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Abstract

In this paper, we study the class of pin-permutations, that is to say of per-
mutations having a pin representation. This class has been recently introduced in
[16], where it is used to find properties (algebraicity of the generating function,
decidability of membership) of classes of permutations, depending on the simple
permutations this class contains. We give a recursive characterization of the sub-
stitution decomposition trees of pin-permutations, which allows us to compute the
generating function of this class, and consequently to prove, as it is conjectured in
[18], the rationality of this generating function. Moreover, we show that the basis
of the pin-permutation class is infinite.

1 Introduction

In the combinatorial study of permutations, simple permutations have been the core
objects of many recent works [2, 3, 15, 16, 17, 18, 20]. These simple permutations are
the “building blocks” on which all permutations are built, through their substitution
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decomposition. Recently, substitution decomposition of permutations has also been used
to exhibit relations between the basis of permutation classes, and the simple permutations
this class contains [2, 16, 17, 18]. Similar decompositions for other objects have been
widely used in the literature: for relations [25, 26, 32, 34], for graphs [13, 36], or in a
variety of other fields [19, 22, 35].

In the algorithmic field, the substitution decomposition (or interval decomposition) of
permutations has been defined in [5, 6, 38]. It takes its roots in the modular decomposition
of graphs (see for example [13, 21, 29, 36, 37]), where prime graphs play the same key
role as simple permutations. Some examples of an algorithmic use of the substitution
decomposition of permutations are the computation of the set of common intervals of
two (or more) permutations [6, 38], with applications to bio-informatics [5], or restricted
versions of the longest common pattern problem among permutations [8, 11, 12, 28].

In the study of substitution decomposition, there is a major difference between algo-
rithmics and combinatorics: algorithms proceed through the substitution decomposition
tree of permutations, that is to say recursively decompose every block appearing in the
substitution decomposition of a permutation. On the contrary, in combinatorics, the sub-
stitution decomposition is mostly interested in the skeleton of the permutation, which
corresponds to the root of its decomposition tree.

In the present work, we take advantage of both points of view, and use the substitution
decomposition tree with a combinatorial purpose. We deal with permutations that ad-
mit pin representations, denoted pin-permutations. These permutations were introduced
recently by Brignall et al. in [16] when studying the links between simple permutations
and classes of pattern-avoiding permutations, from an enumerative point of view. The
authors conjectured in [18] that the class of pin-permutations has a rational generating
function. We prove this conjecture, focusing on the substitution decomposition trees of
pin-permutations.

In Section 2, we start with recalling the definitions of substitution decomposition and
of pin-permutations, and describe some of their basic properties. The core of this work
is the proof of Theorem 3.1 which gives a complete characterization of the decomposition
trees of pin-permutations. This corresponds to Section 3. Section 4 focuses on the enu-
meration of simple pin-permutations, using the notion of pin words defined in [18]. With
this enumerative result and the characterization of Theorem 3.1, standard enumerative
techniques [24] allow us to obtain the generating function of the pin-permutation class
in Section 5. This generating function being rational, this settles a conjecture of [18].
Finally, in Section 6, we are interested in the basis of the pin-permutation class: we prove
that the excluded patterns defining this class of permutations are in infinite number.

2 Preliminaries

2.1 Permutations, patterns and decomposition trees

A permutation σ of size n is a bijective map from [1..n] to itself. We denote by σi the
image of i under σ. For example the permutation σ = σ1 σ2 . . . σ6 = 1 4 2 5 6 3 is the
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bijective function such that σ(1) = 1, σ(2) = 4, σ(3) = 2, σ(4) = 5 . . .

Definition 2.1. The graphical representation of a permutation σ ∈ Sn is the set of points
in the plane at coordinates (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)).

In the following we call left-most (resp. right-most, smallest, largest) point of σ the
point (1, σ(1))) (resp. (n, σ(n)), (σ−1(1), 1), (σ−1(n), n)) in the graphical representation.

Definition 2.2. The bounding box of a set of points E is defined as the smallest axis-
parallel rectangle containing the set E in the graphical representation of the permutation
(see Figure 1). This box defines several regions in the plane:

• The sides of the bounding box (U,L,R,D on Figure 1).

• The corners of the bounding box (1, 2, 3, 4 on Figure 1).

• The bounding box itself.

Figure 1 Graphical representation of σ = 12 13 11 3 1 7 10 2 9 8 5 6 4 and the bounding box
of {7, 2, 9, 5, 6}.
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Definition 2.3. A permutation π = π1 . . . πk is called a pattern of the permutation σ =
σ1 . . . σn, with k ≤ n, if and only if there exist integers 1 ≤ i1 < i2 < . . . < ik ≤ n such
that σiℓ < σim whenever πℓ < πm. We will also say that σ contains π. A permutation σ
that does not contain π as a pattern is said to avoid π.

Example 2.4. The permutation σ = 1 4 2 5 6 3 contains the pattern 1 3 4 2 whose
occurrences are 1 5 6 3, 1 4 6 3, 2 5 6 3 and 1 4 5 3. But σ avoids the pattern 3 2 1 as
none of its subsequences of length 3 is order-isomorphic to 3 2 1, i.e., is decreasing.

We write π ≺ σ to denote that π is a pattern of σ. This pattern-containment relation
is a partial order on permutations, and permutation classes are downsets under this order.
In other words, a set C is a permutation class if and only if for any σ ∈ C, if π ≺ σ, then
π ∈ C. Any class C of permutations can be defined by a set B of excluded patterns, which
is unique if chosen minimal (see for example [2, 10]), and which is called the basis of C:
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σ ∈ C if and only if σ avoids every pattern in B. The basis of a class of pattern-avoiding
permutations may be finite or infinite.

Permutation classes have been widely studied in the literature, mainly from a pattern-
avoidance point of view. See [9, 23, 31, 39] among many others. The main enumerative
result about permutation classes is the proof of the Stanley-Wilf conjecture by Marcus
and Tardos [33], who established that for any class C, there is a constant c (the exponential
growth factor of C) such that the number of permutations of size n in C is at most cn.

Throughout this paper, we use the decomposition tree of permutations to characterize
pin-permutations. In these trees, permutations are decomposed along two different rules
in which two special kinds of permutations appear, the simple permutations and the linear
ones.

Strong intervals and simple permutations, whose definitions are recalled below, are the
two key concepts involved in substitution decomposition. We refer the reader to [2, 3, 15]
for more details about simple permutations.

Definition 2.5. An interval or block in a permutation σ is a set of consecutive integers
whose images by σ form a set of consecutive integers. A strong interval is an interval that
does not properly overlap1 any other interval.

Definition 2.6. A permutation σ is simple when it is of size at least 4 and its non-empty
intervals are exactly the trivial ones: the singletons and σ.

Notice that the permutations 1, 12 and 21 also have only trivial intervals, nevertheless
they are not considered to be simple here. Moreover no permutation of size 3 has only
trivial intervals.

