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In order to extend the blow-up criterion of solutions to the Euler equations, Kozono and Taniuchi [12] have proved a logarithmic Sobolev inequality by means of isotropic (elliptic) BM O norm. In this paper, we show a parabolic version of the Kozono-Taniuchi inequality by means of anisotropic (parabolic) BM O norm. More precisely we give an upper bound for the L ∞ norm of a function in terms of its parabolic BM O norm, up to a logarithmic correction involving its norm in some Sobolev space. As an application, we also explain how to apply this inequality in order to establish a long time existence result for a class of nonlinear parabolic problems.

Introduction and main results

In [START_REF] Kozono | Limiting case of the Sobolev inequality in BMO, with application to the Euler equations[END_REF], Kozono and Taniuchi showed an L ∞ estimate of a given function by means of its BM O norm (space of functions of bounded mean oscillation) and the logarithm of its norm in some Sobolev space. In fact, they proved that for f ∈ W s p (R n ), 1 < p < ∞, the following estimate holds (with log + x = max(log x, 0)):

f L ∞ (R n ) ≤ C(1 + f BM O(R n ) (1 + log + f W s p (R n ) )), sp > n, (1.1) 
for some constant C = C(n, p, s) > 0. The main advantage of the above estimate is that it was successfully applied (see [START_REF] Kozono | Limiting case of the Sobolev inequality in BMO, with application to the Euler equations[END_REF]Theorem 2]) to extend the blow-up criterion of solutions to the Euler equations which was originally given by Beale, Kato and Majda in [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]. Inequality (1.1), as well as some variants of it, are shown (see [START_REF] Kozono | Limiting case of the Sobolev inequality in BMO, with application to the Euler equations[END_REF][START_REF] Ogawa | Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow[END_REF][START_REF] Kozono | Navier-Stokes equations in the Besov space near L ∞ and BMO[END_REF]) using harmonic analysis on isotropic functional spaces of the Lizorkin-Triebel and Besov type. However, as is well known, it is important, say for parabolic partial differential equations to consider spaces that are anisotropic. Motivated by the study of the long time existence of a certain class of singular parabolic coupled systems (see [START_REF] Ibrahim | Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system[END_REF][START_REF]Global existence of solutions to a singular parabolic/hamilton-jacobi coupled system with Dirichlet conditions[END_REF]), we show in this paper an analogue of the Kozono-Taniuchi inequality (1.1) but of the parabolic (anisotropic) type. Due to the parabolic anisotropy, we consider functional spaces on R n+1 = R n × R with the generic variable z = (x, t), where each coordinate x i , i = 1 • • • n is given 1 the weight 1, while the time coordinate t is given the weight 2. We now state the main results of this paper. The first result concerns a Kozono-Taniuchi parabolic type inequality on the entire space R n+1 . Introducing parabolic bounded mean oscillation BM O p spaces, and parabolic Sobolev spaces W 2m,m 2 (for the definition of these spaces, see Definitions 2.1 and 2.2), we present our first theorem. 

u L ∞ (R n+1 ) ≤ C 1 + u BM Op(R n+1 ) 1 + log + u W 2m,m 2 (R n+1 )
.

(1.

2)

The proof of Theorem 1.1 will be given in Section 2, and is based on an approach developed by Ogawa [START_REF] Ogawa | Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow[END_REF]. Let us mention that our proof in this paper is self-contained. The second result of this paper concerns a Kozono-Taniuchi parabolic type inequality on the bounded domain Ω T = (0, 1) n × (0, T ) ⊂ R n+1 , T > 0.

More precisely, our next theorem reads: (Ω T ) with m > n+2 4 . Then there exists a constant C = C(m, n, T ) > 0 such that:

u L ∞ (Ω T ) ≤ C 1 + u BM O p (Ω T ) 1 + log + u W 2m,m 2 (Ω T ) , (1.3) 
where

• BM Op(Ω T ) = • BM Op(Ω T ) + • L 1 (Ω T ) .
The proof of Theorem 1.2 will be given in Section 3.

Brief review of the literature

The brief review presented here only concerns logarithmic Sobolev inequalities of the elliptic type. Up to our knowledge, logarithmic Sobolev inequalities of the parabolic type have not been treated elsewhere in the literature.

The original type of the logarithmic Sobolev inequalities was found in Brezis-Gallouet [START_REF] Brézis | Nonlinear Schrödinger evolution equations[END_REF] and Brezis-Wainger [START_REF] Brézis | A note on limiting cases of Sobolev embeddings and convolution inequalities[END_REF] where the authors investigated the relation between L ∞ , W k r and W s p and proved that there holds the embedding:

f L ∞ (R n ) ≤ C(1 + log r-1 r (1 + f W s p (R n ) )), sp > n (1.4) provided f W k r (R n ) ≤ 1 for kr = n.
The estimate (1.4) was applied to prove global existence of solutions to the nonlinear Schrödinger equation (see [START_REF] Brézis | Nonlinear Schrödinger evolution equations[END_REF][START_REF] Hayashi | On the global strong solutions of coupled Klein-Gordon-Schrödinger equations[END_REF]). Similar embedding for f ∈ (W s p (R n )) n with divf = 0 was investigated by Beale-Kato-Majda in [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]. The authors showed that:

∇f L ∞ ≤ C(1 + rotf L ∞ (1 + log + f W s+1 p ) + rotf L 2 ), sp > n, (1.5) 
where they made use of this estimate in order to give a blow-up criterion of solutions to the Euler equations (see [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]). In [START_REF] Kozono | Limiting case of the Sobolev inequality in BMO, with application to the Euler equations[END_REF], Kozono and Taniuchi showed their inequality (1.1) in order to extend the blow-up criterion of solutions to the Euler equations given a in [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF] (see [START_REF] Kozono | Limiting case of the Sobolev inequality in BMO, with application to the Euler equations[END_REF]Theorem 2]). A generalized version of (1.1) in Besov spaces was given in Kozono-Ogawa-Taniuchi [START_REF] Kozono | Navier-Stokes equations in the Besov space near L ∞ and BMO[END_REF]. Finally, a sharp version of the logarithmic Sobolev inequality of the Beale-Kato-Majda and the Kozono-Taniuchi type in the Lizorkin-Triebel spaces was showed by Ogawa in [START_REF] Ogawa | Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow[END_REF].

Organization of the paper

This paper is organized as follows. In Section 2, we recall basic tools used in our analysis, and give the proof of Theorem 1.1. In Section 3, we present the proof of Theorem 1.2, and as an application, we explain how to use the parabolic Kozono-Taniuchi inequality in order to prove the long time existence of certain parabolic equations.

