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GEOMETRIC QUANTIZATION FOR PROPER MOMENT MAPS:
THE VERGNE CONJECTURE

XIAONAN MA AND WEIPING ZHANG

Abstract. We establish a geometric quantization formula for a Hamiltonian action of

a compact Lie group acting on a noncompact symplectic manifold with proper moment

map.
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0. Introduction

The purpose of this paper is to establish a geometric quantization formula for a Hamil-

tonian action of a compact Lie group acting on a noncompact symplectic manifold with

proper moment map. Our results provide a solution to a conjecture of Michèle Vergne

in her ICM 2006 plenary lecture [25].

Let (M,ω) be a symplectic manifold with symplectic form ω, and dimM = n. We

assume that (M,ω) is prequantizable, that is, there exists a complex line bundle L (called

a prequantum line bundle) carrying a Hermitian metric hL and a Hermitian connection
1
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∇L such that the associated curvature RL =
(
∇L

)2
verifies

√
−1

2π
RL = ω.(0.1)

Let TM be the tangent vector bundle of M . Let JM be an almost complex structure

on TM such that

gTM(u, v) = ω(u, JMv), u, v ∈ TM,(0.2)

defines a JM -invariant Riemannian metric gTM on TM .

Let G be a compact connected Lie group. Let g denote the Lie algebra of G and g∗

denote the dual of g. Let G act on g∗ by the coadjoint action.

We assume that G acts on the left on M , that this action lifts to an action on L, and

that G preserves gTM , JM , hL and ∇L.

For K ∈ g, let KM ∈ C ∞(M,TM) denote the vector field generated by K over M .

The moment map µ :M → g∗ is defined by the Kostant formula [8],

2π
√
−1µ(K) := ∇L

KM − LK , K ∈ g.(0.3)

Then, for any K ∈ g, we have

dµ(K) = iKMω.(0.4)

From now on, we make the following assumption.

Fundamental Assumption. The moment map µ : M → g∗ is proper, i.e., for any

compact subset B ⊂ g∗, the subset µ−1(B) ⊂M is compact.

Let T be a maximal torus of G, let t be its Lie algebra and t∗ the dual of t. The integral

lattice Λ ⊂ t is defined as the kernel of the exponential map exp : t → T , and the real

weight lattice Λ∗ ⊂ t∗ is defined by Λ∗ := Hom(Λ, 2πZ). We fix a positive Weyl chamber

t∗+ ⊂ t∗. Then the set of finite dimensional G-irreducible representations is parametrized

by Λ∗
+ := Λ∗ ∩ t∗+.

Recall that g = t⊕ r, with r = [t, g], and so g∗ = t∗⊕ r∗. So we identify Λ∗
+ to a subset

of g∗. For γ ∈ Λ∗
+, we denote by V

G
γ the irreducible G-representation with highest weight

γ. The V G
γ , γ ∈ Λ∗

+, form a Z-basis of the representation ring R(G). Let R[G] be the

formal representation ring of G. For W ∈ R[G], we denote by Wγ ∈ Z the multiplicity

of V G
γ in W .

Take γ ∈ Λ∗
+. If γ is a regular value of the moment map µ, then one can construct the

Marsden-Weinstein symplectic reduction (Mγ , ωγ), with Mγ = G\µ−1(G · γ) a compact

orbifold (since µ is proper). Moreover, the line bundle L (resp. the almost complex

structure J) induces a prequantum line bundle Lγ (resp. an almost complex structure

Jγ) over (Mγ , ωγ). One can then construct the associated Spinc-Dirac operator (twisted

by Lγ), D
Lγ

+ : Ω0,even (Mγ, Lγ) → Ω0,odd(Mγ , Lγ) (cf. (1.5), Section 2) on Mγ , of which

the index is defined by

Q (Lγ) = Ind
(
D
Lγ

+

)
:= dimKer

(
D
Lγ

+

)
− dimCoker

(
D
Lγ

+

)
∈ Z.(0.5)
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If γ ∈ Λ∗
+ is not a regular value of µ, then by a perturbation argument (cf. [16], [17, §7.4]),

one still gets a well-defined quantization number Q(Lγ) extending the above definition.

We equip g with an AdG-invariant scalar product. We will identify g and g∗ by this

scalar product. Let π : TM → M denote the projection from TM to M . We identify

T ∗M with TM by the scalar product gTM .

Set H = |µ|2. Let XH = −JM (dH) be the Hamiltonian vector field associated with

H. Then (see (2.5))

XH = 2µM ,(0.6)

where µM ∈ C
∞(M,TM) is the vector field on M generated by µ :M → g, i.e., for any

x ∈M , µM(x) = (µ(x))M(x).

For a > 0, set Ma := H−1([0, a]) = {x ∈ M : H(x) 6 a}. For any regular value a > 0

of H, by (0.6), µM does not vanish on ∂Ma = H−1(a), the boundary of the compact

G-manifold Ma. According to Atiyah [1, §1, §3] and Paradan [17, §3] (cf. also Vergne

[23]), the triple (Ma, µ
M , L) defines a transversally elliptic symbol

σMa

L,µ := π∗ (√−1c
(
·+ µM

)
⊗ IdL

)
: π∗ (Λ(T ∗(0,1)Ma)⊗ L

)
−→ π∗ (Λ(T ∗(0,1)Ma)⊗ L

)
,

where c(·) is the Clifford action on Λ(T ∗(0,1)M) (cf. (2.3)).1 Let Ind(σMa

L,µ) ∈ R[G] denote

the corresponding transversal index in the sense of Atiyah [1, §1].
Theorem 0.1. a) For γ ∈ Λ∗

+, there exists aγ > 0 2 such that Ind(σMa

L,µ)γ ∈ Z does not

depend on the regular value a > aγ of H.

b) Ind(σMa

L,µ)γ=0 ∈ Z does not depend on the regular value a > 0 of H.

By Theorem 0.1, for γ ∈ Λ∗
+, we can associate an integer Q(L)γ that is equal to

Ind(σMa

L,µ)γ for large enough regular value a > 0 of H.

We can now state the main result of this paper.

Theorem 0.2. For γ ∈ Λ∗
+, the following identity holds:

Q(L)γ = Q(Lγ).(0.7)

Remark 0.3. When M is compact, Theorem 0.2 is the Guillemin-Sternberg geometric

quantization conjecture [7] which was first proved by Meinrenken [14] and Vergne [23]

in the case where G is abelian, and by Meinrenken [15] and Meinrenken-Sjamaar [16]

in the general case. We refer to [24] for a survey on the Guillemin-Sternberg geometric

quantization conjecture.

If M is noncompact but the zero set of XH is compact, then Theorem 0.1 is already

contained in [18] and [25], while Theorem 0.2 was conjectured by Michèle Vergne in

her ICM 2006 plenary lecture [25, §4.3]. Special cases of this conjecture, related to the

discrete series of semi-simple Lie groups, have been proved by Paradan [18], [20].

Theorem 0.2 provides a solution to Michèle Vergne’s conjecture even when the zero

set of XH is noncompact.

1The symbol σMa

L,µ is the (semi-classical) symbol of Tian-Zhang’s [21], [22] deformed Dirac opera-

tor (2.11) in their approach to the Guillemin-Sternberg geometric quantization conjecture [7]. The

associated symbol was used by Paradan [17], [18] in his approach to the same conjecture.
2In view of Theorem 2.1, we can take aγ =

cγ
4π2 with cγ being defined in (2.8).
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Theorem 0.2 is a consequence of a more general result that we will now describe.

Let (N, ωN , JN) be a compact symplectic manifold with compatible almost complex

structure JN . Let (F, hF ,∇F ) be the prequantum line bundle over N carrying a Hermit-

ian metric hF and a Hermitian connection ∇F verifying
√
−1
2π

(∇F )2 = ωN . We assume

that G acts on N , F as above. Let η : N → g∗ be the associated moment map.

Let DF
+ : Ω0,even(N,F ) → Ω0,odd(N,F ) be the associated Spinc Dirac operator on N .

Then as a virtual representation of G, we have

Ind
(
σNF,η

)
= Ind

(
DF

+

)
:= Ker

(
DF

+

)
− Coker

(
DF

+

)
∈ R(G).(0.8)

For γ ∈ Λ∗
+, let Q (F )γ,∗ be the multiplicity of the G-irreducible representation (V G

γ )∗ in

Ind
(
DF

+

)
∈ R(G).

Let L⊗F be the prequantum line bundle over M ×N obtained by the tensor product

of the natural lifts of L and F to M ×N .

Theorem 0.4. For the induced action of G on (M×N, ω⊕ωN) and L⊗F , the following
identity holds:

Q
(
(L⊗F )γ=0

)
=

∑

γ∈Λ∗
+

Q(L)γ ·Q (F )γ,∗ .(0.9)

For γ ∈ Λ∗
+, denote by Oγ = G · γ the orbit of the coadjoint action of G on g∗. Let Lγ

be the canonical prequantum holomorphic line bundle on Oγ , such that the associated

moment map is the inclusion Oγ →֒ g∗. By the Borel-Weil-Bott theorem and the solution

of the Guillemin-Sternberg geometric quantization conjecture for the compact manifold

Oν1 ×Oν2, one has that HomG(V
G
ν3
, V G

ν1
⊗ V G

ν2
) 6= 0 if and only if ν3 ∈ G · ν1 +G · ν2. In

particular, one has |ν1| 6 |ν3|+ |ν2|. For ν1, ν2 ∈ Λ∗
+, set

Cγ
ν1,ν2

= dimHomG(V
G
γ , V

G
ν1

⊗ V G
ν2
).(0.10)

By taking N,F to be Oγ , (L
γ)∗, we recover Theorem 0.2 from Theorem 0.4 by using

the Borel-Weil-Bott theorem.

By applying Theorems 0.2, 0.4 to M × N × Oγ , we get the following result which is

trivial in the compact case.

Corollary 0.5. For any γ ∈ Λ∗
+, the following identity holds:

Q (L⊗F )γ =
∑

ν1,ν2∈Λ∗
+

Cγ
ν1,ν2

Q (L)ν1 ·Q (F )ν2 ,(0.11)

where there are only finitely many non-vanishing terms in the right-hand side.

We now explain briefly the main ideas of the proof of Theorems 0.1 and 0.4.

The first observation is that in the case when γ = 0, both Theorems 0.1 and 0.2 are

relatively easy to prove. On the other hand, in the case when γ 6= 0, one needs to

establish the more general Theorem 0.4, in order to prove (0.7).

In fact, it is relatively easy to see that (cf. (4.1) and (4.2))

Q (L⊗F )γ=0 = Q
(
(L⊗F )γ=0

)
.(0.12)
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Thus Theorem 0.4 is a consequence of (0.12) and the following identity,

Q (L⊗F )γ=0 =
∑

γ∈Λ∗
+

Q(L)γ ·Q (F )γ,∗ .(0.13)

Assume that M is compact. Then (0.13) is trivial and this is why one only needs to

prove (0.7) for γ = 0, in order to establish (0.7).

However, if M is noncompact, although the geometric data on M × N have product

structure, and the associated moment map is θ(x, y) = µ(x)+η(y), the vector field θM×N

onM ×N induced by θ is not a sum of two vector fields lifted fromM and N (cf. (3.7)).

Thus one cannot compute directly Q (L⊗F )γ=0 as the right hand side of (0.13).

To be more precise, let a > 0 be a regular value of H so that µM does not vanish on

∂Ma. By the multiplicativity of the transversal index,
∑

γ∈Λ∗
+

Ind(σMa

L,µ)γ ·Q (F )γ,∗ = Ind
(
σMa×N
L⊗F,µ

)
γ=0

.(0.14)

Let b > 0 be a regular value of H′ = |θ|2. Then θM×N ∈ T (M × N) does not vanish on

the boundary ∂(M ×N)b of (M ×N)b = {(x, y) ∈M ×N, |θ(x, y)|2 6 b}. By Theorem

0.1b), we have

Q (L⊗F )γ=0 = Ind
(
σ
(M×N)b
L⊗F,θ

)
γ=0

.(0.15)

We take b > 0 large enough so that Ma × N ⊂ (M × N)b and that (∂(M × N)b) ∩
(∂(Ma × N)) = ∅. Denote by Ma,b the closure of (M × N)b \Ma ×N . Then Ma,b is a

manifold with boundary ∂Ma,b = (∂(M ×N)b) ∪ (∂(Ma ×N)).

Let Ψa,b : Ma,b → g be a G-equivariant map such that Ψa,b|∂(Ma×N) = µ, while

Ψa,b|∂(M×N)b = θ. From the additivity of the transversal index, we get

Ind
(
σ
Ma,b

L⊗F,Ψa,b

)
γ=0

= Ind
(
σ
(M×N)b
L⊗F,θ

)
γ=0

− Ind
(
σMa×N
L⊗F,µ

)
γ=0

.(0.16)

We infer from (0.13)-(0.16) that Theorem 0.4 is equivalent to

Ind
(
σ
Ma,b

L⊗F,Ψa,b

)
γ=0

= 0.(0.17)

Let a1 > 0 be another large enough regular value of H. By the additivity and the

homotopy invariance of the transversal index, we have,

(0.18) Ind
(
σ
Ma,b

L⊗F,Ψa,b

)
γ=0

− Ind
(
σ
Ma1,b

L⊗F,Ψa1,b

)
γ=0

= Ind
(
σ
Ma1×N
L⊗F,µ

)
γ=0

− Ind
(
σMa×N
L⊗F,µ

)
γ=0

.

By (0.14), (0.18), and by taking N,F to be Oγ , (L
γ)∗ for γ ∈ Λ∗

+, we find that Theorem

0.1a) is a consequence of the vanishing result (0.17).

Note that in the situations considered in [18], [20], for a, b > 0 large enough, one is

able to find Ψa,b : Ma,b → g such that Ψ
Ma,b

a,b ∈ TMa,b does not vanish on Ma,b. From

this, (0.17) follows tautologically. However, there is no canonical way to construct Ψa,b

such that Ψ
Ma,b

a,b ∈ TMa,b does not vanish on Ma,b in the general situation considered

here.
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Our proof of (0.17) consists of two steps. In a first step, we express the transversal

index as an Atiyah-Patodi-Singer (APS) type index on corresponding manifolds with

boundary. Then in a second step, we construct a specific deformation map Ψa,b, when

a, b > 0 are large enough, so that we can apply the analytic localization techniques

developed in [3], [21] and [22] to the current problem. This allows us to show that the

APS type index corresponding to the left-hand side of (0.17) vanishes3.

This paper is organized as follows. In Section 1, we express the transversal index as an

APS type index. In Section 2, we establish Theorem 0.1, by applying the identification

of the transversal index to an APS index that was established in Section 1, as well as the

analytic localization techniques developed in [3], [21] and [22]. In Section 3, we present

our proof of (0.17). Finally, in Section 4, we provide details of the proofs of (0.12) and

(0.14), thus completing the proof of Theorem 0.4. We explain also the compatibility of

quantization and its restriction to a subgroup.

The results contained in this paper have been announced in [12] (cf. also [10, §4]).