Let σ be a permutation of Sn and π(1), . . . , π(n) be n permutations of Sp1, . . . , Spn

respectively. Define the substitution σ[π(1), π(2), . . . , π(n)] of π(1), π(2), . . . , π(n) in σ (also
called inflation in [2]) to be the permutation whose graphical representation is obtained
from the one of σ by replacing each point σi by a block containing the graphical repre-
sentation of π(i). More formally

σ[π(1), π(2), . . . , π(n)] = shift(π(1), σ1) . . . shift(π
(k), σk)

where shift(π(i), σi) = shift(π(i), σi)(1) . . . shift(π
(i), σi)(pi) and

shift(π(i), σi)(x) = (π(i)(x) + pσ−1(1) + . . .+ pσ−1(σi−1)) for any x between 1 and pi.

For example 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
We have now all the basic concepts necessary to define decomposition trees. For any

n ≥ 2, let In be the permutation 1 2 . . . n and Dn be n (n − 1) . . . 1. We use the
notations ⊕ and ⊖ for denoting respectively In and Dn, for any n ≥ 2. Notice that in in-
flations of the form ⊕[π(1), π(2), . . . , π(n)] = In[π

(1), π(2), . . . , π(n)] or⊖[π(1), π(2), . . . , π(n)] =
Dn[π

(1), π(2), . . . , π(n)], the integer n is determined without ambiguity by the number of
permutations π(i) of the inflation.

1Two intervals I and J properly overlap when I ∩ J 6= ∅, I \ J 6= ∅ and J \ I 6= ∅.
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Definition 2.7. A permutation σ is ⊕-indecomposable (resp. ⊖-indecomposable) if it
cannot be written as ⊕[π(1), π(2), . . . , π(n)] (resp. ⊖[π(1), π(2), . . . , π(n)]), for any n ≥ 2.

Theorem 2.8. (first appeared implicitly in [27]) Every permutation σ ∈ Sn with n ≥ 2
can be uniquely decomposed as either:

• ⊕[π(1), π(2), . . . , π(k)], with π(1), π(2), . . . , π(k) ⊕-indecomposable,

• ⊖[π(1), π(2), . . . , π(k)], with π(1), π(2), . . . , π(k) ⊖-indecomposable,

• α[π(1), . . . , π(k)] with α a simple permutation.

It is important for stating Theorem 2.8 that 12 and 21 are not considered as simple
permutations. An equivalent version of this theorem, which includes 12 and 21 among
simple permutations, is given in [2]. Notice that the π(i)’s correspond to strong intervals in
the permutation σ, and are necessarily the maximal strong intervals of σ strictly included
in {1, 2, . . . , n}. Another important remark is that:

Remark 2.9. Any block of σ = α[π(1), . . . , π(k)] (with α a simple permutation) is either
σ itself, or is included in one of the π(i)’s.

As an example of the result presented in Theorem 2.8, σ = 1 2 4 3 5 can be written
either as 1 2 3[1, 1, 2 1 3] or 1 2 3 4[1, 1, 2 1, 1] but in the first form, π(3) = 2 1 3 is not
⊕-indecomposable, thus we use the second decomposition. The decomposition theorem
2.8 can be applied recursively on each π(i) leading to a complete decomposition where
each permutation that appears is either Ik, Dk (denoted by ⊕,⊖ respectively) or a simple
permutation.

Example 2.10. Let σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7. Its recursive
decomposition can be written as

3 1 4 2[⊕[1,⊖[1, 1, 1], 1], 1,⊖[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,⊖[1, 1], 1,⊕[1, 1, 1]]].

The substitution decomposition recursively applied to maximal strong intervals leads
to a tree representation of this decomposition where a substitution α[π(1), . . . , π(k)] is
represented by a node labeled α with k ordered children representing the π(i)’s. In the
sequel we will say the child of a node V instead of the permutation corresponding to the
subtree rooted at a child of node V .

Definition 2.11. The substitution decomposition tree T of the permutation σ is the unique
labeled ordered tree encoding the substitution decomposition of σ, where each internal node
is either labeled by ⊕,⊖ -those nodes are called linear- or by a simple permutation α -
prime nodes-. Each node labeled by α has arity |α| and each subtree maps onto a strong
interval of σ.

the electronic journal of combinatorics 16 (2009), #R00 5



Figure 2 The substitution decomposition tree and the graphical representation
(with non-trivial strong intervals marked by rectangles) of the permutation σ =
10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7.
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Notice that in substitution decomposition trees, there are no edges between two nodes
labeled by ⊕, nor between two nodes labeled by ⊖, since the π(i)’s are ⊕-indecomposable
(resp. ⊖-indecomposable) in the first (resp. second) item of Theorem 2.8. See Figure 2
for an example.

Theorem 2.12. [2] Permutations are in one-to-one correspondence with substitution de-
composition trees.

2.2 Pin representations: basic definitions

We will consider the subset of permutations having a pin representation. Pin representa-
tions were introduced in [16] in order to check whether a permutation class contains only
a finite number of simple permutations. Nevertheless, pin representations can be defined
without reference to simple permutations.

A diagram is a set of points in the plane such that two points never lie on the same
row or the same column. Notice that the graphical representation of a permutation is a
diagram and that a diagram is not always the graphical representation of a permutation
but is order-isomorphic to the graphical representation of a permutation -just delete blank
rows and columns from the diagram. In a diagram we say that a pin p separates the set
E from the set F when E and F lie on different sides from either a horizontal line going
through p or a vertical one.

Definition 2.13. Let σ ∈ Sn be a permutation. A pin representation of σ is a sequence
of points (p1, . . . , pn) of the graphical representation of σ (covering all the points in it)
such that each point pi for i ≥ 3 satisfies both of the following conditions

• the externality condition: pi lies outside of the bounding box of {p1, . . . , pi−1}

•







either the separation condition: pi must separate pi−1 from {p1, . . . , pi−2},

or the independence condition: pi is not on the sides of the bounding box

of {p1, . . . , pi−1}.
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We say that a pin satisfying the externality and the independence (resp. separation)
conditions is an independent (resp. separating) pin. An example of a pin representation
is given in Figure 3.

Figure 3 A pin representation of permutation σ = 1 8 3 6 4 2 5 7. All pins p3, . . . , p8 are
separating pins, except p6 which is an independent pin.
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Pin representations in our sense are more restricted than pin sequences in the sense of
[16, 18]: a pin representation covers all the points of the permutation, whereas this is not
required for a pin sequence. This difference justifies that we use the word representation
instead of sequence. Nevertheless our proper pin representations coincide with the proper
pin sequences defined in [16].

Definition 2.14. Let σ ∈ Sn be a permutation. A proper pin representation of σ is a
sequence of points (p1, p2, . . . , pn) of the graphical representation of σ such that each point
pi satisfies both the separation and the externality conditions.

Not every permutation has a pin representation, see for example σ = 7 1 2 3 8 4 5 6. We
call pin-permutation any permutation that has a pin representation. The set of pin-
permutations is a permutation class (see Lemma 3.3). Pin-permutations correspond to
the permutations that can be encoded by pin words in the terminology of [16, 18]. In
that paper the authors conjecture the following result:

Conjecture 2.15. [18] The class of pin-permutations has a rational generating function.