A parabolic Kozono-Taniuchi inequality on R n+1

This section is devoted to the proof of Theorem 1.1. We start by recalling some definitions and introducing some notations. A generic point in R n+1 will be denoted by z = (x, t) ∈ R n × R, x = (x 1 , . . . , x n ). Let S(R n+1 ) be the usual Schwarz space, and S ′ (R n+1 ) the corresponding dual space. Let u ∈ S ′ (R n+1 ), for ξ = (ξ 1 , . . . , ξ n ) ∈ R n and τ ∈ R we denote by Fu(ξ, τ ) ≡ û(ξ, τ ), and F -1 u(ξ, τ ) ≡ ǔ(ξ, τ ) the Fourier, and the inverse Fourier transform of u respectively. We also denote D r t = ∂ r ∂t r , r ∈ N, and D s x , s ∈ N, any derivative with respect to x of order s. The parabolic distance from z = (x, t) to the origin is defined by: 

Preliminaries and basic tools

z = max |x 1 |, . . . , |x n |, |t| 1/2 . ( 2 
u BM Op(O) = sup Q⊂O 1 |Q| Q |u -u Q | < +∞. (2.2)
Here Q denotes an arbitrary parabolic cube

Q = Q r = Q r (z 0 ) = {z ∈ R n+1 ; z -z 0 < r}, (2.3 
)

and u Q = 1 |Q| Q u. (2.4)
The functions in BM O p are defined up to an additive constant. We also define the space BM O p as:

BM O p (O) = BM O p (O) ∩ L 1 (O) with • BM O p = • BM Op + • L 1 .

Definition 2.2 (Parabolic Sobolev spaces)

Let m be a non-negative integer. We define the parabolic Sobolev space W 2m,m 2 (O) as follows:

W 2m,m 2 (O) = {u ∈ L 2 (O); D r t D s x u ∈ L 2 (O), ∀r, s ∈ N such that 2r + s ≤ 2m}. The norm of u ∈ W 2m,m 2 (O) is defined by: u W 2m,m 2 (O) = 2m j=0 2r+s=j D r t D s x u L 2 (O) . 3 
The next lemma concerns a Sobolev embedding of W 

(z) ∈ C ∞ 0 (R n+1 ) be a function such that ψ 0 (z) = 1 if z ≤ 1 and ψ 0 (z) = 0 if z ≥ 2. (2.6)
For such a function ψ 0 , we may define a smooth, anisotropic dyadic partition of unity (ψ j ) j∈N by letting

ψ j (z) = ψ 0 (2 -ja z) -ψ 0 (2 -(j-1)a z) if j ≥ 1.
Here a = (1, . . . , 1, 2) ∈ R n+1 , and for

η ∈ R, b = (b 1 , . . . , b n , b n+1 ) ∈ R n+1 , the dilatation η b z is defined by η b z = (η b 1 z 1 , . . . , η bn z n , η b n+1 z n+1 ). It is clear that ∞ j=0 ψ j (z) = 1 for z ∈ R n+1 ,
and supp ψ j ⊂ {z;

2 j-1 ≤ z ≤ 2 j+1 }, j ≥ 1.
Define φ j , j ≥ 0 as the inverse Fourier transform of ψ j , i.e. φj = ψ j . It is worth noticing that φ j (z) = 2 (n+2)(j-1) φ 1 (2 (j-1)a z) for j ≥ 1, (

and that for any u ∈ S ′ (R n+1 ),

u = (2π) -(n+1) 2 ∞ j=0 φ j * u, with convergence in S ′ (R n+1 ).
We now give the definition of the anisotropic Besov and Lizorkin-Triebel spaces.

Definition 2.4 (Anisotropic Besov spaces)

The anisotropic Besov space

B s p,q (R n+1 ) = B s p,q , s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ is the space of functions u ∈ S ′ (R n+1 ) with finite quasi norms u B s p,q =   ∞ j=0 2 sqj φ j * u q L p (R n+1 )   1/q (2.8)
and the natural modification for q = ∞, i.e.

u B s p,∞ = sup j≥0 2 sj φ j * u L p (R n+1 ) .
(2.9)

Definition 2.5 (Anisotropic Lizorkin-Triebel spaces)

The anisotropic Lizorkin-Triebel space F s p,q (R n+1 ) = F s p,q , s ∈ R, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ (or 1 ≤ q < ∞ and p = ∞) is the space of functions u ∈ S ′ (R n+1 ) with finite quasi norms

u F s p,q =   ∞ j=0 2 sqj |φ j * u| q   1/q L p (R n+1 ) (2.10)
and the natural modification for q = ∞, i.e.

u F s p,∞ = sup j≥0 2 sj |φ j * u| L p (R n+1 ) . (2.11) 
A very useful space throughout our analysis will be the truncated anisotropic (parabolic) Lizorkin-Triebel space F s p,q that we define here.

Definition 2.6 (Truncated anisotropic Lizorkin-Triebel space)

The truncated anisotropic Lizorkin-Triebel space

F s p,q (R n+1 ) = F s p,q , s ∈ R, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ (1 ≤ q < ∞ if p = ∞) is the space of functions u ∈ S ′ (R n+1 ) with finite quasi norms u e F s p,q =   ∞ j=1 2 sqj |φ j * u| q   1/q L p (R n+1 ) (2.12)
and the natural modification for q = ∞, i.e. (2.13)

The basic difference between F s p,q and F s p,q is that in F s p,q we omit the term φ 0 * u and only take in consideration the terms φ j * u, j ≥ 1. Sobolev embeddings of parabolic Lizorkin-Triebel and Besov spaces are shown by the next two lemmas.

Lemma 2.7 (Embeddings of Besov spaces, [10, Theorem 7]) Let s, t ∈ R, s > t, and 1 ≤ p, r ≤ ∞ satisfy: s -n+2 p = t -n+2 r . Then for any 1 ≤ q ≤ ∞ we have the following continuous embedding

B s p,q (R n+1 ) ֒→ B t r,q (R n+1 ). (2.14) Lemma 2.8 (Sobolev embeddings, [15, Proposition 2])
Take an integer m ≥ 1. Then we have

B 2m 2,1 ֒→ W 2m,m 2 ֒→ B 2m 2,∞ . (2.15)

Basic logarithmic Sobolev inequality

In this subsection we show a basic logarithmic Sobolev inequality. In particular, we show the following lemma.

Lemma 2.9 (Basic logarithmic Sobolev inequality)

Let u ∈ W 2m,m 2 (R n+1 ) for some m ∈ N, m > n+2 4 . Then there exists some constant C = C(m, n) > 0 such that u e F 0 ∞,1 ≤ C 1 + u e F 0 ∞,2 1 + (log + u W 2m,m 2 ) 1/2 . (2.16)
Proof. First, let us mention that the ideas of the proof of this lemma are inspired from the proof of Ogawa [START_REF] Ogawa | Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow[END_REF]Corollary 2.4]. The proof is divided into three steps, and the constants in the proof may vary from line to line.