0.1. Notation. In the whole paper, G is a compact connected Lie group with Lie algebra

g. Let AdG(g) denote the adjoint action of g ∈ G on g. We equip g with an AdG-invariant

scalar product, and we identify g and g∗ by this scalar product. Let V1, · · · , VdimG be an

orthonormal basis of g.

If a Hilbert space H is a G-unitary representation space, by the Peter-Weyl theorem,

one has the orthogonal decomposition of Hilbert spaces

H =
⊕

γ∈Λ∗
+

Hγ, with Hγ = HomG(V
G
γ , H)⊗ V G

γ .(0.19)

We will call Hγ the γ-component of H . Moreover, if W ⊂ H is a G-invariant linear

subspace, for γ ∈ Λ∗
+, we denote by

W γ = W ∩Hγ(0.20)

and call it the γ-component of W . If D : Dom(D) ⊂ H → H is a G-equivariant linear

operator, where Dom(D) is a dense G-invariant subspace of H , for γ ∈ Λ∗
+, we denote

by D(γ) the restriction of D to Dom(D)γ which is dense in Hγ.

If G acts on the left on a manifold M, for K ∈ g, we denote by KM(x) = ∂
∂t
etKx|t=0

the corresponding vector field on M.

For any Φ ∈ C ∞(M, g), we denote Φi, 1 6 i 6 dimG, the smooth functions on M

defined by

Φ(x) =
dimG∑

i=1

Φi(x)Vi for x ∈ M.(0.21)

Let ΦM denote the vector field over M such that for any x ∈ M,

ΦM(x) = (Φ(x))M(x) =
dimG∑

i=1

Φi(x)V
M

i (x),(0.22)

3In fact, the corresponding vanishing result for the APS index, in the case of N = point and η = 0,

has already been proved in [22, Theorems 2.6, 4.3]
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where (Φ(x))M is the vector field over M generated by Φ(x) ∈ g.

Finally, when a subscript index appears two times in a formula, we sum up with this

index unless other notification is given.

Acknowledgments. We would like to thank Professor Jean-Michel Bismut for many

helpful discussions, as well as for kindly helping us to revise an ealier version of our
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of the School for hospitality. We are also indebted to George Marinescu for his critical

comments. Last but not least, we would like to thank the referees of this paper for their

critical reading and very helpful comments and suggestions.

1. Transversal index and APS index

In this section we express the transversal index as an Atiyah-Patodi-Singer4 type index

which have been studied in [22] for γ = 0 component.

This section is organized as follows. In Section 1.1, we recall the definition of the

transversal index in the sense of Atiyah [1] for manifolds with boundary. In Section

1.2, we consider instead an index problem on a manifold with boundary for a Dirac

operator with APS boundary conditions. In Section 1.3, we prove the corresponding

Dirac operator on the boundary is invertible. This guarantees that the APS index of

the Dirac operator is invariant under deformation. In Section 1.4, we show that the

transversal index can be identified with the APS index using a result by Braverman [4].

We use the same notation as in the Introduction.

1.1. Transversal index. LetM be an even dimensional compact oriented Spinc-manifold

with non-empty boundary ∂M , and dimM = n. In the following, the boundary ∂M

carries the induced orientation. Let gTM be a Riemannian metric on the tangent vector

bundle π : TM →M . Let E be a complex vector bundle over M .

We assume that the compact connected Lie group G acts isometrically on the left on

M , and that this action lifts to an action of G on the Spinc-principal bundle of TM and

on E. Then the G-action also preserves ∂M .

We identify TM and T ∗M by the G-invariant metric gTM . Following [1, p. 7] (cf. [17,

§3]), set
TGM =

{
(x, v) ∈ TxM : x ∈M and

〈
v,KM(x)

〉
= 0 for all K ∈ g

}
.(1.1)

Let S(TM) = S+(TM) ⊕ S−(TM) be the vector bundle of spinors associated with the

spinc-structure on TM and gTM . For any V ∈ TM , the Clifford action c(V ) exchanges

S±(TM).

Let Ψ :M → g be a G-equivariant smooth map. Assume that ΨM does not vanish on

∂M , i.e., for any x ∈ ∂M , ΨM(x) 6= 0.

4In the sequel, Atiyah-Patodi-Singer will be abbreviated to APS.
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Let σME,Ψ ∈ Hom(π∗(S+(TM)⊗ E), π∗(S−(TM)⊗ E)) be the symbol

σME,Ψ(x, v) = π∗ (√−1c(v +ΨM)⊗ IdE
)∣∣

(x,v)
for x ∈M, v ∈ TxM.(1.2)

Since ΨM does not vanish on ∂M , the set {(x, v) ∈ TGM : σME,Ψ(x, v) is non-invertible}
is a compact subset of TGM̂ (where M̂ = M \ ∂M is the interior of M), so that σME,Ψ is

a G-transversally elliptic symbol on TGM̂ in the sense of Atiyah [1, §1, §3] and Paradan

[17, §3], [18, §3]. The associated transversal index can be written in the form

Ind
(
σME,Ψ

)
=

⊕

γ∈Λ∗
+

Ind
(
σME,Ψ

)
γ
· V G

γ ∈ R[G],(1.3)

with each Ind
(
σME,Ψ

)
γ
∈ Z. Moreover, Ind

(
σME,Ψ

)
only depends on the homotopy class

of Ψ as long as ΨM does not vanish on ∂M , but not on gTM . Note that the number of

γ ∈ Λ∗
+ such that Ind(σME,Ψ)γ 6= 0 could be infinite.

1.2. The Atiyah-Patodi-Singer (APS) index. We make the same assumptions and

use the same notation as in Section 1.1.

Let hE be a G-invariant Hermitian metric on E, ∇E a G-invariant Hermitian con-

nection on E with respect to hE. Let hS(TM) be the G-invariant Hermitian metric on

S(TM) induced by gTM and a G-invariant metric on the line bundle defining the spinc

structure (cf. [9, Appendix D]). Let hS(TM)⊗E be the metric on S(TM)⊗E induced by

the metrics on S(TM) and E.

Let ∇S(TM) be the Clifford connection on S(TM) induced by the Levi-Civita connec-

tion ∇TM of gTM and a G-invariant Hermitian connection on the line bundle defining

the spinc structure (cf. [9, Appendix D]). Let ∇S(TM)⊗E be the Hermitian connection on

S(TM)⊗ E induced by ∇S(TM) and ∇E .

Let dvM denote the Riemannian volume form on (M, gTM). For s ∈ C ∞(M,S(TM)⊗
E), its L2-norm ‖s‖0 is defined by

‖s‖20 =
∫

M

|s(x)|2dvM(x).(1.4)

Let 〈·, ·〉 denote the Hermitian product on C ∞(M,S(TM)⊗E) corresponding to ‖ · ‖20,
and let L2(M,S(TM)⊗ E) be the space of L2-sections of S(TM)⊗ E on M .

Let DE
M be the Spinc-Dirac operator defined by (cf. [9, Appendix D])

DE
M =

n∑

i=1

c(ei)∇S(TM)⊗E
ei

: C
∞(M,S(TM)⊗ E) → C

∞(M,S(TM)⊗ E),(1.5)

where {ei} is an oriented orthonormal frame of TM .

Let ε > 0 be less than the injectivity radius of gTM . We use the inward geodesic

flow to identify a neighborhood of the boundary ∂M with the collar ∂M × [0, ε], and we

identify ∂M × {0} to the boundary ∂M .

Let en be the inward unit normal vector field perpendicular to ∂M . Let e1, · · · , en−1 be

an oriented orthonormal frame of T∂M so that e1, · · · , en−1, en is an oriented orthonor-

mal frame of TM |∂M . By using parallel transport with respect to ∇TM along the unit
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speed geodesics perpendicular to ∂M , e1, · · · , en give rise to an oriented orthonormal

frame of TM over ∂M × [0, ε].

The operator DE
M induces a Dirac operator on ∂M , DE

∂M : C ∞(∂M, (S(TM) ⊗
E)|∂M) → C ∞(∂M, (S(TM)⊗ E)|∂M) defined by (cf. [6, p. 142])

DE
∂M = −

n−1∑

i=1

c (en) c (ei)∇S(TM)⊗E
ei

+
1

2

n−1∑

i=1

πii,(1.6)

where

πij =
〈
∇TM
ei

ej , en
〉∣∣
∂M

, 1 6 i, j 6 n− 1,(1.7)

is the second fundamental form of the isometric embedding ı∂M : ∂M →֒ M . Let DE
∂M,±

be the restrictions of DE
∂M to C ∞(∂M, (S±(TM)⊗E)|∂M).

As in (1.4), we define the Riemannian volume form dv∂M on ∂M , the Hermitian

product 〈·, ·〉∂M,0 and the L2-norm ‖ · ‖∂M,0 on C ∞(∂M, (S(TM)⊗ E)|∂M).

By [6, Lemma 2.2], DE
∂M is a self-adjoint first order elliptic differential operator defined

on ∂M . Moreover, the following identity holds on ∂M :

DE
∂M,± = c (en)

−1 (−DE
∂M,∓

)
c (en) .(1.8)

Since the G-action preserves ∂M , the restriction of ΨM to ∂M is a section of T∂M , i.e.,

ΨM
∣∣
∂M

∈ C
∞(∂M, T∂M).(1.9)

For T ∈ R, set

DE
M,T = DE

M +
√
−1T c

(
ΨM

)
,

DE
M,±,T = DE

M,T |C∞(M,S±(TM)⊗E),
(1.10)

and

DE
∂M,T = DE

∂M −
√
−1T c (en) c

(
ΨM

)
,

DE
∂M,±,T = DE

∂M,T |C∞(∂M,(S±(TM)⊗E)|∂M ).
(1.11)

ThenDE
M,T exchanges the spaces associated with S±(TM)⊗E, and by (1.9),DE

∂M,T is self-

adjoint and preserves C ∞ (∂M, (S±(TM)⊗E) |∂M). Let Spec(DE
∂M,±,T ) be the spectrum

of DE
∂M,±,T . For λ ∈ Spec(DE

∂M,±,T ), let Eλ,±,T be the corresponding eigenspace. Let

P>0,±,T (resp. P>0,±,T ) be the orthogonal projection from L2(∂M, (S±(TM) ⊗E)|∂M)

onto ⊕λ>0Eλ,±,T (resp. ⊕λ>0Eλ,±,T ). We will call P>0,+,T (resp. P>0,−,T ) the APS

projection associated with DE
∂M,+,T (resp. DE

∂M,−,T ).

For T ∈ R, let (DE
M,+,T , P>0,+,T ) (resp. (DE

M,−,T , P>0,−,T )) denote the corresponding

operator with the the APS boundary condition [2]. More precisely, the boundary con-

dition of DE
M,+,T is P>0,+,T (s|∂M) = 0 for s ∈ C ∞(M,S+(TM) ⊗E) (resp. of DE

M,−,T is

P>0,−,T (s|∂M) = 0 for s ∈ C ∞(M,S−(TM) ⊗E)).
Both (DE

M,+,T , P>0,+,T ) and (DE
M,−,T , P>0,−,T ) are elliptic, and (DE

M,−,T , P>0,−,T ) is the

adjoint of (DE
M,+,T , P>0,+,T ) (cf. (1.8), [6, Theorem 2.3]). In particular, they are Fredholm

operators and they commute with the G-action.
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Let QM
APS,T (E,Ψ)γ ∈ Z, γ ∈ Λ∗

+, be defined by

(1.12)
⊕

γ∈Λ∗
+

QM
APS,T (E,Ψ)γ · V G

γ = Ind
(
DE
M,+,T , P>0,+,T

)

:= Ker
(
DE
M,+,T , P>0,+,T

)
−Ker

(
DE
M,−,T , P>0,−,T

)
∈ R(G).

1.3. An invariance property of the APS index.

Proposition 1.1. For γ ∈ Λ∗
+, there exist Cγ > 0, Tγ > 0 such that for T > Tγ,

s ∈ C ∞(∂M, (S(TM)⊗ E)|∂M)γ, we have
∥∥DE

∂M,T s
∥∥2

∂M,0
>

∥∥DE
∂Ms

∥∥2

∂M,0
+ Cγ T

2‖s‖2∂M,0,(1.13)

in particular, DE
∂M,T (γ) is invertible.

Proof. From (1.6), (1.9) and (1.11), we get

(1.14)
(
DE
∂M,T

)2
=

(
DE
∂M

)2 −
√
−1T

n−1∑

i=1

πii c (en) c
(
ΨM

)

+
√
−1T

n−1∑

i=1

c (en) c (ei)
(
∇S(TM)⊗E
ei

(
c (en) c

(
ΨM

)) )

− 2
√
−1T ∇S(TM)⊗E

ΨM + T 2
∣∣ΨM

∣∣2 .

For any K ∈ g, let LK denote the Lie derivative of K acting on C ∞(M,S(TM)⊗E)

and thus also on C ∞(∂M, (S(TM)⊗ E)|∂M). Then

µS(TM)⊗E(K) := ∇S(TM)⊗E
KM − LK ∈ C

∞(M,End(S(TM)⊗E)).(1.15)

By (0.21) and (0.22), we have

∇S(TM)⊗E
ΨM =

dimG∑

i=1

ΨiLVi +

dimG∑

i=1

Ψi

(
∇S(TM)⊗E
VM
i

− LVi

)
.(1.16)

In view of (0.19), it is clear that each LVi , 1 6 i 6 dimG, acts as a bounded operator

on L2(∂M, (S(TM)⊗ E)|∂M)γ .

On the other hand, since ΨM does not vanish on ∂M , there exists C > 0 such that
∣∣ΨM

∣∣2 > 4C on ∂M.(1.17)

We deduce from (1.14)-(1.17) that there exists C ′
γ > 0 such that for any s ∈ C ∞(∂M,

(S(TM)⊗E)|∂M)γ , we have
∥∥DE

∂M,T s
∥∥2

∂M,0
>

∥∥DE
∂Ms

∥∥2

∂M,0
− TC ′

γ‖s‖2∂M,0 + 4T 2C‖s‖2∂M,0.(1.18)

The (1.18) implies that Proposition 1.1 holds with Tγ = 2C ′
γ/C. �

Proposition 1.2. For γ ∈ Λ∗
+, there exists Tγ > 0 such that QM

APS,T (E,Ψ)γ does not

depend on T > Tγ.
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Proof. For γ ∈ Λ∗
+, let (DE

M,+,T (γ), P>0,+,T (γ)) denote the corresponding operator with

the APS boundary condition [2], which is just the restriction of (DE
M,+,T , P>0,+,T ) to

the corresponding γ component. Thus, (DE
M,+,T (γ), P>0,+,T (γ)) is elliptic and defines a

Fredholm operator, the index of which is given by (1.12),

Ind
(
DE
M,+,T (γ), P>0,+,T (γ)

)
= QM

APS,T (E,Ψ)γ · V G
γ .(1.19)

By Proposition 1.1, there exists Tγ > 0 such that (DE
M,+,T (γ), P>0,+,T (γ)) forms a con-

tinuous family of Fredholm operators for T > Tγ . Therefore, Ind(D
E
M,+,T (γ), P>0,+,T (γ))

does not depend on T > Tγ. By (1.19), this completes the proof of our proposition. �

Definition 1.3. By Proposition 1.2, for γ ∈ Λ∗
+, we can associate an integerQM

APS (E,Ψ)γ
that is equal to QM

APS,T (E,Ψ)γ for T > Tγ.