In the sequel we prove this conjecture and exhibit the generating function of pin-
permutations. We first study some properties of pin representations.

2.3 Some properties of pin representations

We first give general properties of pin representations and define special families of pin-
permutations.

Lemma 2.16. Let (p1, . . . , pn) be a pin representation of σ ∈ Sn. If pi is an independent
pin, then {p1, . . . , pi−1} is a block of σ.

Proof. Neither pi nor the pins pj where j > i separate {p1, . . . , pi−1}. The former comes
from the independence of pi and the latter from the definition of pin representations.
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Lemma 2.17. Let (p1, . . . , pn) be a pin representation of σ ∈ Sn. Then for each i ∈
{2, . . . , n − 1}, if there exists a point x on the sides of the bounding box of {p1, . . . , pi},
then it is unique and x = pi+1.

Proof. Consider the bounding box of {p1, p2, . . . , pi} and let x be a point on the sides of
this bounding box. Suppose without loss of generality that x is above the bounding box.
By definition of the bounding box, and since it contains at least two points, x separates
{p1, . . . , pi} into two sets S1, S2 6= ∅. Now, there exists l ≥ i such that x = pl+1. Suppose
that l > i. The bounding box of {p1, . . . , pl} contains the one of {p1, . . . , pi} but does
not contain x, and thus x is still above it. Consequently, x = pl+1 does not satisfy the
independence condition. It must then satisfy the separation condition, so that x separates
pl from p1, . . . , pl−1. But S1, S2 ⊂ {p1, . . . , pl−1} and x separates S1 from S2 leading to a
contradiction.

Any pin representation can be encoded into words on the alphabet {1, 2, 3, 4} ∪
{R,L, U,D} called pin words associated to the pin representation of the permutation
and defined below.

Definition 2.18. Let (p1, p2, . . . , pn) be a pin representation. For any k ≥ 2, the pin pk+1

is encoded as follows.

• If it separates pk from the set {p1, p2, . . . , pk−1}, then it lies on one side of the
bounding box. And pk+1 is encoded by L,R, U,D in the pin word depending on its
position as shown in Figure 1.

• If it respects the externality and independence conditions and therein lies in one of
the quadrant 1, 2, 3, 4 defined in Figure 1, then this numeral encodes pk+1 in the pin
word.

To encode p1 and p2: choose an arbitrary origin p0 in the plane such that it extends the
pin representation (p1, p2, . . . , pn) to a pin sequence (p0, p1, . . . , pn); then encode p1 with
the numeral corresponding to the position of p1 relative to p0 and encode p2 according to
its position relative to the bounding box of {p0, p1}.

Notice that because of the choice of the origin p0, a pin representation is not associated
with a unique pin word, but with at most 8 pin words (see Figure 4). The set of pin words
is the set of all encodings of pin-permutations. Some pin words associated with the pin
representation of σ = 1 8 3 6 4 2 5 7 given in Figure 3 are 11URD3UR, 3RURD3UR, . . .

Definition 2.19. A pin word w = w1 . . . wn is a strict pin word if and only if only w1 is
a numeral.

Note that in a strict pin word w = w1 . . . wn, for any 2 ≤ i ≤ n − 1, if wi ∈ {L,R},
then wi+1 ∈ {U,D} and if wi ∈ {U,D}, then wi+1 ∈ {L,R}.

A strict pin word is the encoding of a proper pin representation. A proper pin rep-
resentation corresponds to several pin words among which some are strict, but not all of
them.
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Figure 4 The two letters in each cell indicate the first two letters of the pin word encoding
(p1, . . . , pn) when p0 is taken in this cell.
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The graphical representations of permutations of size n are naturally gridded into n2

cells. We define the distance dist between two cells c and c′ as follows: dist(c, c′) = 0 if
and only if c = c′, and dist(c, c′) = minc′′∈N (c′) dist(c, c

′′) + 1 where N (c′) denotes the set
of neighboring cells of c′, i.e., the cells that share an edge with c′.

Lemma 2.20. Let (p1, . . . , pn) be a proper pin representation of σ ∈ Sn. Then, for 2 <
i < n, the pin pi is at a distance of exactly 2 cells from the bounding box of {p1, . . . , pi−1}.

Proof. From Definition 2.14 of proper pin representations, for 2 ≤ i < n, pi+1 separates pi
from {p1, . . . , pi−1}, therefore pi is at a distance of at least 2 cells from the bounding box
of {p1, . . . , pi−1}. Moreover from Definition 2.14 again and Lemma 2.17, for 2 < i < n,
pi is on the sides of the bounding box of {p1, . . . , pi−1} and pi+1 is the only point on the
sides of the bounding box of {p1, . . . , pi}. Thus, for 2 < i < n, pi is at distance exactly 2
cells from the bounding box of {p1, . . . , pi−1}.

Lemma 2.21. Let p = (p1, . . . , pn) be a proper pin representation of σ ∈ Sn. If the pin
pi is at a corner of the bounding box of {p1, . . . , pj} with j ≥ i, then i = 1 or 2.

Proof. If the pin pi is at a corner of the bounding box of {p1, . . . , pj} for some j ≥ i,
then pi is not on the sides of the bounding box of {p1, . . . , pi−1}. As p is a proper pin
representation, this happens only when i = 1 or 2.

2.4 Oscillations and quasi-oscillations

Amongst simple permutations some special ones, called oscillations and quasi-oscillations
in the sequel, play a key role in the characterization of substitution decomposition trees
associated with pin-permutations (see Theorem 3.1). Notice that oscillations have been
introduced in [18] and are also known under the name of Gollan permutations in the
context of sorting by reversals [30].

Following [18], let us consider the infinite oscillating sequence defined (on N \ {0, 2}
for regularity of the graphical representation) by ω = 4 1 6 3 8 5 . . . (2k+2) (2k−1) . . ..
Figure 5 shows the graphical representation of a prefix of ω.

Definition 2.22 (oscillation). An increasing oscillation of size n ≥ 4 is a simple permu-
tation of size n that is contained as a pattern in ω. The increasing oscillations of smaller
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size are 1, 21, 231 and 312. A decreasing oscillation is the reverse2 of an increasing
oscillation.

Figure 5 The infinite oscillating sequence, an increasing oscillation of size 10 and a
decreasing oscillation of size 11, with a pin representation for each.

. .
.

2 4 1 6 3 8 5 10 7 9 9 11 7 10 5 8 3 6 1 4 2

It is a simple matter to check that there are two increasing (resp. decreasing) oscilla-
tions of size n for any n ≥ 3. Notice also that three oscillations are both increasing and
decreasing, namely 1, 2 4 1 3 and 3 1 4 2.

The following lemmas state a few properties of oscillations that can be readily checked.