Step 1. (Estimate of u e

F 0 ∞,1
).

Let γ > 0, and N ∈ N be two arbitrary variables. We compute:

u e F 0 ∞,1 ≤ 1≤j<N |φ j * u| L ∞ + j≥N 2 -γj 2 γj |φ j * u| L ∞ ≤ N 1/2   1≤j<N |φ j * u| 2   1/2 L ∞ + C γ 2 -γN   j≥N (2 γj |φ j * u|) 2   1/2 L ∞ ≤ C γ N 1/2 u e F 0 ∞,2 + 2 -γN u F γ ∞,2
, where C γ > 0 is a positive constant.

Step 2. (Optimization in N ).

We optimize the previous inequality in N by setting:

N = 1 if u F γ ∞,2 ≤ 2 γ u e F 0 ∞,2
.

In this case we can easily check that:

u e F 0 ∞,1 ≤ C γ u e F 0 ∞,2   1 + log + u F γ ∞,2 u e F 0 ∞,2 1/2   .
(2.17)

In the case where u

F γ ∞,2 > 2 γ u e F 0 ∞,2
, we choose 1 ≤ β < 2 γ such that

N = log + 2 γ β u F γ ∞,2 u e F 0 ∞,2 ∈ N.
We then compute:

N 1/2 u e F 0 ∞,2 + 2 -γN u F γ ∞,2 ≤ u e F 0 ∞,2   1 β + log + 2 γ β u F γ ∞,2 u e F 0 ∞,2 1/2   ≤ u e F 0 ∞,2   1 β + 2 log 2 γ log + u F γ ∞,2 u e F 0 ∞,2 1/2   ≤ C γ u e F 0 ∞,2   1 + log + u F γ ∞,2 u e F 0 ∞,2 1/2   ,
hence we also have (2.17) with a different constant C γ .

Step 3. (Estimate of u F γ ∞,2 and conclusion).

Noting the inequality

x log e + y x

1/2 ≤    C 1 + x(log (e + y)) 1/2 for 0 < x ≤ 1 Cx(log(e + y)) 1/2 for x > 1,
we deduce from (2.17) that:

u e F 0 ∞,1 ≤ C 1 + u e F 0 ∞,2 1 + log + u F γ ∞,2 1/2 , (2.18) 
where the constant C depends also on γ. We now estimate the term u

F γ ∞,2 . Choose γ such that 0 < γ < 2m - n + 2 2 .
Call α = 2m -n+2 2 , we compute: 

u F γ ∞,2 =   j≥0 2 2jγ |φ j * u| 2   1/2 L ∞ ≤   j≥0 2 2j(γ-α)   1/2 sup j≥0 2 αj |φ j * u| L ∞ ≤ C u B α ∞,∞ . ( 2 
u F γ ∞,2 ≤ C u W 2m,m 2 ,
hence the result directly follows from (2.18).

Proof of Theorem 1.1

In this subsection we present the proof of several lemmas leading to the proof the Theorem 1.1. We start with the following lemma concerning mean estimates of functions on parabolic cubes. Call Q 2 j ⊂ R n+1 , j ≥ 0, any arbitrary parabolic cube of radius 2 j (see (2.3) for the definition of parabolic cubes). For the sake of simplicity, we denote

Q j = Q 2 j for all j ∈ Z.
(2.20)

Our next lemma reads:

Lemma 2.10 (Mean estimates on parabolic cubes) Let u ∈ BM O p (R n+1 ). Take Q j ⊂ Q j+1 , j ≥ 0 (Q j and Q j+1 do not necessarily have the same center). Then we have (with the notation (2.4)):

|u Q j+1 -u Q j | ≤ 1 + 2 n+2 u BM Op . (2.21)
More generally, we have for any

Q j ⊆ Q k , j, k ∈ Z: |u Q k -u Q j | ≤ (k -j) 1 + 2 n+2 u BM Op . (2.22)
Proof. We easily remark that:

|Q j+1 | = 2 n+2 |Q j |.
We compute:

|u Q j+1 -u Q j | = 1 |Q j | Q j |u Q j+1 -u Q j | ≤ 1 |Q j | Q j |u -u Q j | + 1 |Q j | Q j |u -u Q j+1 | ≤ u BM Op + 2 n+2 |Q j+1 | Q j+1 |u -u Q j+1 | ≤ u BM Op + 2 n+2 u BM Op ≤ 1 + 2 n+2 u BM Op ,
which immediately gives (2.21), and consequently (2.22).

The following two lemmas are of notable importance for the proof of the logarithmic Sobolev inequality (1.2). In the first lemma we bound the terms φ j * u for j ≥ 1, while, in the second lemma, we give a bound on φ 0 * u.

Lemma 2.11 (Estimate of φ j * u L ∞ (R n+1 ) for j ≥ 1) Let u ∈ BM O p (R n+1 ).
Then there exists a constant C = C(n) > 0 such that:

u * φ j L ∞ (R n+1 ) ≤ C u BM Op(R n+1 ) for any j ≥ 1, (2.23) 
where (φ j ) j≥1 is the sequence of functions given in (2.7).

Proof. We will show that

|(φ j * u)(z)| ≤ C u BM Op for z = 0. (2.24)
The general case with z ∈ R n+1 could be deduced from (2.24) by translation. Throughout the proof, we will sometimes omit (when there is no confusion) the dependence of the norm on the space R n+1 . The proof is divided into three steps.

Step 1. (Decomposition of (φ j * u)(0) on parabolic cubes).

Since φj is supported in {z ∈ R n+1 ; 2 j-1 ≤ z ≤ 2 j+1 } then φj (0) = 0 = R n+1 φ j . Using this equality, we can write:

(φ j * u)(0) = R n+1 φ j (-z)(u(z) -u Q 1-j )dz
where Q 1-j is the parabolic cube defined by (2.20) and centered at 0. This implies that

|(φ j * u)(0)| ≤ A 1 Q 1-j |φ j (-z)||u(z) -u Q 1-j |dz + A 2 R n+1 \Q 1-j |φ j (-z)||u(z) -u Q 1-j |dz .
(2.25)

Step 1.1. (Estimate of A 1 ).

From (2.7), the term A 1 can be estimated as follows:

A 1 ≤ 2 (n+2)(j-1) φ 1 L ∞ Q 1-j |u(z) -u Q 1-j |dz ≤ 2 (n+2)(j-1) |Q 1-j | φ 1 L ∞ u BM Op ≤ |Q 1 | φ 1 L ∞ u BM Op , hence A 1 ≤ C 0 u BM Op with C 0 = |Q 1 | φ 1 L ∞ (R n+1 ) .
(2.26)

Step 2. (Estimate of A 2 ).