Remark 1.4. The same argument shows that the APS type index QM
APS (E,Ψ)γ does

not depend on the given metrics and connections. It only depends on the homotopy

class of Ψ as long as ΨM |∂M does not vanish over ∂M .

1.4. Transversal index and APS index.

Theorem 1.5. For γ ∈ Λ∗
+, the following identity holds:

Ind
(
σME,Ψ

)
γ
= QM

APS (E,Ψ)γ .(1.20)

The proof of Theorem 1.5 consists of two steps. In a first step, by applying a result of

Braverman [4, Theorem 5.5], we express Ind
(
σME,Ψ

)
γ
as the L2-index of a Dirac operator

on M̃ = M ∪ (∂M × (−∞, 0]), and we show that the difference of the above L2-index

and QM
APS (E,Ψ)γ is equal to an index on the cylindrical end. In a second step, we prove

that the index on the cylindrical end is zero.

We start by deforming our geometric data to those on a manifold with cylindrical end.

Recall that gT∂M is the Riemannian metric on ∂M induced by gTM . We use the inward

geodesic flow to identify a neighborhood of ∂M with the collar ∂M × [0, ε]. As gTM is

G-invariant, the G-action on ∂M × [0, ε] is induced by the G-action on ∂M , and there

exists a family of metrics gT∂M(xn) on T∂M verifying

gTM(y,xn) = gT∂My (xn) + (dxn)
2, (y, xn) ∈ ∂M × [0, ε].(1.21)

For (y, xn) ∈ ∂M× [0, ε], we identify S(TM)(y,xn), E(y,xn) to S(TM)(y,0), E(y,0) by using

the parallel transport with respect to∇S(TM), ∇E along the geodesic [0, 1] ∋ t→ (y, txn).

Thus, the restrictions of (S(TM), hS(TM)), (E, hE) to ∂M×[0, ε] are the pull-back of their

restrictions (S(TM)|∂M , hS(TM)|∂M), (E|∂M , hE|∂M) to ∂M . Moreover, the G-actions on

S(TM), E on ∂M × [0, ε] are induced by the G-actions on S(TM)|∂M , E|∂M under this

identification.

By the homotopy invariance of the transversal index Ind(σME,Ψ)γ (cf. (1.3)) and of the

APS index QM
APS (E,Ψ)γ (cf. Remark 1.4), to establish Theorem 1.5, we may and we

will assume that ε = 2 and that gTM , hS(TM), ∇S(TM), ∇E, Ψ have product structures

on ∂M × [0, 2], and that the G-actions on objects such as E, S(TM) on ∂M × [0, 2] are

the product of the G-actions on their restrictions to ∂M and the identity in the direction

[0, 2].
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We attach now an infinite cylinder ∂M × (−∞, 0] to M along the boundary ∂M and

extend trivially all objects onM to M̃ =M∪(∂M×(−∞, 0]). We decorate the extended

objects on M̃ by a “ ˜ ”. Thus for (y, xn) ∈ ∂M × (−∞, 2], we have

Ψ̃(y, xn) = Ψ(y, 0) ∈ g, gTM̃(y,xn) = gT∂My + (dxn)
2,

(S(TM̃),hS(TM̃),∇S(TM̃))|∂M×(−∞,2] = π∗
1(S(TM)|∂M , hS(TM)|∂M ,∇S(TM)|∂M),

(Ẽ, hẼ,∇Ẽ)|∂M×(−∞,2] = π∗
1(E|∂M , hE |∂M ,∇E|∂M),

(1.22)

with π1 : ∂M × (−∞, 2] → ∂M the natural projection.

Let DẼ
M̃

be the Spinc Dirac operator on C ∞
0 (M̃, S(TM̃)⊗ Ẽ) defined as in (1.5). By

(1.5), (1.6) and (1.22), we have on ∂M × (−∞, 2],

DẼ
M̃

= c(en)D
E
∂M + c(en)

∂

∂xn
.(1.23)

For any h ∈ C ∞(M̃), let DẼ
M̃,h

be the operator on C ∞
0 (M̃, S(TM̃)⊗ Ẽ) defined by

DẼ
M̃,h

= DẼ
M̃

+
√
−1 h c

(
Ψ̃M̃

)
.(1.24)

Let H1
±,h(M̃) be the Sobolev space obtained by completion of C ∞

0 (M̃, S±(TM̃) ⊗ Ẽ)

under the norm ‖ · ‖h,1 defined by

‖s‖2h,1 = ‖s‖20 +
∥∥∥DẼ

M̃,h
s
∥∥∥
2

0
.(1.25)

Let f be a strictly positive G-invariant smooth function on M̃ such that f |M ≡ 1, and

such that for (y, xn) ∈ ∂M × (−∞, 0],

f(y, xn) does not depend on y and f(y, xn) = e−xn if xn 6 −1.(1.26)

For T > 0, Tf is an admissible function on M̃ for the triple (S(TM̃)⊗ Ẽ,∇S(TM̃)⊗Ẽ , Ψ̃)

in the sense of Braverman [4, Definition 2.6] as we are in the product case.

By a result of Braverman [4, Theorem 5.5] (cf. also [13]), for T > 0, γ ∈ Λ∗
+, D

Ẽ
M̃,Tf

(γ),

DẼ
M̃,±,T f(γ) extend to bounded Fredholm operators, for which we keep the same notation,

DẼ
M̃,±,T f(γ) : H

1
±,T f(M̃)γ → L2

(
M̃, S∓(TM̃)⊗ Ẽ

)γ
,(1.27)

and the following identity holds:

Ind
(
DẼ
M̃,+,T f

(γ)
)
= Ind

(
σME,Ψ

)
γ
· V G

γ .(1.28)

Set

M̃1 = ∂M × (−∞, 1] ⊂ M̃, M̃2 = ∂M × (−∞, 2] ⊂ M̃,

Z = ∂M × [0, 2] ⊂ M̃.
(1.29)

Let ξ ∈ C ∞([0, 2]) be such that

ξ|[0,1/2] = 1, 0 6 ξ|[1/2,3/2] 6 1, ξ|[3/2,2] = 0,(1.30)
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and such that

ϕ =
(
1− ξ2

)1/2
(1.31)

is smooth. Clearly, ξ extends to M̃2 by setting ξ = 1 on M̃0 = M̃1 \ (∂M × (0, 1]). It

also extends to M by setting ξ = 0 on M \ (∂M × [0, 2)). Thus ϕ also extends to M̃0

and M \ (∂M × [0, 2)). Set

H = L2
(
M̃, S(TM̃)⊗ Ẽ

)
⊕ L2 (Z, (S(TM)⊗ E)|Z) ,

H ′ = L2

(
M̃2,

(
S(TM̃)⊗ Ẽ

)∣∣∣
M̃2

)
⊕ L2 (M,S (TM)⊗ E) .

(1.32)

Let U : H → H ′ be defined by :

(s1, s2) ∈ H −→
(
ξ s1 − ϕ s2, ϕ s1 + ξ s2

)
∈ H ′.(1.33)

Let U∗ : H ′ → H be the adjoint of U . By (1.33), U∗(s1, s2) = (ξ s1+ϕ s2,−ϕ s1+ξ s2) ∈
H . On sees easily that U is unitary (cf. [5, §3.2]), that is,

U∗U = IdH , UU∗ = IdH′ .(1.34)

We fix γ ∈ Λ∗
+ and let T > 0. IfW is one of M̃2,M and Z, let (DẼ

W,+,T f(γ), P
W
>0,+,T f(γ))

be the operator with the APS boundary condition:

(1.35) H1
+,T f

(
W,PW

>0,+,T f

)γ
=

{
u ∈ H1

+,T f(W )γ, PW
>0,+,T f(γ) (u|∂W ) = 0

}

−→ L2
(
W,

(
S−(TM̃)⊗ Ẽ

)∣∣∣
W

)γ
.

Since f = 1 on M and Z, we know that for W =M or Z,
(
DẼ
W,+,T f(γ), P

W
>0,+,T f(γ)

)
=

(
DE
W,+,T (γ), P>0,+,T (γ)

)
,(1.36)

and they are Fredholm as explained in Section 1.2.

By (1.27), (1.34) and (1.36), we see that

U
{
DẼ
M̃,+,T f

(γ) +
(
DE
Z,+,T (γ), P>0,+,T (γ)

)}
U∗ :(1.37)

H1
+,T f

(
M̃2, P

M̃2
>0,+,T f

)γ
⊕H1

+,T f

(
M,PM

>0,+,T f

)γ

→ L2

(
M̃2,

(
S−(TM̃)⊗ Ẽ

)∣∣∣
M̃2

)γ

⊕ L2
(
M,S− (TM)⊗ E

)γ

is Fredholm.

By the construction of U , it is clear that U preserves the APS boundary conditions

on the corresponding boundary components. Moreover, the difference

(1.38) U
{
DẼ
M̃,+,T f

(γ) +
(
DE
Z,+,T (γ), P>0,+,T (γ)

)}
U∗

−
(
DẼ
M̃2,+,T f

(γ), P M̃2
>0,+,T f(γ)

)
−
(
DE
M,+,T (γ), P>0,+,T (γ)

)
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is a zero-order differential operator with compact support5, which implies that it is a

compact operator. Thus,
(
DẼ
M̃2,+,T f

(γ), P M̃2

>0,+,T f(γ)
)
+
(
DE
M,+,T (γ), P>0,+,T (γ)

)

is Fredholm. In particular,
(
DẼ
M̃2,+,T f

, P M̃2
>0,+,T f(γ)

)
is Fredholm. Moreover, we have

(1.39) Ind
(
DẼ
M̃,+,T f

(γ)
)
+ Ind

(
DE
Z,+,T (γ), P>0,+,T (γ)

)

= Ind
(
DẼ
M̃2,+,T f

(γ), P M̃2
>0,+,T f(γ)

)
+ Ind

(
DE
M,+,T (γ), P>0,+,T (γ)

)
.

Note that ∂Z = (∂M × {0}) ∪ (−∂M × {2}). By (1.22) and (1.23), P>0,+,T |∂M×{0} =

P>0,+,T , P>0,−,T |∂M×{0} = P>0,−,T , and P>0,+,T |−∂M×{2} (resp. P>0,−,T |−∂M×{2}) is the

orthogonal projection from L2(∂M, (S+(TM) ⊗E)|∂M) onto ⊕λ60Eλ,+,T (resp. L2(∂M,

(S−(TM) ⊗ E)|∂M) onto ⊕λ<0Eλ,−,T ), thus from the product structure on Z, we get

(compare with [2, Proposition 3.11])

Ker
(
DE
Z,+,T (γ), P>0,+,T (γ)

)
= 0,

Ker
(
DE
Z,−,T (γ), P>0,−,T (γ)

)
= Ker

(
DE
∂M,−,T (γ)

)
.

(1.40)

Combining (1.40) with Proposition 1.1, for T > Tγ, we get

Ind
(
DE
Z,+,T (γ), P>0,+,T (γ)

)
= 0.(1.41)

By Definition 1.3, (1.19), (1.28), (1.39) and (1.41), for any T > Tγ,

Ind
(
DẼ
M̃2,+,T f

(γ), P M̃2
>0,+,T f(γ)

)
=

(
Ind

(
σME,Ψ

)
γ
−QM

APS (E,Ψ)γ

)
· V G

γ .(1.42)

For a second step, we need to prove the following Lemma.

Lemma 1.6. For γ ∈ Λ∗
+, there exists T2 > Tγ such that for T > T2, we have

Ind
(
DẼ
M̃2,+,T f

(γ), P M̃2
>0,+,T f(γ)

)
= 0.(1.43)

Proof. Following Bismut-Lebeau [3, pp. 115-116], let U1 = ∂M × (−∞, 1), U2 = ∂M ×
(0, 2] be an open covering of M̃2. Let h1, h2 be two smooth G-invariant functions on M̃2

such that h21, h
2
2 form a partition of unity associated with the covering {Ui}2i=1.

By (0.22), (1.5), (1.15), (1.16) and (1.24), we deduce that

(1.44)
(
DẼ
M̃,Tf

)2

=
(
DẼ
M̃

)2

+
√
−1T

n∑

i=1

c(ei)c
(
∇TM̃
ei

(
fΨ̃M̃

))

− 2
√
−1T f

dimG∑

i=1

Ψ̃iLVi − 2
√
−1T f

dimG∑

i=1

Ψ̃i µ
S(TM̃)⊗Ẽ(Vi) + T 2

∣∣∣fΨ̃M̃
∣∣∣
2

.

5Indeed, for any s ∈ C∞

0 (M̃2, (S+(TM̃)⊗ Ẽ)|
M̃2

)⊕C∞

0 (M, (S+(TM̃)⊗ Ẽ)|M ) which is supported in

M̃2 \ (∂M × [0, 2]), the difference operator in (1.38) acts on s as a zero operator.
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By (1.22), Ψ̃i, µ
S(TM̃)⊗Ẽ(Vi) are constant on xn on M̃2, thus from (0.21), there exists

C1 > 0 such that the following inequality holds:
∥∥∥∥∥
dimG∑

i=1

Ψ̃iLVi

∥∥∥∥∥+

∥∥∥∥∥
dimG∑

i=1

Ψ̃i µ
S(TM̃)⊗Ẽ(Vi)

∥∥∥∥∥ 6 C1,(1.45)

(where the norm in (1.45) refers to operators acting on L2(M̃, S(TM̃)⊗ Ẽ)γ).

By (1.26), (1.44) and (1.45), there exists C > 0 such that for T > 0, s ∈ C
∞
0 (U1, (S(TM̃)

⊗Ẽ)|M̃2
)γ , we have

∥∥∥DẼ
M̃2,T f

s
∥∥∥
2

0
=

〈(
DẼ
M̃2,T f

)2

s, s

〉
>

∥∥∥DẼ
M̃
s
∥∥∥
2

0
+ T 2

∥∥∥f |Ψ̃M̃ |s
∥∥∥
2

0
− CT‖fs‖0‖s‖0 .(1.46)

Thus from (1.17), (1.22), (1.26) and (1.46), we see that there exist T1 > Tγ , C2 > 0 such

that for any T > T1, s ∈ C ∞
0 (U1, (S(TM̃)⊗ Ẽ)|M̃2

)γ , we have

∥∥∥DẼ
M̃2,T f

s
∥∥∥
2

0
>

∥∥∥DẼ
M̃2
s
∥∥∥
2

0
+ C2T

2‖s‖20.(1.47)

By Green’s formula, (1.23) and (1.24) imply that for s ∈ C ∞
0 (M̃2, (S(TM̃)⊗ Ẽ)|M̃2

),

we have

(1.48)
∥∥∥DẼ

M̃2,T f
s
∥∥∥
2

0
=

∫

M̃2

〈
s,
(
DẼ
M̃2,T f

)2

s

〉
dvM̃2

+

∫

∂M̃2

〈
s, c(−en)DẼ

M̃2,T f
s
〉
dv∂M̃2

=

∫

M̃2

〈
s,
(
DẼ
M̃2,T f

)2

s

〉
dvM̃2

−
∫

∂M̃2

〈
s,∇S(TM̃)⊗Ẽ

−en s
〉
dv∂M̃2

−
∫

∂M̃2

〈
s,DẼ

∂M̃2,T f
s
〉
dv∂M̃2

.