Lemma 2.23. Oscillations are pin-permutations and any increasing (resp. decreasing)
oscillation has proper pin representations whose starting points can be chosen in the top
right or bottom left hand corner (resp. top left or bottom right hand corner).

Lemma 2.24. In any increasing oscillation ξ of size n ≥ 4, the first (resp. last) three
elements form an occurrence of either the pattern 231 or the pattern 213 (resp. 132 or
312). In Table 1, these are referred to as the initial pattern and the terminal pattern of
ξ.

We further define another special family of permutations: the quasi-oscillations.

Definition 2.25 (quasi-oscillations). An increasing quasi-oscillation of size n ≥ 6 is
obtained from an increasing oscillation ξ of size n− 1 by the addition of either a minimal
element at the beginning of ξ or a maximal element at the end of ξ, followed by a flip of
an element of ξ according to the rules of Table 1. The element that is flipped is called the
outer point of the quasi-oscillation. We also define the auxiliary substitution point to be
the point added to ξ, and the main substitution point according to Table 1.3

Furthermore, for n = 4 or 5, there are two increasing quasi-oscillations of size n:
2 4 1 3, 3 1 4 2, 2 5 3 1 4 and 4 1 3 5 2. Each of them has two possible choices for its main
and auxiliary substitution points. See Figure 6 for more details. We do not define the
outer point of a quasi-oscillation of size less than 6.

Finally, a decreasing quasi-oscillation is the reverse of an increasing quasi-oscillation.

2The reverse of σ = σ1σ2 . . . σn is σr = σn . . . σ2σ1

3The first line of Table 1 reads as: If a maximal element is added to ξ, ξ starts (resp. ends) with a
pattern 231 (resp. 132), then the corresponding increasing quasi-oscillation β is obtained by flipping the
left-most point of ξ to the right-most (in β), and the main substitution point is the largest point of ξ.
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Table 1 Flips and main substitution points in increasing quasi-oscillations.

Element Initial Terminal Flipped . . . which Main
inserted pattern of ξ pattern of ξ element . . . becomes substitution point
max 231 132 left-most right-most largest
max 231 312 left-most right-most right-most
max 213 132 smallest largest largest
max 213 312 smallest largest right-most
min 231 132 largest smallest left-most
min 231 312 right-most left-most left-most
min 213 132 largest smallest smallest
min 213 312 right-most left-most smallest

Figure 6 The graphical representations of the quasi-oscillations of size 4, 5 and 6. The
points marked M , A and O represent respectively the main substitution point, the aux-
iliary substitution point, and the outer point (when defined) of each quasi-oscillation.

Size Increasing quasi-oscillations Decreasing quasi-oscillations
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M

A
3 1 4 2
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M
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4 1 3 5 2

M
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6
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A

O
3 6 2 4 1 5

M
A

O

2 6 3 5 1 4
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O

4 1 5 3 6 2

M
A

O

5 1 4 2 6 3

M
A

O

5 3 1 4 6 2

M

A

O

5 1 3 6 4 2

M

A

O

The following properties of quasi-oscillations can be readily checked.

Lemma 2.26. There are four increasing (resp. decreasing) quasi-oscillations of any size
n ≥ 6. This also holds for n = 4 or 5 when oscillations are counted with a multiplicity
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equals to the number of pairs of main and auxiliary substitution points.

Lemma 2.27. Every quasi-oscillation is a simple pin-permutation.

Proof. This is readily checked for size n = 4 or 5. The flips defining quasi-oscillations
are chosen in a way that enforces simplicity. One pin representation of a quasi-oscillation
can be obtained starting with its main substitution point, then reading the auxiliary
substitution point, and proceeding through the quasi-oscillation using separating pins at
any step, to finish with the outer point, when defined. See an example on Figure 7.

Figure 7 Two examples of quasi-oscillations of size 10 and 11. The points marked M ,
A and O represent respectively the main and auxiliary substitution points, and the outer
point.

2 10 4 1 6 3 8 5 7 9

M

A

O

4 1 6 3 8 5 10 7 9 11 2

M

A

O

We can notice that the direction (increasing or decreasing) of a quasi-oscillation of
size n ≥ 6 is the same direction that is defined by the alignment of M and A, its main
and auxiliary substitution points. Therefore, we can equivalently express the direction
of a quasi-oscillation as shown in Definition 2.28, which also allows us to generalize it to
quasi-oscillations of size 4 and 5.

Definition 2.28. A quasi-oscillation together with a choice of the main and auxiliary
substitution points is said to be increasing (resp. decreasing) when these points form an
occurrence of the pattern 12 (resp. 21).

3 Characterization of the decomposition tree

Permutations are in one-to-one correspondence with decomposition trees. In this section
we give some necessary and sufficient conditions on a decomposition tree for it to be
associated with a pin-permutation through this correspondence.

Theorem 3.1. A permutation σ is a pin-permutation if and only if its substitution de-
composition tree Tσ satisfies the following conditions:

(C1) any linear node labeled by ⊕ (resp. ⊖) in Tσ has at most one child that is not an
increasing (resp. decreasing) oscillation.
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(C2) any prime node in Tσ is labeled by a simple pin-permutation α and satisfies one of
the following properties:

– it has at most one child that is not a singleton; moreover the point of α corre-
sponding to the non-trivial child (if it exists) is an active point of α.

– α is an increasing (resp.decreasing) quasi-oscillation, and the node has exactly
two children that are not singletons: one of them expands the main substitution
point of α and the other one is the permutation 12 (resp. 21), expanding the
auxiliary substitution point of α.

3.1 Preliminary remarks

Let σ be a pin-permutation. Then σ has pin representations, but not every point of σ
can be the starting point for such a representation. Therefore we define:

Definition 3.2. An active point of a pin-permutation σ is a point that is the starting
point of some pin representation of σ.

We now recall some basic properties of the set of pin-permutations.

Lemma 3.3 ([18]). The set of pin-permutations is a class of permutations. Moreover, if
p is a pin representation for some permutation σ, then for any π ≺ σ, there exists a pin
representation of π obtained from p, by keeping in the same order points pi that form an
occurrence of π in σ.

Instead of random patterns of a pin-permutation σ, we will often be interested in
patterns defined by blocks of σ and state a restriction of Lemma 3.3 to this case:

Corollary 3.4. If σ is a pin-permutation, then the permutation associated to every block
of σ is also a pin-permutation.

The following remark will be used many times in the next proofs:

Remark 3.5. Let σ be a pin-permutation whose substitution decomposition tree has a root
V , and B the block of σ corresponding to a given child of V . If in a pin representation
of σ there exist indices i < j < k with pi ∈ B, pj ∈ B, and pk is a pin separating pi from
pj, then pk also belongs to B.