We rewrite A 2 as the following series:

A 2 = 2 (n+2)(j-1) -∞<k≤j Q 2-k \Q 1-k φ 1 -2 (j-1)a z |u(z) -u Q 1-j |dz. (2.27)
Since φ 1 is the inverse Fourier transform of a compactly supported function then we have:

∀m ∈ N * , ∃C 1 > 0, |φ 1 (z)| ≤ C 1 z m for all z ≥ 1.
(2.28)

The asymptotic behavior of φ 1 shown by (2.28) leads to the following decomposition of the term A 2 :

A 2 ≤ A 3 C 1 2 (n+2)(j-1) -∞<k≤j Q 2-k \Q 1-k 1 2 (j-1)a z m |u(z) -u Q 2-k |dz + A 4 C 1 2 (n+2)(j-1) -∞<k≤j Q 2-k \Q 1-k 1 2 (j-1)a z m |u Q 2-k -u Q 1-j |dz .
Step 2.1. (Estimate of A 3 ).

Since the integral appearing in

A 3 is done over Q 2-k \ Q 1-k , we obtain 2 (j-1)a z m ≥ 2 m(j-k) .
Using this inequality together with the fact that

Q 2-k \Q 1-k |u(z) -u Q 2-k |dz ≤ 2 (n+2)(2-k) |Q 1 | u BM Op ,
we can estimate the term A 3 as follows:

A 3 ≤ C 1 2 n+2   -∞<k≤j 2 -(m-(n+2))(j-k)   |Q 1 | u BM Op , (2.29) 
where the above series converges for m > n + 2.

Step 2.2. (Estimate of A 4 ).

Using Lemma 2.10, and the fact that 2 (j-1)a z m ≥ 2 m(j-k) on Q 2-k \ Q 1-k , the term A 4 can be estimated as follows:

A 4 ≤ C 1 2 (n+2)(j-1)   -∞<k≤j 2 -m(j-k) (1 + j -k)|Q 2-k |   u BM Op ≤ C 1 2 n+2   -∞<k≤j 2 -(m-(n+2))(j-k) (1 + j -k)   |Q 1 | u BM Op , (2.30) 
where the above series also converges for m > n + 2.

Step 3. (Conclusion).

From (2.26), (2.29) and (2.30), inequality (2.23) directly follows with a constant C > 0 independent of j. . Lemma 2.12 (Estimate of

φ 0 * u L ∞ (R n+1 ) ) Let u ∈ W 2m,m 2 (R n+1 ) with m > n+2 4 .
Then there exists a constant C = C(m, n) > 0 such that we have:

φ 0 * u L ∞ ≤ C 1 + u BM Op 1 + log + u W 2m,m 2 
.

(2.31)

Proof. The constants that will appear may differ from line to line, but only depend on n and m. The proof of this lemma combines somehow the proof of Lemmas 2.9 and 2.11. We write down u Q 1 as a finite sum of a telescopic sequence for N ≥ 1:

u Q 1 = (u Q 1 -u Q 2 ) + • • • + (u Q N-1 -u Q N ) + u Q N .
From Lemma 2.10, we deduce that:

|u Q 1 | ≤ C(N -1) u BM Op + |u Q N |.
Remark that applying Cauchy-Schwarz inequality, we get

|u Q N | ≤ 1 |Q N | Q N |u| ≤ Q N u 2 1/2 Q N 1 2 1/2
, then we obtain

|u Q 1 | ≤ C N u BM Op + 2 -γN u W 2m,m 2 with γ = n + 2 2 .
(2.32)

Following similar arguments as the proof of Lemma 2.9, we may optimize (2.32) in N , we finally get:

|u Q 1 | ≤ C 1 + u BM Op 1 + log + u W 2m,m 2 .
(2.33)

We now estimate |(φ 0 * u)(z)| for z = 0. Again, the same estimate could be obtained for any z ∈ R n+1 by translation. We write

(φ 0 * u)(0) = R n+1 φ 0 (-z)u(z) = R n+1 φ 0 (-z)(u(z) -u Q 1 ) + R n+1 φ 0 (-z)u Q 1 = B 1 Q 1 φ 0 (-z)(u(z) -u Q 1 ) + B 2 R n+1 \Q 1 φ 0 (-z)(u(z) -u Q 1 ) + B 3 R n+1 φ 0 (-z)u Q 1 ,
where

|B 1 | ≤ C u BM Op , (2.34) 
and, from (2.33),

|B 3 | ≤ C 1 + u BM Op 1 + log + u W 2m,m 2 
.
(2.35)

In order to estimate B 2 , we argue as in Step 2 of Lemma 2.11. In fact we have:

|B 2 | ≤ k≥1 Q k+1 \Q k |φ 0 (-z)||u(z) -u Q k+1 | + k≥1 Q k+1 \Q k |φ 0 (-z)||u Q k+1 -u Q 1 | ≤   k≥1 ( sup Q k+1 \Q k |φ 0 (-z)|)|Q k+1 |(1 + k)   u BM Op ≤ 2 n+2   k≥1 2 -(m-(n+2)) (1 + k)   |Q 1 | u BM Op , (2.36) 
where for the last line we have used the fact that |φ 0 (z)| ≤ C z m for z ≥ 1. Of course the above series converges if we choose m > n + 2. From (2.34), (2.35) and (2.36), the result follows.

Corollary 2.13 (A control of u e F 0 ∞,2 ) Let u ∈ BM O p (R n+1 ) ∩ F 0 ∞,1 (R n+1 ), then u ∈ F 0 ∞,2 (R n+1
) and we have:

u e F 0 ∞,2 ≤ C u 1/2 BM Op u 1/2 e F 0 ∞,1 , (2.37) 
where

C = C(n) > 0 is a positive constant.
Proof. Using (2.23), we compute:

u e F 0 ∞,2 =   j≥1 |φ j * u| 2   1/2 L ∞ ≤   sup j≥1 φ j * u L ∞ j≥1 |φ j * u|   1/2 L ∞ ≤ C u 1/2 BM Op u 1/2 e F 0 ∞,1
, which terminates the proof.

Remark 2.14 From [START_REF] Bownik | Anisotropic Triebel-Lizorkin spaces with doubling measures[END_REF], it seems that BM O p spaces can be characterized in terms of parabolic Lizorkin-Triebel spaces. In the case of elliptic spaces, it is a well-known result (see [START_REF] Triebel | Theory of function spaces[END_REF][START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF]) which allows to simplify the proof of the Kozono-Taniuchi inequality.

We can now give the proof of our first main result (Theorem 1.1).