By the Lichnerowicz formula (cf. [9, Appendix D]), we have

(
DẼ
M̃

)2

= −∆Ẽ +O(1),(1.49)

where ∆Ẽ is the Bochner Laplacian, and O(1) is an endomorphism of S(TM̃)⊗ Ẽ. By

(1.22), the fiberwise norm of this endomorphism has an uniform upper bound over M̃ .

By Green’s formula, we have, for any s ∈ C ∞
0 (M̃2, (S(TM̃)⊗ Ẽ)|M̃2

),
∫

M̃2

〈
−∆Ẽs, s

〉
dvM̃2

−
∫

∂M̃2

〈
s,∇S(TM̃)⊗Ẽ

−en s
〉
dv∂M̃2

=
∥∥∥∇S(TM̃)⊗Ẽs

∥∥∥
2

0
.(1.50)

Note that f = 1 on ∂M̃2. By (1.13), for any T > Tγ , s ∈ C ∞
0 (M̃2, (S(TM̃) ⊗ Ẽ)|M̃2

)γ

with P M̃2

>0,±,T f(s|∂M̃2
) = 0, we have

∫

∂M̃2

〈
s,DẼ

∂M̃2,T f
s
〉
dv∂M̃2

6 −
√
CγT

∥∥∥s|∂M̃2

∥∥∥
2

∂M̃2,0
6 0.(1.51)

As h2 has compact support in ∂M × (0, 2] ⊂ M̃2, on which f ≡ 1, by (1.17), (1.22),

(1.44), (1.45), (1.48)-(1.51), there exist C3, C4, C5 > 0 such that for T > 1 and s ∈
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C ∞
0 (M̃2, (S(TM̃)⊗ Ẽ)|M̃2

)γ with P M̃2

>0,±,T f(s|∂M̃2
) = 0, we have

∥∥∥DẼ
M̃2,T f

(h2s)
∥∥∥
2

0
> C3

∥∥∥DẼ
M̃2

(h2s)
∥∥∥
2

0
− C4T‖h2s‖20 + C5T

2‖h2s‖20.(1.52)

Since h21 + h22 ≡ 1, for any s ∈ C
∞
0 (M̃2, (S(TM̃)⊗ Ẽ)|M̃2

)γ with P M̃2
>0,±,T f(s|∂M̃2

) = 0,

we obtain

(1.53)
∥∥∥DẼ

M̃2,T f
s
∥∥∥
2

0
=

∥∥∥h1DẼ
M̃2,T f

s
∥∥∥
2

0
+
∥∥∥h2DẼ

M̃2,T f
s
∥∥∥
2

0

>
1

2

∥∥∥DẼ
M̃2,T f

(h1s)
∥∥∥
2

0
+

1

2

∥∥∥DẼ
M̃2,T f

(h2s)
∥∥∥
2

0
− ‖c((dh1)∗)s‖20 − ‖c((dh2)∗)s‖20,

where (dhi)
∗ ∈ TM̃2 is the dual of dhi with respect to gTM̃ .

By (1.47), (1.52) and (1.53), there exist C6, C7 > 0 such that for any T > T1 > Tγ and

s ∈ C ∞
0 (M̃2, (S(TM̃)⊗ Ẽ)|M̃2

)γ with P M̃2
>0,±,T f(s|∂M̃2

) = 0, we have

∥∥∥DẼ
M̃2,T f

s
∥∥∥
2

0
>

1

2

∥∥∥DẼ
M̃
(h1s)

∥∥∥
2

0
+
C3

2

∥∥∥DẼ
M̃2

(h2s)
∥∥∥
2

0
− C6T‖s‖20 + C7T

2‖s‖20.(1.54)

By DẼ
M̃2

(his) = hiD
Ẽ
M̃2
s+c((dhi)

∗)s, h21+h
2
2 ≡ 1 and (1.54), there exist T2 > Tγ , C8, C9 >

0 such that for T > T2, s ∈ C ∞
0 (M̃2, (S(TM̃) ⊗ Ẽ)|M̃2

)γ with P M̃2
>0,±,T f(s|∂M̃2

) = 0, the

following holds:
∥∥∥DẼ

M̃2,T f
s
∥∥∥
2

0
> C8‖DẼ

M̃2
s‖20 + C9T

2‖s‖20.(1.55)

By Proposition 1.1, (1.19) and (1.55), we get Lemma 1.6. �

By (1.42) and Lemma 1.6, the proof of Theorem 1.5 is completed.

2. Quantization for proper moment maps: proof of Theorem 0.1

The purpose of this section is to give a proof of Theorem 0.1. This proof consists of

two steps. In a first step, we reduce Theorem 0.1 to a vanishing result for the transversal

index and then use Theorem 1.5 to interpret the later as a vanishing result for the APS

type index. In a second step, we apply the analytic localization method developed in [3],

[21] and [22] to prove the vanishing of this APS type index.

We use the assumptions and the notation in the Introduction. Also, for any real one

form υ on a Riemannian manifold, we denote by υ∗ the corresponding vector field on

this manifold.

Recall that (M,ω, JM) is a noncompact symplectic manifold with a compatible almost-

complex structure JM , and gTM = ω(·, JM ·) is the associated Riemannian metric on M .

We have the canonical splitting TM ⊗R C = T (1,0)M ⊕ T (0,1)M , for the complexification

of TM , with

T (1,0)M ={u ∈ TM ⊗R C : JMu =
√
−1u},

T (0,1)M ={u ∈ TM ⊗R C : JMu = −
√
−1u}.

(2.1)

Let T ∗(0,1)M be the dual of T (0,1)M .
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The almost complex structure JM on TM determines a canonical spinc-structure on

TM with the associated Hermitian line bundle det(T (1,0)M). Moreover, we have

S(TM) = Λ
(
T ∗(0,1)M

)
, S±(TM) = Λ

even
odd

(
T ∗(0,1)M

)
.(2.2)

For any W ∈ TM , we write W = w + w ∈ T (1,0)M ⊕ T (0,1)M . Let w∗ ∈ T ∗(0,1)M

correspond to w so that (w∗, u) = gTM(w, u) for any u ∈ T (0,1)M . Then

c(W ) =
√
2(w∗ ∧ −iw)(2.3)

defines the Clifford action of W on Λ(T ∗(0,1)M). It interchanges Λeven(T ∗(0,1)M) and

Λodd(T ∗(0,1)M). The Levi-Civita connection ∇TM together with the almost complex

structure J induces by projection a canonical Hermitian connection ∇T (1,0)M on T (1,0)M .

This induces a Hermitian connection ∇det on det(T (1,0)M). The Clifford connection

∇Λ(T ∗(0,1)M) on Λ
(
T ∗(0,1)M

)
is induced by the Levi-Civita connection ∇TM and the

connection ∇det (cf. [9, Appendix D], [11, §1.3] and [21, §1a)]).
We take E = L, with L the prequantum line bundle on M in the Introduction, and

denote by Ω0,•(M,L) = C
∞(M,Λ(T ∗(0,1)M) ⊗ L). Let DL

M be the corresponding Dirac

operator defined as in (1.5).

Recall that the moment map µ : M → g∗ is assumed to be proper. Let XH be the

Hamiltonian vector field of H = |µ|2, i.e.,
iXHω = dH.(2.4)

By (0.2), (0.4), (0.21) and (2.4), we find (cf. [21, (1.19)]),

XH = −JM (dH)∗ = −2JM
dimG∑

i=1

µi (dµi)
∗ = 2

dimG∑

i=1

µiV
M
i = 2µM .(2.5)

For any regular value a > 0 of H = |µ|2, denote by Ma the compact G-manifold with

boundary defined by

Ma = {x ∈M : H(x) 6 a} .(2.6)

By (2.5), µM does not vanish on the boundary ∂Ma = H−1(a) of Ma.

Let a′ > a > 0 be two regular values of H. Let Ma,a′ denote the compact G-manifold

with boundary Ma,a′ = Ma′ \Ma. By the additivity of the transversal index (cf. [1,

Theorem 3.7, §6] and [17, Prop. 4.1]), we have for γ ∈ Λ∗
+,

Ind
(
σ
Ma′

L,µ

)
γ
− Ind

(
σMa

L,µ

)
γ
= Ind

(
σ
Ma,a′

L,µ

)
γ
.(2.7)

Let CasG = −∑
i Vi Vi be the Casimir operator associated with G. Let cγ > 0 be

defined by the following formula,

CasG|V G
γ
= cγ IdV G

γ
.(2.8)

Clearly, cγ=0 = 0. As CasG|V G
γ
= −∑

i LVi(γ)
2, from (1.45) and (2.8), we get

cγ =
∥∥∥

dimG∑

i=1

LVi(γ)
2
∥∥∥.(2.9)
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By Theorem 1.5, (2.7) and (2.9), the following result is a reformulation of Theorem

0.1, with a more precise form of the bound aγ.

Theorem 2.1. Fix γ ∈ Λ∗
+. Then for any regular values a′, a of H with a′ > a > cγ

4π2 ,

the following identity holds:

Q
Ma,a′

APS (L, µ)γ = 0.(2.10)

Proof. If γ = 0, (2.10) has been proved in [22, Theorems 2.6, 4.3]. The proof for general

γ ∈ Λ∗
+ is a modification of the proof of [22, Theorem 2.6] where it is assumed that

γ = 0. Let γ ∈ Λ∗
+ and a′ > a > cγ

4π2 be fixed.

By (2.5), (1.10) becomes in the current situation (cf. [21, (1.20)] and [22, (1.19)]),

DL
M,T = DL

M +

√
−1T

2
c
(
XH) : Ω0,• (Ma,a′ , L) → Ω0,• (Ma,a′ , L) .(2.11)

Let e1, · · · , en be an oriented orthonormal frame of TMa,a′ . By [21, Theorem 1.6], the

following formula holds:

(2.12)
(
DL
M,T

)2
=

(
DL
M

)2
+

√
−1T

4

n∑

j=1

c (ej) c
(
∇TM
ej

XH
)

−
√
−1T

2
Tr

[
∇TMXH|T (1,0)M

]
+
T

2

dimG∑

i=1

(√
−1c

(
JMV M

i

)
c
(
V M
i

)
+
∣∣V M
i

∣∣2
)

+ 4πTH− 2
√
−1T

dimG∑

i=1

µiLVi +
T 2

4

∣∣XH∣∣2 .

Let U be a G-invariant open neighborhood of ∂Ma,a′ in Ma,a′ such that XH does not

vanish on U . Since XH does not vanish on ∂Ma,a′ , the existence of U is clear. Let U ′ be

a G-invariant open subset of Ma,a′ such that U ′ ∩ (∂Ma,a′) = ∅, U ∪ U ′ =Ma,a′ .

By using that LVi acts as a bounded operator on L2(Ma,a′ ,Λ(T
∗(0,1)M) ⊗ L)γ and

(1.13) instead of [22, Theorem 2.1], then by proceeding in exactly the same way as in

[22, Proof of Proposition 2.4], we know that there exist T1 > 0, C1 > 0 (depending

on U and γ) such that for any T > T1 and s ∈ Ω0,•(Ma,a′ , L)
γ with supp(s) ⊂ U and

P>0,±,T (s|∂Ma,a′
) = 0, the following inequality holds:

∥∥DL
M,T s

∥∥2

0
> C1

(∥∥DL
Ms

∥∥2

0
+ T 2‖s‖20

)
.(2.13)

For any ε > 0, set

GL
T,ε =

(
DL
M,T

)2 − (4π − ε)TH+ 2
√
−1T

dimG∑

i=1

µiLVi .(2.14)

Clearly, GL
T,ε is of the same form as FL

T in [21, (2.6)], with 4πTH in [21, (2.6)] being

replaced by εTH.

By replacing 4πH in [21, (2.26)] by εH in the proof of [21, Proposition 2.2, Case

2], from (2.12) and (2.14), we know the analogue of [21, Proposition 2.2] holds for the

operator GL
T,ε: for any x ∈ Ma,a′ \ ∂Ma,a′ , there exist an open neighborhood Ux ⊂
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Ma,a′ \ ∂Ma,a′ of x and Cx > 0, bx > 0 such that for any T > 1 and s ∈ Ω0,•(Ma,a′ , L)

with supp(s) ⊂ Ux, we have
〈
GL
T,εs, s

〉
> Cx

(∥∥DL
Ms

∥∥2

0
+ (T − bx) ‖s‖20

)
.(2.15)

From (2.15), as explained in [21, §2c)], there exist C2 > 0, b1 > 0 such that for any T > 1

and s ∈ Ω0,•(Ma,a′ , L) with supp(s) ⊂ U ′, we have
〈
GL
T,εs, s

〉
> C2

(∥∥DL
Ms

∥∥2

0
+ (T − b1) ‖s‖20

)
.(2.16)

Lemma 2.2. There exists 0 < ε < 4π such that for any s ∈ Ω0,•(Ma,a′ , L)
γ, one has

〈(
(4π − ε)H− 2

√
−1

dimG∑

i=1

µiLVi

)
s, s

〉
> 0.(2.17)

Proof. Since a′ > a > cγ
4π2 , there exists ε ∈ (0, 4π) such that the following inequality

holds on Ma,a′ :

H >
4cγ

(4π − ε)2
.(2.18)

By the Cauchy inequality and (2.9), we have that for any s ∈ Ω0,•(Ma,a′ , L)
γ,

∣∣∣
〈 dimG∑

i=1

µiLVis, s
〉∣∣∣ 6 1

2

dimG∑

i=1

(
4π − ε

2
‖µis‖20 +

2

4π − ε
‖LVis‖20

)

=
4π − ε

4
〈Hs, s〉+ cγ

4π − ε
‖s‖20 .

(2.19)

From (2.18) and (2.19), we obtain for any s ∈ Ω0,•(Ma,a′ , L)
γ ,

〈(
(4π − ε)H− 2

√
−1

dimG∑

i=1

µiLVi

)
s, s

〉
>

〈(
4π − ε

2
H− 2cγ

4π − ε

)
s, s

〉
> 0.(2.20)

The proof of Lemma 2.2 is completed. �

Let ε > 0 be fixed as in Lemma 2.2. By Lemma 2.2, (2.14) and (2.16), we have that

for any T > 1 and s ∈ Ω0,•(Ma,a′ , L)
γ with supp(s) ⊂ U ′,

∥∥DL
M,Ts

∥∥2

0
=

〈(
DL
M,T

)2
s, s

〉
>

〈
GL
T,εs, s

〉
> C2

(∥∥DL
Ms

∥∥2

0
+ (T − b1) ‖s‖20

)
.(2.21)

Let h1, h2 be two smooth G-invariant functions on Ma,a′ such that h21, h
2
2 forms a

partition of unity associated with the G-invariant open covering U ′, U of Ma,a′ .
6

Let s ∈ Ω0,•(Ma,a′ , L)
γ with P>0,±,T (s|∂Ma,a′

) = 0. Clearly, h1s, h2s still belong to

Ω0,•(Ma,a′ , L)
γ with supp(h2s) ⊂ U and P>0,±,T ((h2s)|∂Ma,a′

) = 0, while supp(h1s) ⊂ U ′.