Assume σ is a pin-permutation and consider nodes in the substitution decomposition
tree Tσ of σ. They are roots of subtrees of Tσ corresponding to permutations that are
blocks of σ, and that are consequently pin-permutations. As a consequence, for finding
properties of the nodes in the substitution decomposition tree of a pin-permutation, it
is sufficient to study the properties of the roots of the substitution decomposition trees
of pin-permutations. Before attacking this problem, we introduce a definition useful to
describe the behavior of a pin representation of σ on the children of the root of Tσ.
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Definition 3.6. Let σ be a pin-permutation and p = (p1, . . . , pn) be a pin representation
of σ. For any set B of points of σ, if k is the number of maximal factors pi, pi+1, . . . , pi+j

of p that contain only points of B, we say that B is read in k times by p. In particular
B is read in one time by p when all points of B form a single segment of p.

Let σ be a pin-permutation whose substitution decomposition tree has a root V , and
p = (p1, . . . , pn) be a pin representation of σ. We say that some child B of V is the k-th
child to be read by p if, letting i be the minimal index such that pi belongs to B, the points
p1, . . . , pi−1 belong to exactly k − 1 different children of V .

Mostly, we use Definition 3.6 on sets B that are blocks of σ, and even more precisely
children of the root of the substitution decomposition tree of σ.

3.2 Properties of linear nodes

We analyze first the structure of pin representations of any pin-permutation σ whose
substitution decomposition tree has a root that is a linear node V and give a precise
description of the children of V in Lemma 3.7.

Lemma 3.7. Let σ be a pin-permutation whose substitution decomposition tree has a
root that is a linear node V labeled by ⊕ (resp. by ⊖). Then at most one child of V is
not an ascending (resp. descending) oscillation, it is the first child that is read by a pin
representation of σ, and all other children are read in one time.

Proof. Assume that the node V has label ⊕, the other case being similar. Let T1, . . . , Tk

be the children of V , from left to right. Let p be a pin representation of σ. Denote by
Ti0 the first child that is read by p. Let i be the minimal index such that pi belongs
to Tℓ+1 (for some ℓ ≥ i0). Suppose pi−1 as just been read by p. Then the points of
Tℓ+1 are in the top right hand corner with respect to the points that have already been
read by p (including at least one point of Ti0). Therefore, they correspond to pins that
are encoded by a symbol 1, U or R in a pin word. Furthermore, the only point that is
encoded by the symbol 1 is the first point of Tℓ+1 that is read by p. Indeed, because
Tℓ is ⊕-indecomposable, any other symbol 1 would mean that p starts the reading of an
other child Tj with j > ℓ + 1. Consequently, Tℓ+1 is a permutation represented by a pin
word of the form either 1URUR . . . or 1RURU . . ., that is to say, Tℓ+1 is an ascending
oscillation. So from Lemma 2.17, Tℓ+1 is read in one time by p. In the same way, we can
prove that any Tℓ−1 with ℓ ≤ i0 is a permutation encoded by a pin word of the form either
3LDLD . . . or 3DLDL . . ., or in other words, that Tℓ−1 is again an ascending oscillation
and is read in one time by p. As a conclusion, the only child of V that might not be an
ascending oscillation is the first child that is read by a pin representation of σ, and all
other children are read in one time.

3.3 Properties of prime nodes

We analyze next the structure of pin representations of any pin-permutation σ whose
substitution decomposition tree has a root that is a prime node V . We will often use the
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following reformulation of Remark 2.9 (p.5) in terms of substitution decomposition trees
in the proofs of this subsection.

Remark 3.8. Let σ be a permutation whose substitution decomposition tree has a root V
that is a prime node. There is no block in σ that intersects several children of V , except
σ itself.

We start with proving a technical lemma:

Lemma 3.9. Let σ be a pin-permutation whose substitution decomposition tree has a
root V that is a prime node, and let p = (p1, . . . , pn) be a pin representation of σ. If an
independent pin pi is the first point of a child B of V to be read by p, then B is either the
first or the second child of V that is read by p.

Proof. Assume that B is the k-th child of V to be read by p, with k 6= 1, 2, and denote by
pi the first point of B that is read by p. Proving that pi satisfies the separation condition
(and therefore does not satisfy the independence condition) will give the announced result.
Denote by C the (k − 1)-th child of V that is read by p, and by D the (k− 2)-th child of
V that is read by p. Since B is at least the third child of V that is read by p, C and D are
well defined. Now, if pi were an independent pin, then from Lemma 2.16 {p1, . . . , pi−1}
would form a block in σ intersecting more than one child of V (at least children C and D)
but not all of them (not B). This contradicts Remark 3.8 and concludes the proof.

Consider a pin-permutation σ whose substitution decomposition tree has a root V that
is a prime node. Lemma 3.11 is dedicated to the characterization of the restricted cases
where a child of a prime node V can be read in more than one time (see Example 3.10).

Example 3.10. Let σ = 5 4 1 2 6 3 be the permutation whose substitution decomposition
tree is given in Figure 8. There exist two pin representations for σ depending on the order
of p1 and p2, and they both read the leftmost child of V in two times (see Figure 8).

Figure 8 The decomposition tree Tσ and a pin representation p of σ = 5 4 1 2 6 3.

3 1 4 2

⊖ ⊕

p6

p3
T1

p1 p2
T2

p5
T3

p4
T4

Lemma 3.11. Let σ be a pin-permutation whose substitution decomposition tree has a
prime node V as root and let p = (p1, . . . , pn) be a pin representation of σ.

(i) If some child B of V is read in more than one time by p, then it is read in exactly
two times, the second part being the last point pn of p.
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(ii) At most one of the children of V can be read in two times by p and it is the first or
the second child of V to be read by p.

Proof. We write the pin representation p as p = (p1, . . . , pi, . . . , pj, pj+1, . . . , pk, . . . , pn)
where pi is the first point of B that is read by p, all the pins from pi to pj are points of B,
pj+1 does not belong to B, and pk is the first point belonging to B after pj+1. These points
are well-defined since B is read by p in more than one time. To obtain the announced
result, we need to prove that k = n.

For k ≤ h ≤ n, ph is a separating pin. Otherwise ph would be an independent pin
and from Lemma 2.16 we would have a block p1, . . . , ph−1 in σ intersecting more than one
child of V (namely B and the block pj+1 belongs to), contradicting Remark 3.8 since V
is prime. Moreover we can prove inductively that ph ∈ B for k ≤ h ≤ n. This is true
for h = k. Consider h ∈ {k + 1, . . . , n}. By induction hypothesis, ph−1 belongs to B. As
ph satisfies the separation condition, it separates ph−1 from {pi, . . . , pj} ⊂ {p1, . . . , ph−2}
and therefore belongs to B from Remark 3.5. As a conclusion, all points pk, pk+1, . . . , pn
are points of B.