Proof of Theorem 1.1. Using (2.16) and (2.37), we obtain:

u e F 0 ∞,1 ≤ C 1 + u 1/2 BM Op u 1/2 e F 0 ∞,1 1 + (log + u W 2m,m 2 ) 1/2 . ( 2 

.38)

Notice that the constant C can always be chosen such that

C ≥ 1. If u e F 0 ∞,1
≤ 1, we evidently have:

u e F 0 ∞,1 ≤ C ≤ C 1 + u BM Op 1 + log + u W 2m,m 2 . (2.39) If u e F 0 ∞,1 > 1, then, dividing (2.38) by u 1/2 e F 0 ∞,1
, we can easily deduce inequality (2.39). Using the

fact that u L ∞ ≤ C j≥0 φ j * u L ∞ ≤ C φ 0 * u L ∞ + u e F 0 ∞,1
, and using inequalities (2.31) and (2.39), we directly get into the result.

A parabolic Kozono-Taniuchi inequality on a bounded domain

The goal of this section is to present, on the one hand, the proof of Theorem 1.2. On the other hand, at the end of this section, we give an application where we show how to use inequality (1.3) in order to maintain the long time existence of solutions to some parabolic equations. Let us indicate that throughout this section, the positive constant C = C(T ) > 0 may vary from line to line.

Proof of Theorem 1.2

In order to simplify the arguments of the proof, we first show Theorem 1.2 in the special case when n = m = 1. Then we give the principal ideas how to prove the result in the general case. Call I = (0, 1) and Ω T = I × (0, T ), we first show the following proposition:

Proposition 3.1 (Theorem 1.2, case: n = m = 1) Let u ∈ W 2,1 2 (Ω T ).
Then there exists a constant C = C(T ) > 0 such that:

u L ∞ (Ω T ) ≤ C 1 + u BM Op(Ω T ) 1 + log + u W 2,1 2 (Ω T ) . (3.1)
As a similar inequality of (3.1) is already shown on the R 2 (see inequality (1.2)), the idea of the proof of (3.1) lies in using (1.2) for a special extension of the function u ∈ W 2,1 2 (Ω T ) to the entire space R 2 . For this reason, we demand that the extended function stays in W 2,1 2 (R 2 ) which is done via the following arguments. Remark first that the function u can be extended by continuity to the boundary ∂Ω T of Ω T . Take ũ as the function defined over

Ω T = (-1, 2) × (-T, 2T ) as follows: ũ(x, t) =      -3u(-x, t) + 4u - x 2 , t for -1 < x < 0, 0 ≤ t ≤ T, -3u(2 -x, t) + 4u 3 -x 2 , t for 1 < x < 2, 0 ≤ t ≤ T, (3.2) and ũ 
(x, t) = u(x, -t) for -T < t ≤ 0 u(x, 2T -t) for T ≤ t < 2T . (3.3) 
A direct consequence of this extension is the following lemma.

Lemma 3.2 (L 1 estimate of ũ) Let ũ be the function defined by (3.2) and (3.3). Then there exists a constant C = C(T ) > 0 such that:

ũ L 1 ( e Ω T ) ≤ C u L 1 (Ω T ) . (3.4) 
Proof. The proof of this lemma is direct by the extension.

Another important consequence of the extension (3.2) and (3.3) is the fact that ũ ∈ W 2,1 2 ( Ω T ), and that we have (see for instance [START_REF] Evans | Partial differential equations[END_REF])

ũ W 2,1 2 ( e Ω T ) ≤ C u W 2,1 2 (Ω T ) , C = C(T ) > 0. (3.5) 
Let Z 1 ⊂ Z 2 be the two subsets of Ω T defined by: Z 1 = {(x, t); -1/4 < x < 5/4 and -T /4 < t < 5T /4}, and Z 2 = {(x, t); -3/4 < x < 7/4 and -3T /4 < t < 7T /4}.

Taking the cut-off function Ψ ∈ C ∞ 0 (R 2 ), 0 ≤ Ψ ≤ 1 satisfying: Ψ(x, t) = 1 for (x, t) ∈ Z 1 0 for (x, t) ∈ R 2 \ Z 2 , (3.6) 
we can easily deduce from (3.5) that Ψũ ∈ W 2,1 2 (R 2 ), and

Ψũ W 2,1 2 (R 2 ) ≤ C u W 2,1 2 (Ω T ) . (3.7) Since Ψũ ∈ W 2,1 2 (R 2 )
, we can apply inequality (1.2) to the function Ψũ, and, having (3.7) in hands, the proof of Proposition 3.1 directly follows if we can show that

Ψũ BM Op(R 2 ) ≤ C u BM Op(Ω T ) , (3.8) 
and this will be done in the forthcoming arguments.

Proof of Proposition 3.1

In all what follows, it will be useful to deal with an equivalent norm of the BM O p space. This norm is given by the following lemma.

Lemma 3.3 (Equivalent BM O p norms) Let u ∈ BM O p (O), O ⊆ R n+1
is an open set. The parabolic BM O p norm of u given by (2.2) is equivalent to the following norm, that we keep give it the same notation:

u BM Op (O) = sup Q⊂O inf c∈R 1 |Q| Q |u -c| , Q given by (2.3). (3.9)
Proof. The proof of this lemma is direct. It suffices to see that for any c ∈ R, we have:

|u -u Q | ≤ |u -c| + |c -u Q | ≤ |u -c| + 1 |Q| Q |u -c|,
which immediately gives:

Q |u -u Q | ≤ 2 Q |u -c|, hence 1 2|Q| Q |u -u Q | ≤ inf c∈R 1 |Q| Q |u -c| ≤ 1 |Q| Q |u -u Q |, (3.10)
and the equivalence of the two norms follows.

From now on, and for the sake of simplicity, we will denote:

- Q u = 1 |Q| Q u.
The following lemma gives an estimate of inf c∈R -Q |u -c| on small parabolic cubes.

Lemma 3.4 Let f ∈ L 1 loc (R 2 ). Take Q r ⊆ Q 2r two parabolic cubes of R 2 .
We do not require that the cubes have the same center. Then we have:

inf c∈R - Qr |f -c| ≤ 8 inf c∈R - Q 2r |f -c|.
(3.11)

Proof. For c ∈ R, we compute:

- Qr |f -c| ≤ |Q 2r | |Q r | - Q 2r |f -c| ≤ 8 - Q 2r |f -c|.
Taking the infimum of both sides we arrive to the result.

