
behind occluding obstacles, or a merging with another previously static object
(e.g., a pedestrian takes a bike and rides away).

“Split” situations, where multiple smaller objects replace a big one, are
treated similarly. If a crossing of multiple objects occurs (merge-split), we assume
the objects’ moving directions are hardly affected, so after the split we re-assign
the labels according to the closest match to the motion parameters before the
merging. This may lead to a false label switching in certain scenarios.

If at a given moment, a new object appears “out of nowhere”, i.e., one that
is neither entering nor leaving the scene, we search for inactive objects in that
region to reactivate them. If none is found, we assign a new label to the appearing
object.

3.6 Reference Point

At this stage, we have identified similar objects over time. Moving objects are
often occluded by obstacles like cars or tables and we look for a reference point
within the object that remains as stable as possible. We therefore chose the
center of gravity. Problematic are non-rigid objects and occlusions. To give an
example, the waiter in the sequence shown in Fig. 5 moves from one table to
the next, stops to clean them and is often partially occluded. While wiping
the table, the centroid of the mask moves away from the original one, which
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Fig. 5. Left: Exemplary deformations of the same moving object at different moments
in time. Red circle is centroid of mask. Middle: OHI of object. Right: Trajectory.
Sequence man_in_restaurant © Warner Bros. Advanced Media Services Inc.

was located around the waistline. In order to stabilize the reference point over
time, we propose the construction of so-called Object History Images (OHI).
We extended the idea from global MHIs [22] to object silhouette construction.
The goal is to create a more stable representation of an object than the quickly
fluctuating object mask.

At the first occurrence of an objet, we initialize the OHI with the first object
mask. Each time a previously present object is detected in the current frame,
we project the OHI to the position predicted by a; and a,. We superimpose it
with the new mask image and increment the value of the OHI at positions where
mask pixels are set. If the new mask does not entirely fit into the projected OHI,
we enlarge it.

We keep one “long-term” OHI for each detected object and continuously up-
date as long as the object is visible and moving. The OHI represents a silhouette
image of the object, where the most rigid regions appear brighter than parts like
legs or arms. As the reference point, we compute the center of gravity, which
assigns more importance to higher values. Darker zones in the OHI, like moving
hands or shadows, only cause slight fluctuations. Examples of OHIs are given in
Fig. 5 and Fig. 2.

The most problematic cases regarding the objects’ reference points are merged
object masks. When we detect a merging situation, we only update the intersec-
tion between the past OHI at its predicted position and the merged mask. This
way

If the system gets initialized with merged objects that split later on, we only
know after the split that the area contained more than one object. We then reset
the merged OHI and re-initialize a new OHI for each object.

3.7 Trajectory Construction

We draw the trajectories in the image plane seen by the camera. The trajectories,
represented by the centre of gravity of the OHIs over time, are smoothed using
X-splines [23] as a final step. X-splines combine the properties of Catmull-Rom
splines and cubic B-splines in one curve, adding the feature of sharp bends at
abrupt turns. To achieve that, each control point is parameterized by a factor
k € [-1;1], where k = —1 gives Catmull-Rom like behavior (interpolation),
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k = +1 leads to B-spline like behavior (approximation) and k = 0 gives a sharp
bend at the control point.

For each control point, we assign k as a function of the object size in relation
to the size of the OHIL. If the mask size is below 30% of the OHIs’ size, we assign
k = 41, otherwise k = —1. That means that small masks are considered to be
less reliable and their centroids are approximated rather than crossed by the
spline. Control points at moments of merged masks with multiple objects are
also weighted with k& = 41, because the position estimation is less reliable due
to likely inter-object occlusions.

4 Results

Figure 6 shows the estimated trajectories for some test sequences. Each trajec-
tory plot shows the position of the visible image area over time, represented by
one rectangle for every 20th image, and the global camera motion over time,
represented by purple curves connecting the rectangle corners. The trajectories
are drawn as thick colored lines, and the brightness of the color corresponds to
the moment in time. The brightest point denotes the position in the beginning
of the sequence, the darkest one the position at the end. Each detected object is
represented by a different color. The most-right plots in Fig. 6 show the trajec-
tories obtained manually by users, who we demanded to click on the estimated
center of gravity of all relevant objects in each frame.

The two short lines in the top left corner of the street sequence trajectory
plot (Fig. 6a) are caused by moving branches of a tree. By comparing the main
trajectory with the camera motion, it can be noticed that the camera is following
the object. This can also be noticed in the parkrun sequence, where a pedestrian
is walking along the river and is followed by the camera. He always appears in
the center of the image. The trajectory of the waiter in the restaurant sequence
is shown in Fig. 6f. The fluctuations of the most right part of the trajectory are
caused by a long period where he stands still while cleaning a table.

Figure 6e shows the results for the well-known Hall_Monitor sequence. Both
objects are detected and tracked over time, where the jitter in the middle of the
left trajectory results from the man stopping at the small table for about 50
frames. To provide an example of two crossing objects, we show the results for a
surveillance video showing two pedestrians with opposed trajectories in Fig. 6c.

The largest differences between the estimated and the manually determined
trajectories are observed in the Kung Fu sequence (Fig. 6d). The system did not
recognize that one fighter over-jumped the other, which ducked down, and could
not exactly follow during the vigorous fight. However, the object did not get lost
and the trajectories reflect well both positions.

Table 1 summarizes the results of the object detection stage for the given test
sequences. We counted the total number of object occurrences in all frames and
provide results for the number of correctly detected objects, the missed detec-
tions and false positives. The high numbers of missed objects in the sequences
Hall Monitor and Man in Restaurant appear because objects stop moving for
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several frames and we detect only objects in motion. The trajectories are hardly
affected of this detection loss, because the objects are correctly re-identified af-
ter they continue moving. The false positives in the Street sequence represent
moving branches of a tree, which we consider as background.

The processing times given in Tab. 1 were measured on a 2.16 GHz Intel
Core2Duo with 2 GB of RAM. The simplicity of the algorithm allows real-time
processing.

5 Conclusions

We presented an approach to estimating the trajectories of moving objects in
the H.264 compressed domain. The method is completely unsupervised and is
entirely based on the motion vectors present in the compressed stream. It is able
to detect and track multiple objects of any kind, given that they also appear
clearly geometrically separated at some moments in time. Our method is compu-
tationally efficient and can cope with complex camera motion. An inconvenience
is the dependency on reliable global motion estimation results. We will further
evaluate and improve our algorithm for different types of videos and applications.
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Table 1. Object Detection Results

Sequence Duration in |Corr. detected | Missed| False Processing
frames (sec) objects objects|positives|time in sec (fps)
street 270 (10.8s) [268/270 (99%)| 2/270 | 22 | 10.1s (26.7 fps)
parkrun 100 (4.0s) | 95/100 (95%) | 5/100 | 3 | 3.5s (28.5 fps)
surveillance 118 (4.7s) [224/236 (95%)|12/236 3 4.32s (27.3 fps)
kung fu 180 (7.2s) [291/303 (96%)|14/303 0 6.7s (26.8 fps)
hall monitor 300 (12.0s) |404/455 (89%)|51/455| 0 | 11.3s (26.5 fps)
man in restaurant 310 (12.4s) |288/310 (93%)|22/310 7 10.9s (28.4 fps)
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