By applying (2.13) to h2s, (2.21) to h1s, and by proceeding as in (1.53)-(1.55) (cf. [3,

pp. 115-116]), we obtain constants C3 > 0, b2 > 0 such that for any T > T1 and

s ∈ Ω0,•(Ma,a′ , L)
γ with P>0,±,T (s|∂Ma,a′

) = 0, the following inequality holds:
〈(
DL
M,T

)2
s, s

〉
> C3

(∥∥DL
Ms

∥∥2

0
+ (T − b2) ‖s‖20

)
.(2.22)

6We can take h2 a radical function with respect to |µ|2 near ∂Ma,a′ as in (1.30), then h1, h2 are

automatically G-invariant.
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By Proposition 1.1, (2.5), (2.11) and (2.22), we have Q
Ma,a′

APS,T (L, µ)γ = 0 for T > 0 large

enough. Combining this with Definition 1.3, we get Theorem 2.1.

By Theorems 1.5, 2.1 and (2.8), we get Theorem 0.1. �

3. A vanishing result for the APS index

In this section, we prove the vanishing result (0.17).

This section is organized as follows. In Section 3.1, we state (0.17) as a vanishing

theorem on the APS index, Theorem 3.2. In Section 3.2, we construct a suitable function

ψ : M × N → g which is homotopy to the function Y in Theorem 3.2 such that the

associated operator with the APS boundary condition is invertible. In Section 3.3, we

prove the invertibility of the operator associated to ψ, Theorem 3.7 up to a pointwise

estimate, Lemma 3.9. In Sections 3.4-3.6, we prove Lemma 3.9.

We make the same assumptions and we use the same notation as in the Introduction

and in Section 2.

3.1. A vanishing theorem for the APS index. For convenience, we recall the basic

setting. Let (M,ω), (N, ωN) be two symplectic manifolds with symplectic forms ω, ωN ,

and dimM = n. We assume that M is noncompact and that N is compact.

Let JM , JN be almost complex structures on TM, TN such that ω(·, JM ·) defines a
metric gTM on TM , and ωN(·, JN ·) defines a metric gTN on TN . Let (L, hL,∇L) be a

prequantum line bundle on (M,ω), and let (F, hF ,∇F ) be a prequantum line bundle on

(N, ωN) (cf. (0.1)).

Suppose that G acts (on the left) on M, N and its actions on M, N lift to L and F .

Moreover, we assume that these G-actions preserve the above metrics and the connections

on TM, TN, L, F and JM , JN .

Let the moment map µ :M → g be defined as in (0.3). Let η : N → g be the moment

map defined in the same way for (N, ωN) and (F, hF ,∇F ).

We will keep the same notation for the natural lifts of the objects onM , N toM ×N .

In particular, L⊗ F is the Hermitian line bundle on M × N induced by L and F with

the Hermitian connection ∇L⊗F induced by ∇L, ∇F .

The G-action on M × N is defined by g · (x, y) = (gx, gy) for (x, y) ∈ M × N . We

define the symplectic form Ω and the almost complex structure J on M ×N by

Ω(x, y) = ω(x) + ωN(y), J = (JM , JN).(3.1)

The induced moment map θ :M ×N → g is given by

θ(x, y) = µ(x) + η(y).(3.2)

Since µ :M → g is proper, θ :M ×N → g is also proper.

For A > 0, set

M1 ={(x, y) ∈M ×N : |µ(x)|2 = A} = ∂MA ×N,

M2 ={(x, y) ∈M ×N : |θ(x, y)|2 = 2A},
M ={(x, y) ∈M ×N : |µ(x)|2 > A, |θ(x, y)|2 6 2A} ⊂M ×N,

(3.3)
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where ∂MA is the boundary of MA defined in (2.6). As µ, θ are proper and M is non-

compact, |µ(M)|2, |θ(M × N)|2 contain a half line of R, thus for A large enough, M1,

M2 are nonempty.

Remark 3.1. Since N is a compact manifold, there exists C0 > 0 such that

|η| 6 C0 on N.(3.4)

By (3.2) and (3.4), we have |θ| 6 |µ|+C0. Set A0 =
(

C0√
2−
√

5/3

)2

. By (3.3), for A > A0,

we have

|µ| >
√
2A− C0 >

√
5A/3 on M2.(3.5)

Thus for any A > A0, we have M1 ∩M2 = ∅.
By Sard’s theorem, given C > 0, there exists C ′ > C which is a regular value of the

functions |µ|2 and 1
2
|θ|2 on M ×N .

From now on, let A > A0 be a regular value of |µ|2 and 1
2
|θ|2. By Remark 3.1 and

(3.3), M is a smooth G-manifold with boundary ∂M = M1 ∪M2.

From (0.4), (0.21) and (3.2), for any 1 6 i 6 dimG, we have

V M×N
i =V M

i + V N
i , θi = µi + ηi,

(dµi)
∗ =JMV M

i , (dηi)
∗ = JNV N

i .
(3.6)

By (0.22) and the first equation of (3.6), we get

µM×N = µM + µN , θM×N = θM + θN .(3.7)

By (2.5), µM does not vanish on M1, so that µM×N also does not vanish on M1.

Similarly, θM×N does not vanish on M2.

Let Y : M → g be a G-equivariant smooth map such that

Y |M1 = µ|M1, Y |M2 = θ|M2 .(3.8)

Then YM ∈ C ∞(M, TM) does not vanish on ∂M.

The main result of this section can be stated as follows.

Theorem 3.2. There exists A1 > A0 such that for any regular value A > A1 of |µ|2 and
1
2
|θ|2, the following identity holds:

QM
APS(L⊗ F, Y )γ=0 = 0.(3.9)

Remark 3.3. By Theorem 1.5, (3.9) is equivalent to (0.17) with a = 1
2
b = A.

3.2. Proof of Theorem 3.2.

Lemma 3.4. There exist two real smooth functions α̃, φ̃ ∈ C ∞(R) verifying the following

properties,

α̃(t) =

{
t2 , for t 6 1

3
,

1 , for t > 2
3
,

φ̃(t) =

{
1− t3 , for t 6 4

11
,

2(1− t) , for t > 2
3
,

α̃(t)+φ̃(t) >
29

27
for

1

3
6 t 6

2

3
; φ̃′(t) < 0 for 0 < t 6 1.

(3.10)
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Proof. We may set α̃0(t) = t2, φ̃0(t) = 1 − t3 on t 6 3
8
; α̃0(t) = 1, φ̃0(t) = 2(1 − t) on

t > 5
8
; and assume that α̃0, φ̃0 are linear on 3

8
6 t 6 5

8
. By smoothing out the linear

interpolation, starting from α̃0, φ̃0, we get α̃, φ̃ verifying (3.10). �

Let A > A0 be a regular value of |µ|2 and 1
2
|θ|2. Set

αA(t) = α̃

(
t

A
− 1

)
, φA(t) = φ̃

(
t

A
− 1

)
.(3.11)

The following identities hold:

α′
A(t) =

1

A
α̃′

(
t

A
− 1

)
, φ′

A(t) =
1

A
φ̃′
(
t

A
− 1

)
.(3.12)

Let βA ∈ C ∞(M ×N) be defined by

βA = |µ|2 + αA
(
|µ|2

) (
|θ|2 − |µ|2

)
.(3.13)

Let ρA, γA, ψA :M ×N → g be the G-equivariant smooth maps defined by

ρA =θ − φA(βA)η,(3.14a)

γA =2
[
1 + α′

A

(
|µ|2

) (
|θ|2 − |µ|2

) ]
µ+ 2αA(|µ|2)η,(3.14b)

ψA =ρA − φ′
A(βA) 〈ρA, η〉 γA.(3.14c)

For any function f on M × N , we denote by dMf , dNf its differentials along M, N

respectively.

The following lemma partly motivates our choice of ψA (compare with (2.5)).

Lemma 3.5. The following identity holds:

2ψMA = −JM
(
dM |ρA|2

)∗
.(3.15)

Proof. By (0.21), (3.2) and (3.13)-(3.14b), we have

dβA =2
[
1 + α′

A(|µ|2)(|θ|2 − |µ|2)− αA(|µ|2)
]
µjd

Mµj + 2αA(|µ|2)θjdθj
=γAjd

Mµj + 2αA(|µ|2)θjdNηj ,
dρAj =dθj − φ′

A(βA)ηjdβA − φA(βA)d
Nηj .

(3.16)

From (3.6) and (3.16), we get

(dθj)
∗ =JMV M

j + JNV N
j ,

(dβA)
∗ =JMγMA + 2αA(|µ|2)JNθN ,

(dρAj)
∗ =JMV M

j − φ′
A(βA)ηjJ

MγMA

+
(
1− φA(βA)

)
JNV N

j − 2φ′
A(βA)αA(|µ|2)ηjJNθN .

(3.17)

From (0.22), (3.14c) and the third equality in (3.17), we get

2ψMA = 2ρAj
[
V M
j − φ′

A(βA)ηjγ
M
A

]
= −2JMρAj(d

MρAj)
∗ = −JM

(
dM |ρA|2

)∗
.(3.18)

The proof of Lemma 3.5 is completed. �
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Lemma 3.6. There exists A2 > A0 such that for any regular value A > A2 of |µ|2 and
1
2
|θ|2, the following identities hold:

ψA|M1 =µ, βA|M1 = A,

ψA|M2 =
(
1 +

4

A
〈θ, η〉

)
θ, βA|M2 = 2A.

(3.19)

Moreover, the following inequality holds:

1 +
4

A
〈θ, η〉 > 1

2
on M2.(3.20)

In particular, ψM
A does not vanish on ∂M.

Proof. On M1, we have |µ|2 = A. By (3.10)-(3.14a), we deduce that on M1,

βA = A, φA(βA) = 1, φ′
A(βA) = αA

(
|µ|2

)
= 0, ρA = µ.(3.21)

The first two equalities in (3.19) follow from (3.14c) and (3.21).

From (3.5) and (3.10)-(3.14b), for A > A0, we have on M2 = (|θ|2)−1(2A):

αA
(
|µ|2

)
= 1, α′

A

(
|µ|2

)
= 0, γA = 2θ,

βA = 2A, φA (βA) = 0, ρA = θ, φ′
A (βA) = − 2

A
.

(3.22)

By (3.14c) and (3.22), the last two identities in (3.19) hold. Since |θ| =
√
2A on M2,

(3.4) implies that there exists A2 > A0 such that (3.20) holds on M2 for A > A2.

We have seen just after (3.7) that µM and θM do not vanish on M1, M2 respectively.

Hence by (0.22), (3.19) and (3.20), ψM
A does not vanish on ∂M when A > A2.

The proof of Lemma 3.6 is completed. �

Let DL⊗F : Ω0,•(M × N,L ⊗ F ) → Ω0,•(M × N,L ⊗ F ) be the Spinc Dirac operator

on M ×N (cf. (1.5) and Section 2). Following (1.10), let DM,T be the operator defined

for T ∈ R, by

DM,T = DL⊗F +
√
−1Tc

(
ψM
A

)
: Ω0,•(M, L⊗ F ) → Ω0,•(M, L⊗ F ).(3.23)

Let P>0,±,T be the APS projections associated with D∂M,±,T induced by DM,T (cf.

(1.11)).

Theorem 3.7. There exists A1 > A2 such that if A > A1 is a regular value of |µ|2 and
1
2
|θ|2, then there exist C > 0, T0 > 0 such that for any T > T0 and G-invariant element

s of Ω0,•(M, L⊗ F ) with P>0,±,T (s|∂M) = 0, the following inequality holds:

‖DM,T s‖20 > C
(∥∥DL⊗Fs

∥∥2

0
+ T‖s‖20

)
.(3.24)

Proof of Theorem 3.2. Let A > A1 be a regular value of |µ|2 and 1
2
|θ|2. Then by Theorem

3.7, (D∂M,±,T (γ = 0), P>0,±,T (γ = 0)) is invertible for T > T0. By Propositions 1.1, 1.2

and Definition 1.3, this implies

QM
APS (L⊗ F, ψA)γ=0 = 0.(3.25)

We connect the map Y defined in (3.8) and ψA via ψAt = (1 − t)Y + t ψA, 0 6 t 6 1.

Lemma 3.6 shows that ψM
At ∈ C ∞(M, TM) generated by ψAt via (0.22) does not vanish
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on ∂M for any 0 6 t 6 1. By the homotopy invariance of the APS index (cf. Remark

1.4) and (3.25), we get (3.9). �

The rest of the section is devoted to the proof of Theorem 3.7.

3.3. Proof of Theorem 3.7. Let {ek}nk=1 (resp. {fi}dimN
i=1 ) be an oriented orthonormal

frame of TM (resp. TN). Then {ea}dimM
a=1 = {ek} ∪ {fi} is an oriented orthonormal

frame of TM. Set

IA1 =
1

2
c
((
dMψAj

)∗)
c
(
V M
j + 2V N

j

)
+ c

((
dNψAj

)∗)
c
(
V M
j

)
,

IA2 =
1

2

〈(
1 +

JM√
−1

)
V M
j ,

(
dMψAj

)∗
〉

= Tr
[(
dMψAj

)
|T (1,0)M ⊗ V M

j

]
,

IA3 =c
((
dNψAj

)∗)
c
(
V N
j

)
.

(3.26)

Theorem 3.8. The following formula holds:

(3.27) D2
M,T = DL⊗F,2 +

√
−1T

{
1

2

n∑

k=1

c (ek) c
(
∇TM
ek

ψMA
)
− Tr

[(
∇TMψMA

)
|T (1,0)M

]
}

+
√
−1T

{
1

2

dimN∑

i=1

c (fi) c
(
∇TN
fi
V N
j

)
− Tr

[(
∇TNV N

j

)
|T (1,0)N

]
}
ψAj

+ 4πT 〈ψA, θ〉+
√
−1T (IA1 + IA2 + IA3)− 2

√
−1TψAjLVj + T 2

∣∣ψM
A

∣∣2 .

Proof. Let ∇Λ0,•
be a brief notation for ∇Λ(T ∗(0,1)M)⊗L⊗F . By (3.23), we deduce as in

(1.14) and (1.44) that

(3.28) D2
M,T = DL⊗F,2 +

√
−1T

dimM∑

a=1

c(ea)c
(
∇TM
ea ψM

A

)
− 2

√
−1T∇Λ0,•

ψM
A

+ T 2
∣∣ψM

A

∣∣2 .

From (3.6), the definition of the moment map, and LKX = ∇TM
KMX − ∇TM

X KM for

K ∈ g, X ∈ C ∞(M, TM), we get (cf. [21, Lemma 1.5], (2.12))

(3.29) ∇Λ0,•

ψM
A

= ψAj∇Λ0,•

VM
j

= ψAjLVj + 2π
√
−1 〈ψA, θ〉

+
1

4

n∑

k=1

c(ek)c
(
∇TM
ek

V M
j

)
ψAj +

1

4

dimN∑

i=1

c(fi)c
(
∇TN
fi
V N
j

)
ψAj

+
1

2
ψAj Tr

[
(∇TMV M

j )|T (1,0)M

]
+

1

2
ψAj Tr

[
(∇TNV N

j )|T (1,0)N

]
.