The next lemma gives an estimate of inf c∈R -Qr |ũ -c| on small parabolic cubes in

Ω T = (-1, 2) × (0, T ).
Define the term r 0 > 0 as the greatest positive real number such that there exists Q r 0 ⊆ Ω T , i.e., r 0 = sup{r > 0; r ≤ 1/2 and r 2 ≤ T /2}. (3.12)

We show the following: Lemma 3.5 (Estimates on small parabolic cubes in Ω T ) Let ũ be the function defined by (3.2) and (3.3). Take any parabolic cube Q r satisfying:

Q r ⊆ Ω T , with r ≤ r 1 and 2r 1 = r 0 , (3.13)
where r 0 is given by (3.12). Then there exists a universal constant C > 0 such that:

inf c∈R - Qr |ũ -c| ≤ C u BM Op(Ω T ) . (3.14)
Proof. Call Ω d T and Ω g T the right and the left neighbor sets of Ω T defined respectively by: Ω d T = (-1, 0) × (0, T ) and Ω g T = (1, 2) × (0, T ). First let us mention that if the cube Q r lies in Ω T then inequality (3.14) is evident (see the equivalent definition (3.9) of the parabolic BM O p norm). Two remaining cases are to be considered: either

Q r intersects the set {x = 0}∪ {x = 1}, or Q r lies in Ω d T ∪ Ω g T .
Our assumption (3.13) on the radius of the parabolic cube makes it impossible that the cube Q r meets Ω d T and Ω g T at the same time. Therefore, and in order to make the proof simpler, we only consider the following cases: either Q r intersects the set {x = 0}, or Q r lies in Ω g T . The proof is then divided into three main steps:

Step 1. (Q r intersects the line {x = 0}).

Step 1.1. (First estimate).

Again the assumption (3.13) imposed on the radius r makes it possible to embed Q r in a larger parabolic cube Q 2r ⊆ Ω T of radius 2r, which is symmetric with respect to the line {x = 0} (see Figure 1). Then the center of the cube Q 2r should be also on the same line, but we do not require that the two cubes Q r and Q 2r have centers with the same ordinate t. Now, using Lemma 3.4, we deduce that:

inf c∈R - Qr |ũ -c| ≤ 8 inf c∈R - Q 2r |ũ -c|, (3.15) 
and hence in order to conclude, we need to estimate the right hand side of the above inequality with respect to u BM Op (Ω T ). Call Q d 2r and Q g 2r the right and the left sides of Q 2r defined respectively by:

Q d 2r = Q 2r ∩ Ω T and Q g 2r = Q 2r ∩ Ω g T .
Also call Q trans 2r ⊆ Ω T , the translation of the cube Q 2r by the vector (2r, 0), i.e.

Q trans 2r = (2r, 0) + Q 2r .
For c ∈ R, we compute:

Q 2r |ũ -c| = Q g 2r |ũ -c| + Q d 2r |u -c|, ≤ Q g 2r |ũ -c| + Q trans 2r |u -c|, (3.16) 
where we have used the fact that ũ = u on Ω T , and that

Q d 2r ⊆ Q trans 2r . Step 1.2. (Estimate of Q g 2r |ũ -c|).
We compute (using the definition (3.2) of the function ũ on Ω g T ):

Q g 2r |ũ(x, t) -c|dxdt = Q g 2r | -3u(-x, t) + 4u(-x/2, t) -c|dxdt ≤ 3 Q g 2r |u(-x, t) -c|dxdt + 4 Q g 2r |u(-x/2, t) -c|dxdt ≤ 3 Q d 2r |u(x, t) -c|dxdt + 8 Q d 2r |u(x, t) -c|dxdt, (3.17) 
where

Q d 2r = {(x/2, t); (x, t) ∈ Q d 2r } ⊆ Q d 2r ⊆ Q trans 2r .
From (3.17) we easily deduce that:

Q g 2r |ũ -c| ≤ 11 Q trans 2r |u -c|,
and hence (using (3.16)), we finally get:

Q 2r |ũ -c| ≤ 12 Q trans 2r |u -c|. (3.18) Since |Q 2r | = |Q trans 2r |, inequality (3.18) gives - Q 2r |ũ -c| ≤ 12 - Q trans 2r |u -c|.
Since Q trans 2r is a parabolic cube in Ω T , taking the infimum over c ∈ R of the above inequality, we obtain:

inf c∈R - Q 2r |ũ -c| ≤ 12 u BM Op(Ω T ) . (3.19) 
From (3.15) and (3.19), we deduce (3.14).

Step 2.

(Q r ⊆ Ω g T ).
Let 0 < a 0 < b 0 < 1 and 0 < a 1 < b 1 < T be such that

Q r = (-b 0 , -a 0 ) × (a 1 , b 1 ).
For any c ∈ R, we compute:

Qr |ũ(x, t) -c|dxdt = Qr | -3u(-x, t) + 4u(-x/2, t) -c|dxdt ≤ 3 Q s r |u(x, t) -c|dxdt + 8 Q s r |u(x, t) -c|dxdt (3.20) 
with (see Figure 2),

-1 0 ΩT Ω d T Ω g T 1 a0 b0 a1 b1 a 0 2 b 0 2 -a0 -b0 T 2 x t Qr Q s r Q s r Figure 2: Analysis on cubes Q r ⊆ Ω g T Q s r = (a 0 , b 0 ) × (a 1 , b 1 ) ⊆ Ω T and Q s r = a 0 2 , b 0 2 × (a 1 , b 1 ) ⊆ Ω T .
We remark that Q s r is a parabolic cube in Ω T , while Q s r is not (his aspect ratio is different). In fact

Q s r could be embedded in a parabolic cube Q s r ⊆ Q s r ⊆ Ω T ,
where Q s r is simply a space translation of Q s r . In particular we have:

|Q r | = |Q s r | = |Q s r |. (3.21) 
The above arguments, together with (3.20) give: Step 3. (Conclusion).

Qr |ũ -c| ≤ 3 Q s r |u -c| + 8 Q s r |u -c|. ( 3 
As it was already mentioned at the beginning of the proof, the case where the parabolic cube Q r meets the line {x = 1} or lies completely in Ω d T , could be treated using identical arguments. Therefore, for all small parabolic cubes Q r satisfying (3.13), inequality (3.14) is always valid, and this terminates the proof of Lemma 3.5.

A generalization of Lemma 3.5 is now given. Lemma 3.6 (Estimates on small parabolic cubes in Ω T ) Let ũ be the function defined by (3.2) and (3.3). Take any parabolic cube Q r ⊆ Ω T satisfying:

r ≤ r 2 with r 2 √ 2 = r 1 , (3.24) 
where r 1 is given by (3.13). Then there exists a universal constant C > 0 such that:

inf c∈R - Qr |ũ -c| ≤ C u BM Op(Ω T ) . (3.25)
Sketch of the proof. The arguments leading to the proof of this lemma are already contained in the proof of Lemma 3.5. First notice that if Q r ⊆ Ω T , we enter directly (since r ≤ r √ 2 ≤ r 1 ) to the framework of Lemma 3.5, and hence (3.25) is direct. Because r ≤ r 1 , remark that there exists a cube Q ′ r obtained by a time translation of Q r such that Q ′ r ⊆ Ω T . Therefore it is impossible that Q r meets at the same time (-1, 2) × (T, 2T ) and (-1, 2) × (-T, 0). For this reason, we either consider parabolic cubes intersecting {t = T } (see Figure 3), or parabolic cubes in (-1, 2) × (T, 2T ) (see Figure 4). 