Moreover at most one child of V is discovered before pi. Indeed it is the case when i ≤ 2
and when i ≥ 3, we prove that pi is an independent pin. Otherwise pi separates pi−1 from
{p1, . . . , pi−2} and therefore must all other points of B, contradicting Lemma 2.17. We
conclude with Lemma 3.9 that, since pi is the first point of B that is read, at most one child
of V appears before B. Consequently since any simple permutation is of size at least 4 (see
p.4) and p can be decomposed as p = ( p1, . . . , pi−1

︸ ︷︷ ︸

at most one child

, pi, . . . , pj
︸ ︷︷ ︸

∈B

, pj+1, . . . , pk−1
︸ ︷︷ ︸

/∈B

, pk, . . . , pn
︸ ︷︷ ︸

∈B

),

there are, among pj+1, . . . , pk−1, some points belonging to at least two different children
of V , both different from B. Let us denote by C the child of V pk−1 belongs to, and by D
another child of V that appears in pj+1, . . . , pk−1. As pk separates pk−1 from the previous
pins, B (through pk) separates C (to which pk−1 belongs) from D (to which some other
pin before pk−1 belongs). But then any point of B that has not yet been read, namely
any point of {pk, . . . , pn}, is on the sides of the bounding box of {p1, . . . , pk−1}. Since
from Lemma 2.17 (p. 8) there is at most one point on the sides of this bounding box, we
conclude that k = n.

At that point, given a pin-permutation σ whose substitution decomposition tree Tσ

has a prime root, we know how a pin representation of σ proceeds through the children
of this root. In Lemma 3.12 we tackle the problem of characterizing those children more
precisely.

Lemma 3.12. Let σ be a pin-permutation whose substitution decomposition tree has a
prime root V and p = (p1, . . . , pn) be a pin representation of σ.

(i) V has at most two children that are not singletons.

(ii) If there exists a child B of V that is not a singleton and that is not the first child
of V to be read by p then B contains exactly two points, the first point of B read by
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p is an independent pin, the second one is pn. Moreover the first child of V read by
p is read in one time and B is the second child of V read by p.

Proof. Suppose there exists a child B of V which is not a singleton, and such that B is
not the first child of V to be read by p. We denote by pi the first point of B that is read
by p. By hypothesis, i ≥ 2 and i 6= n.

Suppose that pi is a separating pin. Then necessarily, i ≥ 3 (it is impossible for pi
to separate a set of less than 2 points), and pi is on the sides of the bounding box of
{p1, . . . , pi−1}. But since pi is the first point of B that is read, any point of B is also
on the sides of this bounding box. With Lemma 2.17, this contradicts that B is not a
singleton. Consequently, pi is an independent pin.

By Lemma 3.9, and since we assumed it is not the first, B is the second child of V
to be read by p. Let us denote by C the first child of V that is read by p. Because V is
prime, there must be a point in σ, belonging to another child D of V , that separates child
B from child C of V . This point separates in particular pi from p1, and it is necessarily
pi+1, since no pin after pi+1 can separate p1 from pi. This proves that pi+1 /∈ B. With
Lemma 3.11(i), we get that either B = {pi} or B = {pi, pn}. Because B is not a singleton,
the latter holds.

Since B is read in two times, Lemma 3.11 ensures that the first child of V is read in
one time by p.

Finally, the first child of V read by p may not be a singleton, but by the above, every
other child of V that is not a singleton contains pn. Hence V has at most two children
that are not singletons.

3.4 Proof of Theorem 3.1: necessary condition

With the previous technical lemmas, we prove in this subsection that conditions (C1) and
(C2) of Theorem 3.1 (p.13) are necessary conditions on the substitution decomposition
tree Tσ of σ for σ to be a pin-permutation.

Let σ be a pin-permutation whose substitution decomposition tree is Tσ. Any node V
in Tσ is the root of some subtree T of Tσ. Moreover, T is the substitution decomposition
tree Tπ of some permutation π ≺ σ, and π is a pin-permutation by Corollary 3.4 (p.13).
Consequently, we only need to prove that:

• if V is a linear node, condition (C1) is satisfied by the root of Tπ,

• if V is a prime node, condition (C2) is satisfied by the root of Tπ.

When V is a linear node, we conclude thanks to Lemma 3.7 (p.14).
So, let us assume that V is a prime node, labeled by a simple permutation α. With

Lemma 3.3 (p.13), it is immediate to prove that the simple permutation α labeling node
V is a simple pin-permutation, since it is a pattern of π. By Lemma 3.12, V has at most
two children that are not singletons. If all children of V are singletons, condition (C2) is
satisfied.
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Assume V has exactly one child B that is not a singleton, and consider a pin repre-
sentation p = (p1, . . . , pn) of π. We need to prove that this child expands an active point
of α. If B is the first child of V to be read by p, then π contains an occurrence of α in
which B is represented by the first point p1 of p. Hence by Lemma 3.3 there exists a pin
representation for α whose first point, active for α by Definition 3.2, is the one represent-
ing B. When p does not start with reading B, we apply Lemma 3.12: B contains exactly
two points, the first one read in p is p2 (read just after the first child read by p, which
is a singleton – hence p1 – by hypothesis) and the second one is pn. Observing that the
first two points in a pin representation play symmetric roles, it does not matter in which
order there are taken: a consequence is that (p2, p1, p3, . . . , pn) is another admissible pin
representation for π and an occurrence of α in π is composed of all points of p except pn.
Therefore (p2, p1, p3, . . . , pn−1) is a pin representation for α in which B is represented by
p2 and thus B expands an active point of α.

Let us now assume that node V has exactly two children that are not singletons.
Lemma 3.12 shows that any pin representation p = {p1, . . . , pn} of π is composed as
follows:

• the first child of V to be read by p is one of the non-trivial children, denoted by C,
the other one denoted by B consisting of two points,

• C is read in one time by p,

• the first point of B read by p is an independent pin,

• the second and last point of B read by p is pn.

Without loss of generality (that is to say up to symmetry), we can assume that B is
in the top right hand corner with respect to C. This situation is represented on Figure 9.

Figure 9 Permutation π around its two non-trivial children B and C.

B

C

Bounding box
when p has read C

and the first point of B

acceptable

not acceptable

If the block B contains the permutation 21, then the second point of B would be on the
sides of the bounding box when p has read C and the first point of B, and by Lemma 2.17
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(p.8) this second point of B would have to be read just after the first one contradicting the
primality of V (since a prime node has at least four children). Consequently, B contains
the permutation 12.

Between the two points of B, p reads all the points of π that correspond to trivial
children of V . Because V is prime, from Lemma 2.16 (p.7) and Remark 3.8 (p.15) all of
these points are separating pins and there are at least two of them. There are four possible
positions for the first such pin that is read by p, but only two of them are acceptable since
we need α to be simple. Indeed, choosing the up or right pin on Figure 9 (pins that are
indicated as not acceptable) would imply that the second point of B is on the sides of
the bounding box, so it has to be taken now, and since it is the last point of p, the pin
representation stops, contradicting as before the primality of V . Therefore we can assume
that the first pin after the first point of B is the one in the top left hand corner of C, the
other possible one leading to a symmetric configuration. The pin representation is then
an alternation of down and left pins, until pn−1 which is an up or right pin.