By (3.26), we get

1

2

n∑

k=1

c(ek)c
(
∇TM
ek

V M
j

)
ψAj =

1

2

n∑

k=1

c(ek)c
(
∇TM
ek

ψMA
)
− 1

2
c
((
dMψAj

)∗)
c
(
V M
j

)
,

ψAj Tr
[
∇TMV M

j |T (1,0)M

]
= Tr

[
(∇TMψMA )|T (1,0)M

]
− IA2.

(3.30)
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Also by (0.21) and (3.6), we have

(3.31)
dimM∑

a=1

c(ea)c
(
∇TM
ea ψM

A

)
=

n∑

k=1

c(ek)c
(
∇TM
ek

ψMA
)
+ c

((
dMψAj

)∗)
c
(
V N
j

)

+

dimN∑

i=1

c(fi)c
(
∇TN
fi
V N
j

)
ψAj + c

((
dNψAj

)∗)
c
(
V M
j + V N

j

)
.

By (3.26), (3.28)–(3.31), we get (3.27). The proof of Theorem 3.8 is completed. �

Lemma 3.9. There exists A1 > A2 such that if A > A1 is a regular value for |µ|2 and
1
2
|θ|2, then for any z ∈ M with ψM

A (z) = 0, and any f ∈ (Λ(T ∗(0,1)M)⊗ (L⊗ F )|M)|z,
the following inequality holds at z:

(3.32) Re

〈
√
−1

{
1

2

dimN∑

i=1

c (fi) c
(
∇TN
fi
V N
j

)
− Tr

[
(∇TNV N

j )|T (1,0)N

]
}
ψAj f, f

〉

+ Re
〈(

4π 〈ψA, θ〉+
√
−1 (IA1 + IA2 + IA3)

)
f, f

〉
> πA|f |2.

Lemma 3.9 will be proved in Sections 3.4-3.6.

Let FM,T : Ω0,•(M, L⊗ F ) → Ω0,•(M, L⊗ F ) be defined by

FM,T = D2
M,T + 2

√
−1TψAjLVj .(3.33)

Proposition 3.10. Let A1 > 0 be as in Lemma 3.9. If A > A1 is a regular value for |µ|2
and 1

2
|θ|2, then for any z ∈ M \ ∂M, there exist an open neighborhood Uz of z in M,

with U z ∩ ∂M = ∅, and Cz > 0, bz > 0 such that for any T > 1 and s ∈ Ω0,•(M, L⊗F )

with supp(s) ⊂ Uz, we have

Re
〈
FM,T s, s

〉
> Cz

(∥∥DL⊗Fs
∥∥2

0
+ (T − bz) ‖s‖20

)
.(3.34)

Proof. Let A > A1 be a fixed regular value for |µ|2 and 1
2
|θ|2, and we fix z ∈ M \ ∂M.

If ψM
A (z) 6= 0, then by (3.27) and (3.33), we see that Proposition 3.10 holds.

From now on we assume that ψM
A (z) = 0. We write z = (x0, y0) with x0 ∈M , y0 ∈ N .

From (0.22), ψM
A (z) = ψMA (z) + ψNA (z) and ψ

M
A (z) ∈ TM ,ψNA (z) ∈ TN , thus

ψM
A (z) = 0 if and only if ψMA (z) = 0 and ψNA (z) = 0.(3.35)

Let x′ = (x1, · · · , xn) be the normal coordinate system with respect to {ej|x0}nj=1

near x0 ∈ M . Let y′ = (y1, · · · , ydimN) be the normal coordinate system near y0 ∈ N

associated with {fi|y0}dimN
i=1 .

By (3.15), ψMA (z) = 0 implies that (dM |ρA|2)(z) = 0. Thus we can choose the or-

thonormal frame {ei}ni=1 so that the function |ρA(·, y0)|2 has the following expression

near x0,

|ρA(x′, y0)|2 = |ρA(x0, y0)|2 +
n∑

j=1

ajx
2
j +O(|x′|3).(3.36)

The following Lemma is an analogue of [21, Lemma 2.3].
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Lemma 3.11. The following inequality holds at the point (x0, y0),
√
−1

2

n∑

k=1

c(ek)c
(
∇TM
ek

ψMA
)
−

√
−1Tr

[
(∇TMψMA )|T (1,0)M

]
> −

n∑

j=1

|aj |,(3.37)

and the inequality is strict if at least one of the aj’s is negative.

Proof. Set

ψMA (x′, y′) = −
n∑

k=1

tk(x
′, y′)JMek.(3.38)

Then Lemma 3.5 and (3.36) imply that

tk(x
′, y0) = akxk +O(|x′|2).(3.39)

Let ej = e1,0j + e0,1j ∈ T (1,0)M ⊕ T (0,1)M . By (2.3), (3.38) and (3.39), we deduce that

at the point (x0, y0),

(3.40)

√
−1

2

n∑

k=1

c(ek)c
(
∇TM
ek

ψMA
)
−

√
−1Tr

[
(∇TMψMA )|T (1,0)M

]

= −
√
−1

2

n∑

j=1

ajc(ej)c(J
Mej)−

√
−1

2

n∑

j=1

〈(
1 +

JM√
−1

)
(−ajJMej), ej

〉

= −2
n∑

j=1

ajie0,1j
e1,0∗j ∧ > −

n∑

j=1

|aj|,

where the last inequality is strict if at least one of the aj ’s is negative. �

Let ∆M , ∆N be the Bochner Laplacians on M,N acting on Ω0,•(M,L), Ω0,•(N,F ),

respectively. We still denote by ∆M , ∆N the induced operators acting on Ω0,•(M ×
N,L⊗ F ), then ∆M×N = ∆M +∆N is the Bochner Laplacian on M ×N . Clearly, they

are nonpositive operators acting on Ω0,•(M ×N,L⊗F ). From the Lichnerowicz formula

for DL⊗F,2 (cf. [9, Appendix D] and [11, Theorem 1.3.5]), we get on M,

DL⊗F,2 = −∆M×N +O(1),(3.41)

and where O(1) is an endomorphism of Λ(T ∗(0,1)M)⊗ L⊗ F .

Let F ∗
M,T be the formal adjoint of FM,T . Note that

∣∣ψM
A

∣∣2 =
∣∣ψMA

∣∣2 +
∣∣ψNA

∣∣2. From

(3.27), (3.32), (3.33), (3.37), (3.38) and (3.41), we find that 1
2

(
FM,T + F ∗

M,T

)
+ ∆M×N

is an operator of order 0, and near z = (x0, y0),

(3.42)
1

2

(
FM,T + F ∗

M,T

)
+∆M×N > −T

n∑

j=1

|aj|+ T 2

n∑

j=1

tj (x
′, y′)

2

+ T 2
∣∣ψNA (x′, y′)

∣∣2 + πTA+O (1 + T |x′|+ T |y′|) .

Let ε0 > 0 be sufficiently small so that the orthonormal frame {ej}nj=1 is well defined

over the ball BM
ε0
(x0) = {x′ ∈M : d (x′, x0) < ε0}, and BM

ε0
(x0)×BN

ε0
(y0)∩∂M = ∅. For
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any 1 6 j 6 n, let (∇ej)
∗ be the formal adjoint of ∇Λ0,•

ej
. We have (cf. [11, (1.2.9)])

(∇ej)
∗ = −∇Λ0,•

ej
+
〈
ej ,∇TM

ei
ei
〉
.(3.43)

Set

−∆M
T =

n∑

j=1

(
(∇ej)

∗ + T (sgn aj)tj (x
′, y′)

)(
∇Λ0,•

ej
+ T (sgn aj)tj (x

′, y′)
)
.(3.44)

Clearly, −∆M
T is nonnegative near z = (x0, y0). We verify using (3.39) that

−∆M
T = −∆M − T

n∑

j=1

|aj|+ T 2
n∑

j=1

tj (x
′, y′)

2
+O (1 + T |x′|+ T |y′|) .(3.45)

By (3.42), (3.44) and (3.45), the following identity holds for any k > 1, when both

sides act on sections with compact support in BM
ε0
(x0)× BN

ε0
(y0),

(3.46)
1

2

(
FM,T + F ∗

M,T

)
> −∆N −∆M

T + πTA+O (1 + T |x′|+ T |y′|)

> −1

k
∆N − 1

k
∆M − T

k

n∑

j=1

|aj |+ π TA+O (1 + T |x′|+ T |y′|) .

By (3.41) and (3.46), there exist C2, C3 > 0 such that for any 0 < ε < ε0, s ∈ Ω0,•(M, L⊗
F ) with supp(s) ⊂ BM

ε (x0)×BN
ε (y0), we have

(3.47) Re
〈
FM,T s, s

〉
>

1

k

∥∥DL⊗Fs
∥∥2

0
+
[
T
(
πA− 1

k

n∑

j=1

|aj |−C3ε
)
−
(C2

k
+C3

)]
‖s‖20.

We take k large enough and choose ε small enough so that

A

2
− 1

k

n∑

j=1

|aj | > 0,
A

2
− C3ε > 0.(3.48)

With ε chosen as in (3.48), the conclusion of Proposition 3.10 follows from (3.47) in the

case where ψM
A (z) = 0. The proof of Proposition 3.10 is completed. �

By Proposition 3.10 and the gluing trick due to Bismut-Lebeau [3, pp. 115-117]

(which has been used in the proof of (2.16)), we obtain the following: for any open

subset U ′ ⊂ M with U ′ ∩ ∂M = ∅, there exist C6 > 0, b1 > 0 such that for any

s ∈ Ω0,•(M, L⊗ F ) with supp(s) ⊂ U ′, we have

Re
〈
FM,T s, s

〉
> C6

(∥∥DL⊗Fs
∥∥2

0
+ (T − b1) ‖s‖20

)
.(3.49)

Let U be a G-invariant open neighborhood of ∂M in M such that ψM
A does not vanish

on U . As ψM
A does not vanish on ∂M, the existence of U is clear. Then one can proceed

in exactly the same way as in the proof of (1.52) (or [22, Proposition 2.4]), to see that

there exist T2 > 0, C7 > 0 such that for any T > T2 and s ∈ Ω0,•(M, L ⊗ F )γ=0 with

supp(s) ⊂ U and P>0,±,T (s|∂M) = 0, we have

‖DM,T s‖20 > C7

(∥∥DL⊗Fs
∥∥2

0
+ T 2‖s‖20

)
.(3.50)
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In view of (3.33), (3.49) and (3.50), one can then proceed as in the proof of (2.22),

which goes back to [3, pp. 115-117], to see that Theorem 3.7 holds.

3.4. Proof of Lemma 3.9 (I): uniform estimates on functions. We give first uni-

form estimates for some functions appeared in the definition of γA, ψA when A→ ∞.

Recall that A2 > 0 was determined in Lemma 3.6. Let A > A2 be a regular value for

|µ|2 and 1
2
|θ|2. Set

τA1 =1 + α′
A(|µ|2)(|θ|2 − |µ|2),

τA2 =1− 2φ′
A(βA) 〈ρA, η〉 τA1,

τA4 =1− φA(βA)− 2φ′
A(βA)αA(|µ|2) 〈ρA, η〉 ,

τA5 =
[
1− φA(βA)

]
τA1 − αA(|µ|2)

=1− φA(βA)− αA(|µ|2) +
[
1− φA(βA)

]
α′
A(|µ|2)(|θ|2 − |µ|2).

(3.51)

Then

τA5 = τA1 τA4 − αA(|µ|2) τA2 .(3.52)

From (3.14b), (3.51), we obtain

γA = 2τA1µ+ 2αA(|µ|2)η .(3.53)

From (3.2), (3.14a), (3.14c), (3.51) and (3.53), we get

ψA = µ+
[
1− φA(βA)

]
η − φ′

A(βA) 〈ρA, η〉
[
2τA1µ+ 2αA

(
|µ|2

)
η
]

= τA2 µ+ τA4 η .
(3.54)

In the following, for s ∈ R and a function fA on M, we write fA = O0(A
s) if there

exists C > 0 (independent on A) such that its C 0-norm on M can be controlled by CAs.

The following lemma contains basic asymptotic estimates for these τ functions.

Lemma 3.12. There exists A6 > A2 such that for A > A6, we have

A < βA < 2A, on M\ ∂M.(3.55)

Thus

0 < φA(βA) < 1 on M\ ∂M.(3.56)

Moreover,

τA1 = 1 +O0

(
A−1/2

)
, τA2 = 1 +O0

(
A−1/2

)
,(3.57a)

τA4 =
[
1− φA(βA)

](
1 +O0

(
A−1/2

) )
,(3.57b)

τA5 =
[
1− φA(βA)− αA

(
|µ|2

) ](
1 +O0(A

−1/2)
)
.(3.57c)

Finally, for any A > A6, we have

1− φA(βA)− αA
(
|µ|2

)
< 0 if (x, y) ∈ M \ ∂M,

= 0 if (x, y) ∈ ∂M.
(3.58)



GEOMETRIC QUANTIZATION FOR PROPER MOMENT MAPS: THE VERGNE CONJECTURE 29

Proof. From (3.2), (3.3) and (3.4), for A > A2 > A0, we have on M,

A1/2 6 |µ| 6 |θ|+ |η| 6
√
2A1/2 + |C0| 6

(
2
√
2−

√
5/3

)
A1/2,

|θ|2 − |µ|2 = 2 〈µ, η〉+ |η|2 = O0(A
1/2).

(3.59)

From (3.10)-(3.13) and (3.59), for A > A2, we have on M,

αA
(
|µ|2

)
= O0(1), βA = |µ|2 +O0(A

1/2), α′
A

(
|µ|2

)
= φ′

A(βA) = O0(A
−1).(3.60)

If |µ|2 6 4A
3
, then (3.10), (3.11), (3.13) and (3.59) yield

βA
A

− 1 =

( |µ|2
A

− 1

)[
1 +

1

A

( |µ|2
A

− 1

)(
|θ|2 − |µ|2

)]

=

( |µ|2
A

− 1

)(
1 +O0

(
A−1/2

) )
.

(3.61)

If |µ|2 > 4A
3
, then by (3.60), we have for A > A2 large enough,

βA >
4

3
A+O0(A

1/2) >
6A

5
.(3.62)

By (3.3), (3.61) and (3.62), we have βA > A on M\ ∂M for A > A2 large enough.

On the other hand, if |µ|2 6 5A
3
, then by (3.60), for A > A2 large enough, βA < 2A.

By (3.10), (3.11) and (3.13), if |µ|2 > 5A
3
,

αA(|µ|2) = 1, α′
A(|µ|2) = 0, βA = |θ|2.(3.63)

Combining with (3.3) we have βA < 2A on M \ ∂M for A > A2 large enough. Thus

there exists A7 > A2 such that (3.55) holds for A > A7. Note that φ̃(0) = 1, φ̃(1) = 0

and φ̃′ < 0 on (0, 1]. Thus (3.11) and (3.55) imply (3.56).