T 2T t Qr Q r √ 2 2 Figure 3: Q r ∩ {t = T } = ∅ -1 0 T 2T t Qr Q sym r 2 Figure 4: Q r ∩ {t = T } = ∅ Case Q r ∩ {t = T } = ∅.
In this case, we first embed Q r in a larger parabolic cube Q r √ 2 which is symmetric with respect to the line {t = T }, so the center of this cube lies in {t = T }. We now repeat the same arguments as in Step 1 of Lemma 3.5, using in particular the symmetry (3.3) of the function ũ with respect to {t = T }, and the fact that we can consider the cube

Q trans ′ r √ 2 = (0, -2r 2 ) + Q r √ 2 such that Q trans ′ r √ 2 ⊆ Q r 1 ⊆ Ω T ,
for some cube Q r 1 . Indeed, estimates on all such cubes Q trans ′ r √ 2

are already controlled by (3.14).

Case Q r ∩{t = T } = ∅. In this case we repeat the same arguments as in Step 2 of Lemma 3.5. Indeed, in the present case, it is even simpler since the function ũ is symmetric with respect to {t = T }.

We now show how to prove estimate (3.8).

Proof of estimate (3.8). The parabolic BM O p norm (3.9) of Ψũ could be estimated taking the supremum of -Qr |Ψũ -(Ψũ) Qr |, Q r ⊆ R 2 , over small parabolic cubes (Q r with r ≤ r 2 /2), and big parabolic cubes (Q r with r > r 2 /2). The proof is then divided into two steps.

Step 1. (Analysis on big parabolic cubes Q r , r > r 2 /2).

We compute, using the fact that Ψ = 0 on R 2 \ Z 2 , and Ψ ≤ 1 on R 2 (see (3.6)):

- Qr |Ψũ -(Ψũ) Qr | ≤ 2 - Qr |Ψũ| ≤ 2 |Q r | Qr∩Z 2 |ũ| ≤ 2 2 r 3 2 Qr∩Z 2 |ũ| ≤ 2 2 r 3 2 e Ω T |ũ| ≤ C u L 1 (Ω T ) . (3.26)
Step 2. (Analysis on small parabolic cubes Q r , r ≤ r 2 /2).

From the definition (3.24) of r 2 , and the construction (3.6) of the function Ψ, we deduce that if Q r intersects Z 2 then forcely Q r ⊆ Ω T . If not, i.e. Q r ∩ Z 2 = ∅ then Ψ = 0 on Q r , and therefore:

- Qr |Ψũ -(Ψũ) Qr | = 0. (3.27) 
Then we have only to consider Q r ⊆ Ω T .

Step 2.1. (First estimate).

Using (3.10), we get

- Qr |Ψũ -(Ψũ) Qr | ≤ 2 inf c∈R - Qr |Ψũ -c| ≤ 2 - Qr |Ψũ -c 0 Ψ Qr |, (3.28) 
for any fixed constant c 0 ∈ R. Remark that we can write:

Ψũ -c 0 Ψ Qr = (Ψ -Ψ Qr )ũ + (ũ -c 0 )Ψ Qr . (3.29)
Hence, we deduce that

- Qr |Ψũ -(Ψũ) Qr | ≤ Cr - Qr |ũ| + 2 inf c 0 ∈R - Qr |ũ -c 0 | ≤ Cr - Qr |ũ| + 2C u BM Op(Ω T ) , (3.30) 
where for the first line we have used that fact that Ψ ≤ 1 and that Ψ is Lipschitz, and for the second line we have used (3.25).

Step 2.2. (Estimate of -Qr |ũ|).

We have

- Qr |ũ| ≤ |ũ Qr | + - Qr |ũ -ũQr | ≤ |ũ Qr | + 2 inf c∈R - Qr |ũ -c| ≤ |ũ Qr | + 2C u BM Op(Ω T ) , (3.31) 
where for the second line, we have used (3.10), while for the third line, we have used (3.25). Remark that from the proof of Lemma 2.10 with n = 1, we have for

Q 2 j r ⊆ Q 2 j+1 r ⊆ Ω T : |ũ Q 2 j r -ũQ 2 j+1 r | ≤ - Q 2 j r |ũ -ũQ 2 j r | + 2 3 - Q 2 j+1 r |ũ -ũQ 2 j+1 r | ≤ 2(1 + 2 3 ) sup Qρ⊆ e Ω T , ρ≤2 j+1 r inf c∈R - Qρ |ũ -c| ≤ 2C(1 + 2 3 ) u BM Op(Ω T ) ,
where we have used (3.10) for the second line, and, for the third line, we have used (3.25) assuming 2 j+1 r ≤ r 2 . Defining j 0 = min{j ∈ N; r 2 /2 ≤ 2 j r < r 2 }, and using a telescopic sequence, we can deduce that

|ũ Qr -ũQ 2 j 0 r | ≤ j 0 (2C(1 + 2 3 )) u BM Op(Ω T ) ≤ C(1 + | log r|) u BM Op(Ω T ) . (3.32) 
Moreover, we have

|ũ Q 2 j 0 r | ≤ 1 |Q r 2 /2 | e Ω T |ũ| ≤ C u L 1 (Ω T ) , (3.33) 
where we have used (3.4) for the second inequality. From (3.30), (3.32) and (3.33), we get:

- Qr |ũ| ≤ C u L 1 (Ω T ) + (1 + | log r|) u BM Op(Ω T ) (3.34) 
for some constant C > 0.

Step 2.3. (Conclusion for r ≤ r 2 /2).

Finally, putting together (3.30) and (3.34), we deduce that

- Qr |Ψũ -(Ψũ) Qr | ≤ C (r| log r| + 1) u BM Op(Ω T ) + u L 1 (Ω T ) ≤ C u BM Op(Ω T ) + u L 1 (Ω T ) , (3.35) 
where in the second line, we have used that r ∈ (0, 1), and that r| log r| is bounded.

Step 3 (General conclusion).

Putting together (3.26), (3.27) and (3.35), we get (3.8).

We are now ready to show the proof of Proposition 3.1.

Proof of Proposition 3.1. Applying estimate (2.37), with m = n = 1, to the function Ψũ ∈ W 2,1 2 (R 2 ) ⊆ L ∞ (R 2 ), we get:

u L ∞ (Ω T ) = Ψũ L ∞ (Ω T ) ≤ Ψũ L ∞ (R 2 ) ≤ C 1 + Ψũ BM Op(R 2 ) 1 + log + Ψũ W 2,1 2 (R 2 )
.