Consequently there is only one possible way of putting the pins corresponding to the
trivial children of V that does not contradict that α is simple, nor that B contains two
points. This only possible configuration is represented on Figure 10, and it corresponds to
the case in which α is a quasi-oscillation, with C expanding its main substitution point,
and B expanding its auxiliary substitution point. Moreover, if the quasi-oscillation is
increasing (resp. decreasing), then B contains the permutation 12 (resp. 21). The reason
is that, by Definition 2.28, the direction defined by the alignment of blocks B and C is
the same as the direction of the quasi-oscillation.

Figure 10 The only configuration (up to symmetry) of a pin-permutation whose root is
a prime node with two non trivial children.

B

pn

C

··
·

pn−2

pn−1

This concludes the proof that conditions (C1) and (C2) are necessary conditions on a
permutation σ for σ to be a pin-permutation.

3.5 Proof of Theorem 3.1: sufficient condition

We can now end the proof of Theorem 3.1 by proving that conditions (C1) and (C2) are
sufficient for a permutation σ to be a pin-permutation. In the following we prove by
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induction on the size of σ that a permutation satisfying conditions (C1) and (C2) is a
pin-permutation. Recall that Tσ denotes the substitution decomposition tree of σ. Notice
that for σ = 1, conditions (C1) and (C2) are vacuously true. The pin representation
with only one pin is a pin representation for σ. Assume now that |σ| > 1, and that any
permutation π such that |π| < |σ| satisfying conditions (C1) and (C2) is a pin-permutation.
We distinguish two cases, according to the type (linear or prime) of the root of Tσ.

When the root of Tσ is a linear node, consider σ = ⊕[σ(1), σ(2), . . . , σ(k)], without loss of
generality, and assume that σ satisfies (C1) and (C2). Since the decomposition trees of the
(σ(i))1≤i≤k are subtrees of Tσ, we get that the (σ(i))1≤i≤k also satisfy conditions (C1) and
(C2). We can use the induction hypothesis on the (σ(i))1≤i≤k, and obtain that they are all
pin-permutations. Moreover, condition (C1) holds for the root of Tσ, and we deduce that
at most one of the (σ(i))1≤i≤k is not an increasing oscillation. We define i0 as the index
such that σ(i0) is not an increasing oscillation, if it exists. Otherwise, we can pick any
integer i0 ∈ [1..k]. Since σ(i0) is a pin-permutation, it admits a pin representation p(i0).
By Lemma 2.23 (p.10), for any i < i0 (resp. any i > i0), there exist pin representations
p(i) of σ(i) (which is an increasing oscillation) whose origin is in the top right hand corner
(resp. in the bottom left hand corner). Now p = p(i0)p(i0−1) . . . p(1)p(i0+1) . . . p(k) is a pin
representation for σ, proving that σ is a pin-permutation. We can remark that many
other pin representations p for σ could have been defined from the (p(i))1≤i≤k. Namely,
p = p(i0)w with w any shuffle of p(i0−1) . . . p(1) and p(i0+1) . . . p(k) is suitable.

When the root of Tσ is a prime node, consider σ = α[σ(1), σ(2), . . . , σ(k)] for a simple
permutation α, and assume that σ satisfies (C1) and (C2). As before, by induction
hypothesis, the (σ(i))1≤i≤k are all pin-permutations. We denote by p(i) a pin representation
of σ(i). Recall that every permutation σ(i) expands the point αi of α. Applying condition
(C2) to the root of Tσ, we also get that α is a pin-permutation. By condition (C2), at
most two permutations among σ(1), σ(2), . . . , σ(k) are not singletons.

When all permutations σ(1), σ(2), . . . , σ(k) are trivial , then σ = α, implying that σ is
a pin-permutation. When σ(i) is the only permutation that is not a singleton, then by
condition (C2) σ

(i) expands an active point of α. Thus, there exists a pin representation
p of α with p1 = αi. To get a pin representation for σ, we replace p1 in p with the pin
representation p(i) of σ(i). By exhibiting a pin representation for σ, we proved that σ is a
pin-permutation.

When two permutations among σ(1), σ(2), . . . , σ(k) are not trivial, then without loss of
generality α is an increasing quasi-oscillation, and among the two children that are not
singletons, one (say σ(i)) expands the main substitution point αi of α and the other one
(say σ(j)) is the permutation 12, expanding the auxiliary substitution point αj of α. Let
p be the pin representation of α with p1 corresponding to the main substitution point
and p2 to the auxiliary one. In order to get a pin representation for σ, we first remove
the first pin of p and replace it by the pin representation p(i) of σ(i). Then replace p2
with the point of σ(j) that is closest to the block σ(i). Because the two points expanding
αj follow the direction defined by the alignment of the main and auxiliary substitution
points of α, we can define the notion of the point of σ(j) closest to the block expanding
the main substitution point of α. Proceed reading all following points in p and finally
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read the second point of σ(j), which separates the last point read in p (the outer point
when |α| ≥ 6) from all the previous ones.

This finally gives a pin representation for σ, showing that σ is a pin-permutation and
thus ending the proof that conditions (C1) and (C2) are sufficient for a permutation to be
a pin-permutation.

In Section 5, we compute the generating function for the class of pin-permutations,
proving that it is rational. The proof is based on the characterization of the decompo-
sition trees of the pin-permutations, given in Theorem 3.1, and it uses standard tools in
enumerative combinatorics [24]. However, it requires to compute as a starting point the
generating function of the simple pin-permutations. Section 4 is dedicated to this goal.

4 Generating function of the simple pin-permutations

We introduce some more terminology here.

Definition 4.1. A pin representation p = (p1, p2, . . . , pn) is said to be a simple pin
representation and a pin word w = w1w2 . . . wn is said to be a simple pin word if the
permutation σ they encode is simple.

Notice that a simple pin representation is always a proper pin representation (see
Definition 2.14 and Lemma 2.16). However, not every proper pin representation (or strict
pin word) encodes a simple pin-permutation.

We shall be interested in characterizing the simple pin representations for enumerat-
ing them, in order to get the generating function of the simple pin-permutations. The
enumeration of simple pin representations will be done in Subsection 4.2. Although there
is not a one-to-one correspondence between simple pin representations and simple pin-
permutations, we can compute how many simple pin representations are associated with
a single simple pin-permutation. This will allow us to derive the enumeration of simple
pin-permutations from the one of simple pin representations in Subsection 4.3.

Before this, we start with important properties of the first two points of every proper
pin representation. This is presented in Subsection 4.1, together with relations between
strict pin words and proper pin representations (see Definitions 2.14 and 2.19).

4.1 Beginning of a pin representation of a simple pin-permutation

Definition 4.2. Let σ be a permutation given by its graphical representation. We say
that two points x and y of σ are (or that the pair of points (x, y) is) in knight position
when the distance between the points x and y is exactly 3 cells and the two points are
neither on the same row nor on the same column (see Figure 11).

Lemma 4.3. Let p = (p1, p2, . . . , pn) denote a proper pin representation of some permu-
tation σ. If |σ| > 2 the first two pins p1, p2 are in knight position.
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Figure 11 Knight position between two points.