The first identity in (3.57a) follows immediately from (3.51), (3.59) and (3.60).

From (3.14a), (3.56) and (3.59), we obtain for A > A7,

|ρA| 6 |θ|+ |η| < 2A1/2 on M.(3.64)

From (3.4), (3.51), the first identity in (3.57a), (3.60) and (3.64), we get the second

identity in (3.57a). Hence the proof of (3.57a) is completed.

We prove now (3.57b). If |µ|2 6 4A
3
, then by (3.60), we have βA < 15A

11
for A > A7

large enough. Then (3.10), (3.11) and (3.61) imply

αA
(
|µ|2

)
=

( |µ|2
A

− 1

)2

,

1− φA(βA) =
(βA
A

− 1
)3

=

( |µ|2
A

− 1

)3 (
1 +O0

(
A−1/2

) )
,

φ′
A(βA) = − 3

A

(βA
A

− 1
)2

.

(3.65)
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From (3.4), (3.51), (3.61), (3.64) and (3.65), we deduce that

τA4 =
(
1− φA(βA)

)[
1 +

6

A
·
( |µ|2
A

− 1
)(

1 +O0

(
A−1/2

) )
〈ρA, η〉

]

=
(
1− φA(βA)

)(
1 +O0

(
A−1/2

) )
.

(3.66)

If |µ|2 > 4A
3
, by (3.10), (3.11) and (3.62), we have 1−φA(βA) > 1−φA(6A5 ) = 5−3 > 0,

from which (3.57b) holds, since in view of (3.4), (3.60) and (3.64), φ′
A(βA)αA (|µ|2)

〈ρA, η〉 = O0(A
−1/2) holds. Together with (3.66), this implies (3.57b).

For the proof of (3.57c) and (3.58), we first consider the region |µ|2 > 5A
3

in M. By

(3.51) and (3.63), we get

τA5 = 1− φA(βA)− αA(|µ|2) = −φA(βA).(3.67)

Thus (3.57c) holds. From (3.22), (3.56) and (3.67), we get (3.58).

By (3.10), (3.12) and (3.60), we find that for A > A7,

φA(βA) = φA
(
|µ|2

)
+O0

(
A−1/2

)
on M.(3.68)

If 4A
3
6 |µ|2 6 5A

3
, then from (3.10) and (3.68), we have for A large enough,

1− φA(βA)− αA
(
|µ|2

)
6 − 1

27
.(3.69)

By (3.51), (3.59), (3.60) and (3.69), we get (3.57c) and (3.58).

Finally, if |µ|2 6 4A
3
, by (3.51), the first equation of (3.57a) and (3.65), the following

identities hold for A > A7 large enough:

1−φA(βA)− αA(|µ|2)

= −
( |µ|2
A

− 1
)2[

1−
( |µ|2
A

− 1
)(

1 +O0(A
−1/2)

)]
,

τA5 =
[
1− φA(βA)

](
1 +O0

(
A−1/2

) )
− αA

(
|µ|2

)

=
[
1− φA(βA)− αA

(
|µ|2

) ](
1 +O0

(
A−1/2

) )
.

(3.70)

From (3.21) and the first identity in (3.70), we get (3.58) in this case.

Combining the three cases discussed above, we conclude that there exists A6 > A7

such that (3.57c) and (3.58) hold for A > A6. The proof of Lemma 3.12 is completed. �

The following Lemma will also be used in the proof of Lemma 3.9.

Lemma 3.13. There exists A8 > A6 such that for any A > A8,

1 <

(
1− φA(βA)

)2

− αA(|µ|2)
1− φA(βA)− αA(|µ|2)

< 12 on M\ ∂M.(3.71)

Proof. By (3.56) and (3.58), we have
(
1− φA(βA)

)2

− αA(|µ|2) < 1− φA(βA)− αA(|µ|2) < 0 on M\ ∂M.(3.72)
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To complete the proof of (3.71), we have to show that

11− 10φA(βA)− 11αA(|µ|2)− φA(βA)
2 < 0 on M\ ∂M.(3.73)

We examine three cases. First, if |µ|2 > 5A
3
, then (3.73) follows from (3.56) and (3.63).

Secondly, if |µ|2 6 4A
3
, then by (3.65), we get

(3.74) 11− 10φA(βA)− 11αA
(
|µ|2

)
− φA(βA)

2 6 −11αA
(
|µ|2

)
+ 12

(
1− φA(βA)

)

6

( |µ|2
A

− 1
)2 [

−7 +O0

(
A−1/2

)]
.

By (3.74), we see that (3.73) holds for A large enough.

Thirdly, let 4A
3

6 |µ|2 6 5A
3
, from (3.69) for A > 0 large enough, we have

(3.75) 11 − 10φA(βA) − 11αA(|µ|2) − φA(βA)
2 6 −11

27
+ φA(βA) − φA(βA)

2 6 − 17

108
.

This completes the proof of Lemma 3.13. �

By (3.57a), we may and we will assume that A is large enough so that τA2 > 1/2. Set

τA6 =− 2φ′
A(βA)α

′′
A(|µ|2)〈ρA, η〉

(
|θ|2 − |µ|2

)(
τA4
τA2

)2

+ 4φ′
A(βA)α

′
A(|µ|2)〈ρA, η〉

τA4
τA2

+ 2
[
− φ′′

A(βA)〈ρA, η〉+ (φ′
A(βA))

2|η|2
](τA5

τA2

)2

+ 2φ′
A(βA)

τA5
τA2

,

τA7 =2φ′
A(βA)α

′
A(|µ|2)〈ρA, η〉

(τA2 − τA4)τA4
τ 2A2

− 2
[
− φ′′

A(βA)〈ρA, η〉+ (φ′
A(βA))

2|η|2
]
αA(|µ|2)

(τA2 − τA4)τA5
τ 2A2

+ φ′
A(βA)

[(τA2 − τA4
τA2

+ 1− 2φA(βA)
)τA5
τA2

− αA(|µ|2)
τA2 − τA4

τA2

]
.

(3.76)

Lemma 3.14. For A > 0 large enough, the following identities hold on M:

τA6 =2φ′
A(βA)

[
1− φA(βA)− αA

(
|µ|2

) ](
1 +O0

(
A−1/2

) )
,

τA7 =φ
′
A(βA)

[(
1− φA(βA)

)2

− αA
(
|µ|2

) ](
1 +O0

(
A−1/2

) )
.

(3.77)

In particular,

τA6 > 0, τA7 > 0 if (x, y) ∈ M \ ∂M,

τA6 = 0, τA7 = 0 if (x, y) ∈ ∂M = M1 ∪M2,
(3.78)

and

τA7 6 6 τA6
[
1 +O0

(
A−1/2

)]
.(3.79)
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Proof. Note that from (3.4), (3.10), (3.11), (3.60) and (3.64), on M, we have

α′
A

(
|µ|2

)
〈ρA, η〉 = O0(A

−1/2), α′′
A

(
|µ|2

)
〈ρA, η〉 = O0(A

−3/2),

− φ′′
A(βA)〈ρA, η〉+ (φ′

A(βA))
2|η|2 = O0(A

−3/2).
(3.80)

Recall that φ̃′ < 0 on (0, 1]. By (3.12), (3.55) and the second equation of (3.60), there

exist C > 0, A10 > 0 such that for A > A10,

φ′
A(βA) < 0 on M\ ∂M,

|φ′
A(βA)| >

C

A
if |µ|2 > 4A

3
.

(3.81)

By Lemma 3.12, (3.59), (3.76) and (3.80), we get

(3.82) τA6 = φ′
A(βA)O0

(
A−1

) [
1− φA(βA)

]2
+ φ′

A(βA)O0

(
A−1/2

) [
1− φA(βA)

]

+O0(A
−3/2)

[
1− φA(βA)− αA

(
|µ|2

) ]2

+ 2φ′
A(βA)

[
1− φA(βA)− αA

(
|µ|2

) ](
1 +O0

(
A−1/2

) )
.

By (3.61), (3.65) and the first equation of (3.70), there exists C > 0 such that for A > 0

large enough, if |µ|2 6 4A
3
, then

0 6 1− φA(βA) 6 C
∣∣1− φA(βA)− αA

(
|µ|2

)∣∣ ,
∣∣1− φA(βA)− αA

(
|µ|2

)∣∣ 6 C |Aφ′
A(βA)| .

(3.83)

Due to (3.56), (3.60), (3.69) and (3.81), if 4A
3

6 |µ|2 6 5A
3
, (3.83) still holds for some

constant C > 0. By (3.83), the first three terms in (3.82) can be controlled by
∣∣∣φ′
A(βA)[

1− φA(βA)− αA (|µ|2)
]∣∣∣O0

(
A−1/2

)
if |µ|2 6 5A

3
. Thus from (3.82), the first identity in

(3.77) holds when |µ|2 6 5A
3
.

For |µ|2 > 5A
3
, by (3.63), α′′

A(|µ|2) = α′
A(|µ|2) = 0, thus the first two terms of τA6 are

zero. By (3.57a)-(3.57c), (3.67), (3.76) and the third equation in (3.80), we have

τA6 = O0

(
A−3/2

)
φA(βA)

2 − 2φ′
A(βA)φA(βA)

(
1 +O0

(
A−1/2

) )
.(3.84)

From (3.56), (3.67), (3.81) and (3.84), the first identity in (3.77) holds when |µ|2 > 5A
3
.

From (3.58), the first identity in (3.77) and (3.81), we get (3.78) for τA6.

For the second identity in (3.77), by Lemma 3.12 and (3.80), we obtain the asymptotics

of the terms of τA7 in (3.76) in order as follows :

(3.85) τA7 = φ′
A(βA)

[
1− φA(βA)

]
O0

(
A−1/2

)

+ αA
(
|µ|2

) [
1− φA(βA)− αA

(
|µ|2

) ]
O0(A

−3/2)

+ φ′
A(βA)

{(
1− φA(βA) +O0

(
A−1/2

) )[
1− φA(βA)− αA

(
|µ|2

) ]

− αA
(
|µ|2

) (
φA(βA) +O0

(
A−1/2

) )}
,
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here the factor 1 − φA(βA) in the first term of (3.85) is from τA4 and the factor 1 −
φA(βA)− αA (|µ|2) is from τA5.

If |µ|2 6 5A
3
, by (3.72), the first equation of (3.83) (which holds for |µ|2 6 5A

3
as

explained after (3.83)), we get for A > 0 large enough,
∣∣αA

(
|µ|2

)∣∣ 6 (C + 1)
∣∣(1− φA(βA))

2 − αA
(
|µ|2

)∣∣ .(3.86)

Thus by (3.72), (3.83) for |µ|2 6 5A
3

and (3.86), the first two terms of (3.85) is bounded

by
∣∣∣φ′
A(βA)

[
(1 − φA(βA))

2 −αA (|µ|2)
]∣∣∣O0

(
A−1/2

)
. From (3.72), (3.85) and (3.86), the

second identity in (3.77) holds for |µ|2 6 5A
3
.

If |µ|2 > 5A
3
, then by (3.51), (3.63) and (3.67), we have

τA1 = 1, τA2 − τA4 = φA(βA), τA5 = −φA(βA).(3.87)

By (3.57a), (3.63), (3.76), (3.80) and (3.87), we get the first term of τA7 is zero and

(3.88) τA7 = φA(βA)
2O0

(
A−3/2

)
+ φ′

A(βA)
{
− φA(βA)

2
(
1 +O0

(
A−1/2

) )

−
[
1− 2φA(βA)

]
φA(βA)

(
1 +O0

(
A−1/2

) )
− φA(βA)

(
1 +O0

(
A−1/2

) )}
.

From (3.56), (3.81) and (3.88), we get that if |µ|2 > 5A
3
,

τA7 = −φ′
A(βA)φA(βA)

[
2− φA(βA)

](
1 +O0

(
A−1/2

) )
.(3.89)

Now (3.63) and (3.89) imply the second identity in (3.77) for |µ|2 > 5A
3
. By (3.58),

(3.71) and (3.81), we get (3.78) for τA7. From Lemma 3.13, (3.77) and (3.78), we get

(3.79). This concludes the proof of Lemma 3.14. �

3.5. Proof of Lemma 3.9 (II): evaluation of IA· over zero(ψM
A ). In this subsection,

we evaluate the terms IA· in (3.26) on zero(ψM
A ), the zero set of ψM

A . The main point is

that we use ηN (resp. ηM) to replace µN , θN , γNA (resp. µM , γMA ) which are difficult to

control over M.

Lemma 3.15. On {z ∈ M : ψM
A (z) = 0}, the following identities hold:

τA2 µ
M =− τA4 η

M , τA2 γ
M
A = −2τA5 η

M ,(3.90)

and

τA2 µ
N =− τA4 η

N , τA2 γ
N
A = −2τA5 η

N , τA2 θ
N = (τA2 − τA4) η

N .(3.91)

Proof. Let z ∈ M be such that ψM
A (z) = 0. In view of (3.54) the equation ψMA (z) = 0

in (3.35) is equivalent to the first equation of (3.90). Similarly, the equation ψNA (z) = 0

in (3.35) is equivalent to the first equation of (3.91).

By (3.51), (3.52), (3.53) and the first equation of (3.90), we get at z:

(3.92) τA2 γ
M
A = 2τA1τA2 µ

M + 2αA(|µ|2)τA2 ηM

= −2τA1τA4 η
M + 2αA(|µ|2)τA2 ηM = −2τA5 η

M .

The second equation in (3.91) follows similarly. By (3.6) and the first equation in (3.91),

we get the third equation in (3.91). The proof of Lemma 3.15 is completed. �
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For any x ∈M, y ∈ N , W ∈ TxM , V ∈ TyN , let B(W ) ∈ End(Λ(T ∗(0,1)(M ×N)))(x,y)
be defined by

B(W ) =
√
−1 c

(
JMW

)
c(W ) + |W |2.(3.93)

Clearly, the endomorphisms B(W ),
√
−1c(W )c(V ) of Λ(T ∗(0,1)(M × N))(x,y) are self-

adjoint and B(JMW ) = B(W ) = B(−W ).

Lemma 3.16. On {z ∈ M : ψM
A (z) = 0}, the following identities hold for IA· in (3.26):

√
−1

(
IA1+IA2

)
=
τA2
2

dimG∑

j=1

B
(
V M
j

)
+ τA6B

(
ηM

)

+
√
−1τA2 c

(
JMV M

j

)
c
(
V N
j

)
+ 2

√
−1τA6 c

(
JMηM

)
c
(
ηN

)

+
√
−1τA4 c

(
JNV N

j

)
c
(
V M
j

)
+ 2

√
−1τA7 c

(
JNηN

)
c
(
ηM

)
,

IA3 =τA4 c
(
JNV N

j

)
c
(
V N
j

)
+ 2τA7 c

(
JNηN

)
c
(
ηN

)
.