Here, we have also used the fact that Ψ = 1 over Ω T (see ( ( Ω T ) with Ω T = (-1, 2) n × (-T, 2T ), we first make the extension separately and successively with respect to the spatial variables x i , with i = 1 • • • n. Then we make the extension with respect to the time variable that is treated somehow differently. Fix (x 2 , . . . , x n , t) ∈ (0, 1) n-1 × (0, T ), the spatial extension of u in x 1 is as follows: with λ j = 1 2 j , and where we require that:

2m-1 j=0 c j (-λ j ) k = 1 for k = 0 • • • 2m -1.
The above inequalities can be regarded as a linear system whose associated matrix is of the Vandermonde type and hence invertible. This ensures the existence of the constants c j , j = 0 • • • 2m -1, and therefore the above extension (3.36) gives sense.

After doing the extension with respect to x 1 , the extension with respect to x 2 is done in the same way by varying the x 2 and fixing all other variables. This is repeated successively until the x n variable.

For the time variable, we also use the same extension (3.36). Indeed, in this case, we may only sum up to m -1 in (3.36).

Ideas of the proof of Proposition 3.7. Heuristically, the proof breaks into the following four steps. In what follows all the constants can depend on the time t, but are bounded for any finite t.

Step 1. (First estimate from below on the gradient).

Writing down the equation satisfied by v: Step 2. (Estimate of v x BM Op ).

               v t (
Using the fact that u(x + 1, t) = u(x, t) + 1, and that the right hand term of the first equation of (3.38) is bounded, we apply the BM O theory for parabolic equation to (3.38) and hence we obtain, for some positive constant c 1 > 0:

v x BM Op((0,1)×(0,t)) ≤ c 1 for any t > 0.

However, the L p theory for parabolic equation applied to (3.38) gives, for some positive constant c 2 > 0: v x L 1 ((0,1)×(0,t)) ≤ c 2 for any t > 0.

Finally, the above two inequalities give: v x BM Op((0,1)×(0,t)) ≤ c 1 + c 2 for any t > 0.

(3.42)

Step 3. (Estimate of v x W 2,1 2

).

Let w = v x , we write down the equation satisfied by w: 

                         w t (

Theorem 1 . 1 ( 2 (
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  sj |φ j * u| L p (R n+1 ) .

Figure 1 :

 1 Figure 1: Analysis on cubes intersecting {x = 0}

  .22) Taking the infimum in c ∈ R for both sides of inequality (3.22), leads to inf c∈R -Qr |ũ -c| ≤ 11 u BM Op(Ω T ) , (3.23) which implies (3.14).

ũ(x 1 ,c 1 j=0c

 11 j u(-λ j x 1 , . . .) for -1 < x 1 < 0, 2mj u(1 + λ j (1x 1 ), . . .) for 1 < x 1 < 2,(3.36)

  One of the main motivations for starting with the detailed proof of Proposition 3.1 (a simplified version of Theorem 1.2) is that it was used to show[START_REF] Ibrahim | Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system[END_REF] Theorem 1.1]. The other motivation is that the arguments of the proof of Theorem 1.2 are all contained in the proof of Proposition 3.1. It suffices to make the following generalizations that we list below.

	3.6)). Using (3.7), (3.8) and the above
	inequality, we directly get (3.1).
	3.1.2 Ideas of the proof of Theorem 1.2

Extension of ũ. In order to extend the function u ∈ W 2m,m 2 (Ω T ) to the function ũ ∈ W 2m,m 2

  x, t)v xx (x, t) = cos(v(x, t)v(x + a, t)) {v x (x, t)v(x + a, t) + v(x, t)v x (x + a, t)}

	+ cos(log v(x, t))	v x (x, t) v(x, t)	on R × (0, ∞),	(3.40)
	v(x + 1, t) = v(x, t) on R × (0, ∞) v(x, 0) ≥ δ 0 > 0 on R,		
	we can show that for every t ≥ 0:			
	m			

t ≥ -mG with G(t) = max x∈R |v x (x, t)|.

(3.41)

  x, t)w xx (x, t) =sin(v(x, t)v(x + a, t)) {v(x + a, t)v x (x, t) + v(x, t)v x (x + a, t)} 2 + cos(v(x, t)v(x + a, t)) {v(x + a, t)v xx (x, t) + 2v x (x, t)v x (x + a, t) + v(x, t)v xx (x + a, t)}Using the L p theory for parabolic equations (with various values of p) to (3.38), (3.40) and (3.43), we deduce, for some other positive constant c > 0, that:

	-sin(log v(x, t))	v 2 x (x, t) v 2 (x, t)	+ cos(log v(x, t))	v xx (x, t) v(x, t)	-	v 2 x (x, t) v 2 (x, t)	on R × (0, ∞),	(3.43)
	w(x + 1, t) = w(x, t) on R × (0, ∞) w(x, 0) = v x (x, 0) on R.					
			v x W 2,1 2 ((0,1)×(0,t)) ≤	c m 2 (t)	for any t > 0.	(3.44)
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The cut-off function Ψ. For the definition of the cut-off function Ψ, we first define the two sets: Z 1 = {(x 1 , . . . , x n , t); ∀i = 1 • • • n, -1/4 < x i < 5/4 and -T /4 < t < 5T /4} and Z 2 = {(x 1 , . . . , x n , t); ∀i = 1

Generalization of Lemma 3.6. An analogue estimate of (3.25) could be obtained for n+1-dimensional

). It suffices to replace r 2 satisfying (3.24), by the radius

where r n is defined recursively as follows:

Using the above generalizations, the proof of Theorem 1.2 follows, line by line, the proof of Proposition 3.1.

Application of the parabolic Kozono-Taniuchi inequality

In this subsection, we show how to apply the parabolic Kozono-Taniuchi inequality in order to give some a priori estimates for the solution of certain parabolic equations. These a priori estimates provide a well control on the solution in order to avoid singularities at a finite time, and hence serve for the long-time existence. The application that will be given here deals with a model that can be considered as a toy model. Indeed, this is a simplification of the one treated in [START_REF] Ibrahim | Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system[END_REF], where a rigorous proof of the long-time existence of solutions of a singular parabolic coupled system was shown (see [START_REF] Ibrahim | Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system[END_REF]Theorem 1.1]). Consider, for 0 < a < 1, the following parabolic equation:

the following proposition could be shown:

) is a smooth solution of (3.38), then, for some constant C = C(t) > 0 we have: For this reason we only present a heuristic proof explaining only the basic ideas. The interested reader could see the full details in [START_REF] Ibrahim | Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system[END_REF].

Step 4. (Conclusion).

Applying parabolic Kozono-Taniuchi inequality (3.1) to the function v x , using particularly (3.42) and (3.44), we deduce that:

which, joint to (3.43), directly give the result.