(3.94)

Proof. Let z ∈ M be such that ψM
A (z) = 0. By (3.6) and (3.51), we get

(dMτA1)
∗ = 2α′′

A(|µ|2)(|θ|2 − |µ|2)JMµM + 2α′
A(|µ|2)JMηM ,

(dNτA1)
∗ = 2α′

A(|µ|2)JNθN .
(3.95)

Using (3.6), (3.17) and (3.90), we infer at z,

(dMβA)
∗ = JMγMA = −2τA5

τA2
JMηM ,

(dM〈ρA, η〉)∗ = JMηM + 2φ′
A(βA)|η|2

τA5
τA2

JMηM .
(3.96)

By (3.6), (3.51), (3.90), (3.95) and (3.96), at z, we get

(3.97) (dMτA2)
∗ = −2φ′

A(βA)〈ρA, η〉(dMτA1)∗

− 2φ′′
A(βA)〈ρA, η〉τA1(dMβA)∗ − 2φ′

A(βA)τA1(d
M〈ρA, η〉)∗

=

{
4φ′

A(βA)〈ρA, η〉
[
α′′
A(|µ|2)

(
|θ|2 − |µ|2

)τA4
τA2

− α′
A(|µ|2)

]

−4
[
− φ′′

A(βA)〈ρA, η〉+ (φ′
A(βA))

2|η|2
]τA5
τA2

τA1 − 2φ′
A(βA)τA1

}
JMηM ,

and

(3.98) (dMτA4)
∗ = −2φ′

A(βA)〈ρA, η〉α′
A(|µ|2)2JMµM

+
[
− φ′

A(βA)− 2φ′′
A(βA)〈ρA, η〉αA(|µ|2)

]
(dMβA)

∗

− 2φ′
A(βA)αA(|µ|2)(dM〈ρA, η〉)∗

=

{
4φ′

A(βA)α
′
A(|µ|2)〈ρA, η〉

τA4
τA2

+ 2φ′
A(βA)

τA5
τA2

− 4
[
− φ′′

A(βA)〈ρA, η〉+ (φ′
A(βA))

2|η|2
]
αA(|µ|2)

τA5
τA2

− 2φ′
A(βA)αA(|µ|2)

}
JMηM .
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From (3.6) and (3.54), we get

(
dMψAj

)∗
= (dMτA2)

∗ µj + (dMτA4)
∗ ηj + τA2J

MV M
j ,

(
dNψAj

)∗
= (dNτA2)

∗ µj + (dNτA4)
∗ ηj + τA4J

NV N
j .

(3.99)

From (3.52), (3.76), the first equation of (3.90) and (3.97)-(3.99), we get at z,

c
(
(dMψAj)

∗) c
(
V M
j

)
= τA2 c

(
JMV M

j

)
c
(
V M
j

)
+ 2τA6 c

(
JMηM

)
c
(
ηM

)
,

〈(
1 +

JM√
−1

)
V M
j , (dMψAj)

∗
〉

=
1√
−1

(
τA2

∑

j

∣∣V M
j

∣∣2 + 2τA6
∣∣ηM

∣∣2
)
.

(3.100)

Using (3.76), the first equation of (3.91) and (3.97)-(3.99), we get at z,

c((dMψAj)
∗)c(V N

j ) =τA2 c(J
MV M

j )c(V N
j ) + 2 τA6 c(J

MηM)c(ηN).(3.101)

By (3.17), (3.91) and (3.95), it follows that at z,

(dNβA)
∗ = 2αA

(
|µ|2

) τA2 − τA4
τA2

JNηN ,(3.102a)

(dNτA1)
∗ = 2α′

A(|µ|2)
τA2 − τA4

τA2
JNηN ,(3.102b)

(dNρAj)
∗ =

(
1− φA(βA)

)
JNV N

j − 2φ′
A(βA)αA

(
|µ|2

)
ηj
τA2 − τA4

τA2
JNηN .(3.102c)

From (3.6), (3.14a), (3.91) and (3.102c), we have

(3.103) (dN〈ρA, η〉)∗ =
(
θj − φA(βA)ηj

)
(dNηj)

∗ + ηj(d
NρAj)

∗

=

[
1− 2φA(βA) +

(
1− 2φ′

A(βA)αA
(
|µ|2

)
|η|2

)τA2 − τA4
τA2

]
JNηN .

By (3.51), (3.90), (3.95) and (3.102a)-(3.103), we get at z,

(3.104) (dNτA2)
∗ = −2φ′

A(βA)〈ρA, η〉(dNτA1)∗

− 2φ′′
A(βA)〈ρA, η〉τA1(dNβA)∗ − 2φ′

A(βA)τA1(d
N〈ρA, η〉)∗

=

{
−4φ′

A(βA)〈ρA, η〉α′
A(|µ|2)

τA2 − τA4
τA2

+ 4
[
− φ′′

A(βA)〈ρA, η〉+ (φ′
A(βA))

2|η|2
]
αA

(
|µ|2

) τA2 − τA4
τA2

τA1

−2φ′
A(βA)τA1

(
1− 2φA(βA) +

τA2 − τA4
τA2

)}
JMηN ,
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and

(3.105) (dNτA4)
∗ =

[
− φ′

A(βA)− 2φ′′
A(βA)〈ρA, η〉αA(|µ|2)

]
(dNβA)

∗

− 2φ′
A(βA)αA(|µ|2)(dN〈ρA, η〉)∗

=

{
4
[
− φ′′

A(βA)〈ρA, η〉+ (φ′
A(βA))

2|η|2
]
αA(|µ|2)2

τA2 − τA4
τA2

−2φ′
A(βA)αA

(
|µ|2

) [
1− 2φA(βA) + 2

τA2 − τA4
τA2

]}
JMηN .

From (3.52), (3.76), (3.91), (3.99), (3.104) and (3.105), we get at z,

c((dNψAj)
∗)c(V M

j ) =τA4 c(J
NV N

j )c(V M
j ) + 2 τA7 c(J

NηN)c(ηM),

c((dNψAj)
∗)c(V N

j ) =τA4 c(J
NV N

j )c(V N
j ) + 2 τA7 c(J

NηN)c(ηN).
(3.106)

By (3.26), (3.93), (3.100), (3.101) and (3.106), we get (3.94). �

Lemma 3.17. For any k > 0, the following inequalities hold for W ∈ TM , V ∈ TN :

B(W ) > 0,

√
−1c(W )c(V ) > − 1

2k
B(W )− k|V |2.

(3.107)

Proof. It is enough to prove it for V = v + v, W = w + w, and {v, w} an orthonormal

basis of C2 with the standard Hermitian product. Using (2.3) and (3.93), we find

B(W ) = −2 (w∗ ∧+iw) (w
∗ ∧ −iw) + 2 = 4w∗ ∧ iw.(3.108)

Thus the first inequality in (3.107) holds (cf. [21, (2.9), (2.13)]).

For any σ ∈ ΛC2
∗
, we write σ = σ1w

∗ ∧ v∗ + σ2 w
∗ + σ3 v

∗ + σ4, where σi ∈ C for

i = 1, 2, 3, 4. By (2.3), we get
√
−1c(W )c(V )σ = 2

√
−1 (−σ1 + σ2v

∗ − σ3w
∗ + σ4w

∗ ∧ v∗) .(3.109)

From (3.108) and (3.109), we find that for any k > 0,

〈
√
−1c(W )c(V )σ, σ〉 = 4 Im (σ1σ4 − σ2σ3)

> −2

k

(
|σ1|2 + |σ2|2

)
− 2k|σ|2 = − 1

2k
〈B(W )σ, σ〉 − 2k|σ|2.

(3.110)

From (3.110), we get the second inequality of (3.107). �

3.6. Proof of Lemma 3.9 (III): final step. Recall that z ∈ M satisfies ψM
A (z) = 0.

By Lemma 3.6, z ∈ M \ ∂M.

By Lemma 3.12, τA2, τA4 > 0 on M for A large enough. Thus by (3.78), (3.94) and

the second equation in (3.107) with k = 8, we get

√
−1 (IA1 + IA2) >

1

2

(
7

8
τA2 −

1

8
τA4

) dimG∑

j=1

B
(
V M
j

)
−
(
8τA2 + 8τA4

) dimG∑

j=1

∣∣V N
j

∣∣2

+

(
7

8
τA6 −

1

8
τA7

)
B
(
ηM

)
−
(
16τA6 + 16τA7

) ∣∣ηN
∣∣2 .

(3.111)
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By Lemma 3.12, we obtain for A > 0 large enough,

7

8
τA2 −

1

8
τA4 =

3

4
+

1

8
φA(βA) +O0

(
A−1/2

)
>

1

2
.(3.112)

By Lemma 3.14, for A > 0 large enough, as z ∈ M \ ∂M,

7

8
τA6 −

1

8
τA7 >

1

8
τA6

(
1 +O0(A

−1/2)
)
> 0.(3.113)

Recall that V N
j , η are defined on the compact manifold N . By Lemmas 3.12, (3.77),

(3.107) and (3.111)-(3.113), there exists C ′ > 0 such that for A > 0 large enough, the

following inequality holds:
√
−1 (IA1 + IA2) > −C ′ Id on {z ∈ M, ψMA (z) = 0}.(3.114)

By (3.57b), (3.77) and (3.94), there exists C ′′ > 0 such that for A > 0 large enough, we

have

|IA3| 6 C ′′ on {z ∈ M, ψMA (z) = 0}.(3.115)

By Lemma 3.12, (3.4), (3.54) and (3.59), for A > 0 large enough, we get over M:

2 〈ψA, θ〉 = 2τA2|µ|2 + 2τA4|η|2 + 2 (τA2 + τA4) 〈µ, η〉
> 2A+O0

(
A1/2

)
> A,

|ψA| = O0

(
A1/2

)
.

(3.116)

By (3.114)–(3.116), we get (3.32). This completes the proof of Lemma 3.9.

4. Functoriality of quantization

This section is organized as follows. In Section 4.1, we establish the product formula for

quantization, Theorem 0.4. In Section 4.2, we explain the compatibility of quantization

and its restriction to a subgroup.

We will use the assumptions and notation in the Introduction and in Section 3.1.

4.1. Proof of Theorem 0.4. Let c > 0 be a regular value of |θ|2. By [22, Theorem

4.3], [17, Prop. 7.10] (cf. also Theorems 1.5, 2.1), the following identity holds:

Ind
(
σ
(M×N)c
L⊗F,θ

)
γ=0

= Q
(
(L⊗F )γ=0

)
.(4.1)

Here 0 need not to be a regular value of θ.

On the other hand, by Theorem 0.1b), we have

Ind
(
σ
(M×N)c
L⊗F,θ

)
γ=0

= Q (L⊗F )γ=0 .(4.2)

Therefore, by (4.1) and (4.2), we get (0.12). Thus, to prove Theorem 0.4, we only need

to prove the following identity, which has been stated in (0.13),

Q (L⊗F )γ=0 =
∑

γ∈Λ∗
+

Q(L)γ ·Q(F )γ,∗.(4.3)

We first establish the following lemma, which has been stated in (0.14).
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Lemma 4.1. There exists a′ > 0 such that for any regular value a > a′ of |µ|2 :M → R,

the following identity holds:
∑

γ∈Λ∗
+

Q(L)γ ·Q(F )γ,∗ = Ind
(
σMa×N
L⊗F,µ

)
γ=0

.(4.4)

Proof. We denote the finite set {γ ∈ Λ∗
+ : Q(F )γ,∗ 6= 0} by Λ∗

+(F ). By Theorem 0.1,

there exists a1 > 0 such that for any regular value a > a1 of |µ|2, we have

Q(L)γ = Ind
(
σMa

L,µ

)
γ

for any γ ∈ Λ∗
+(F ).(4.5)

Let a > a1 be a regular value of |µ|2. For 0 6 t 6 1, let σt be the symbol on Ma ×N

defined to be a deformation of σMa×N
L⊗F,µ as follows,

σt = σMa×N
L⊗F,µ − (1− t)

√
−1π∗c

(
µN

)
(4.6)

where π : T (Ma ×N) → Ma ×N is the canonical projection (cf. (1.2)).

By (1.2) and (3.7), when t = 0, σ0 is the external product of σMa

L,µ and σNF,0 in the

sense of [1] (cf. [17, (3.11)]). Then by the multiplicativity of the transversal index ([1,

Theorem 3.5], [17, (3.12)]) and by (4.5), we get
∑

γ∈Λ∗
+

Q(L)γ ·Q(F )γ,∗ = Ind (σ0)γ=0 .(4.7)

For 0 6 t 6 1, set

Vt = µMa×N − (1− t)µN .(4.8)

Then by (3.6), (3.7) and (4.8), we have

Vt = µM + tµN .(4.9)

As a > a1 is a regular value of |µ|2, µM does not vanish on ∂Ma. From (4.9), µMa×N , Vt
do not vanish on ∂(Ma ×N) = (∂Ma)×N for 0 6 t 6 1.

By (1.2), (4.6), (4.8) and (4.9), the set {(z, v) ∈ TG(Ma × N) : there exists 0 6 t 6

1 such that σt(z, v) is non-invertible} ⊂ {(x, y, 0) ∈ TG(Ma × N) : µM(x) = 0, x ∈
Ma, y ∈ N} is a compact subset of TG(M̂a ×N). Thus σt forms a continuous family of

transversally elliptic symbols in the sense of [1] and [17, §3]. Hence by (4.6), (4.7) and

the homotopy invariance of the transversal index (cf. [1, Theorems 2.6, 3.7], [17, §3]),
we get (4.4). The proof of Lemma 4.1 is completed. �

Let A > 0 be a regular value of both |µ|2 and 1
2
|θ|2. We may and we will assume that

A > 0 is large enough so that both Theorem 3.2 and Lemma 4.1 hold.

Let Y : M → g be a G-equivariant map such that (3.8) holds. By the additivity of

the transversal index (cf. [1, Theorem 3.7, §6] and [17, Prop. 4.1]), we have

Ind
(
σ
(M×N)2A
L⊗F,θ

)
γ=0

= Ind
(
σM
L⊗F,Y

)
γ=0

+ Ind
(
σMA×N
L⊗F,µ

)
γ=0

.(4.10)

By Theorems 1.5 and 3.2, we find

Ind
(
σM
L⊗F,Y

)
γ=0

= 0.(4.11)

By Theorem 0.1b), (4.4), (4.10) and (4.11), we get (4.3). The proof of Theorem 0.4 is

completed.
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4.2. Restriction commutes with quantization. Set

QG(L)
−∞ =

⊕

γ∈Λ∗
+

Q(L)γ · V G
γ ∈ R[G].(4.12)

By Theorem 0.2, QG(L)
−∞ is equal to the formal geometric quantization in the sense

of Weitsman [26, Definition 4.1] (where the fundamental properness assumption of the

moment map was introduced into the framework of geometric quantization) and Paradan

[19, Definition 1.2].

On the other hand, letH be a compact connected subgroup of G such that the moment

map of the induced action of H on M is also proper. By combining Theorem 0.2, (4.12)

with [19, Theorem 1.3], one gets the following relation between QG(L)
−∞ and QH(L)

−∞.

Theorem 4.2. Any irreducible representation of H has a finite multiplicity in QG(L)
−∞.

Moreover, when both sides are viewed as virtual representation spaces of H, the following

identity holds:

QG(L)
−∞∣∣

H
= QH(L)

−∞.(4.13)

It would be interesting to give a direct proof of Theorem 4.2.
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