Proof. By definition of proper pin representations, and since |σ| > 2, p3 separates p2 from
p1, and no other future pin separates p2 from p1. Thus p1 and p2 are only be separated
by p3. This proves that p1 and p2 are in knight position.

Lemma 4.4. Let σ be a simple pin-permutation and p = (p1, p2, . . . , pn) be one of its
simple pin representations. If two points pi and pj of σ are in knight position then {i, j}∩
{1, 2, n} 6= ∅.

Proof. First recall that as σ is simple, by Lemma 2.16 (p.7) every pin pi (i ≥ 3) separates
pi−1 from {p1, . . . , pi−2}. Consider the pin pi. We will be looking for all the points pj ,
with j < i, such that (pi, pj) are in knight position in σ. We want to prove that for each
such j, {i, j} ∩ {1, 2, n} 6= ∅. Assume i ≥ 3 and i < n, the claim being obviously true
for i = 1 or 2 or n. Without loss of generality, we suppose that pi separates the previous
pins from above as shown in Figure 12 and that pi−1 lies on the right of pi. The thick
rectangle represents the bounding box of {p1, . . . , pi−1}.

Figure 12 Pin representations where i < n in the proof of Lemma 4.4.

c′c

pi−1

pi pi+1

Since i < n, pi+1 separates pi from the previous pins, from the left or the right as
shown in Figure 12. Thus pi could only be in knight position with a previous pin pj in
one of the two gray cells c and c′.

There is a pin in c′: Only pi−1 can be in c′ and in that case it means that pi−1 is
either p1 or p2 otherwise from Lemma 2.21 it could not be at a corner of the bounding
box. Thus, there could be a pair of pins in knight positions between (p1, p2) or (p2, p3).

There is a pin in c: The pin in cmust be p1 or p2, otherwise it would separate vertically
two previous pins, one on its left and one on its right, inside the bounding box and the
only pin on its right is pi−1. Thus there could be a pair of pins in knight position between
pi and the pin in c, namely p1 or p2.

In all cases, {i, j} ∩ {1, 2, n} 6= ∅.

Definition 4.5. An active knight in a pin-permutation σ is an unordered pair of points
(x, y) in knight position that can be the first two points of a pin representation of σ.
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As a consequence of Lemma 4.3 the number of pin representations of a simple pin-
permutation depends on its number of active knights.

Lemma 4.6. In any simple pin-permutation σ, there are at most two active knights
except for the four permutations : 3 1 4 2, 2 4 1 3, 2 5 3 1 4 and 4 1 3 5 2 which have four
active knights. The simple pin-permutations of size at most 6 and their active knights are
represented on Table 2.

Table 2 The simple pin-permutations of size n ≤ 6 and their active knights.

n 1 active knight 2 active knights 4 active knights

4 2 4 1 3 3 1 4 2

5 2 4 1 5 3 3 1 5 2 4 3 5 1 4 2 4 2 5 1 3 2 5 3 1 4 4 1 3 5 2

6 2 5 1 4 6 3 2 5 3 1 6 4 2 5 3 6 1 4

2 6 4 1 5 3 3 1 6 4 2 5 3 5 1 4 6 2

3 6 1 4 2 5 3 6 4 1 5 2 4 1 3 6 2 5

4 1 6 3 5 2 4 2 6 3 1 5 4 6 1 3 5 2

5 1 3 6 2 4 5 2 4 1 6 3 5 2 4 6 1 3

5 2 6 3 1 4

2 4 1 6 3 5 2 4 6 3 1 5 2 5 1 3 6 4

2 6 3 5 1 4 2 6 4 1 3 5 3 1 4 6 2 5

3 1 5 2 6 4 3 6 2 4 1 5 4 1 5 3 6 2

4 6 2 5 1 3 4 6 3 1 5 2 5 1 3 6 4 2

5 1 4 2 6 3 5 2 6 4 1 3 5 3 1 4 6 2

5 3 6 1 4 2

For each n > 6, all simple pin-permutations of size n have exactly one active knight,
except twelve of them that have two active knights, and that are:

• the four oscillations of size n,

• the eight quasi-oscillations of size n.
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Proof. The results presented in Table 2 can be obtained by exhaustive examination.
Let σ be a simple pin-permutation of size n > 6 and let p = (p1, p2, . . . , pn) be a pin

representation of σ. By Lemma 4.3, the pair of points (p1, p2) is an active knight of σ. We
want to prove that every permutation with at least two active knights is an oscillation or
a quasi-oscillation. It can be easily checked that oscillations and quasi-oscillations have
exactly two active knights. Assume σ has more than one active knight, one of them being
(p1, p2). By Lemma 4.4 the second active knight could be either (p1, pi), (p2, pi) or (pi, pn),
for some i.

The second active knight is (p1, pi). Without loss of generality, consider p1 and p2 in
relative positions shown in Figure 13. Then there are seven different possible positions
for a point pi to be in knight position with p1 as shown in the figure. Positions 7 and 3
are in conflict (same row or same column) with point p2. A pin in position 1 creates an
interval with p2, which is impossible since σ is simple. Thus the only remaining possible
positions for pi are 2, 4, 5 and 6.

Figure 13 Knights between (p1, p2) and (p1, pi).

p1p2

2

4

1

7

3

56

• the pin pi is in 5: Let r be a pin representation associated with σ but which begins
with (p1, pi). (This pin representation exists as (p1, pi) = (r1, r2) is an active knight.)
Then r3 lies on the row between r1 and r2. By Lemma 2.20, r3 is at distance 2 of
the bounding box of {r1, r2}. It cannot lies to the left of it as it would be in the
same column as p2. Thus r3 is on the right side as shown in Figure 14. For the
same reason p3 lies below the bounding box of {p1, p2} as shown in the first schema
of Figure 14.

Then p4 has two different possible positions. It lies in the row separating p2 from p3,
at distance 2 of the bounding box of {p1, p2, p3} but is either on the right or on the
left of it (see Figure 14). If it lies on the right then the six points {p1, p2, p3, p4, pi, r3}
form a permutation of size 6, or an interval. This contradicts that σ is simple and
n > 6. So p4 lies on the left. Then we can build a pin representation by alternating
left and down pins until we put a right or a up pin. It cannot be an up pin as
it will not respect the distance 2 condition with the bounding box of the previous
points (otherwise it would be in the same row as pi). If it is a right pin, it lies in
the column separating pi = r2 from r3 and thus is r4. But in that case, reading
the pin representation r, r4 is not at distance 2 of the bounding box of {r1, r2, r3}
contradicting Lemma 2.20.

• the pin pi is in 4: By similar arguments, it implies that the permutation is of size
strictly less than 6.
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Figure 14 Different cases for active knight (p1, pi).
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• the pin pi is in 2: p3 lies in the column between p1 and p2 at distance two of the
bounding box of {p1, p2}. It cannot lie below this bounding box as it would form
an interval with p1, p2, pi. Therefore it is above as shown in the second schema of
Figure 14. Then there could be a pin representation made of alternating left and
up pins until we have a right or down one at position k. But then, pi separates this
pin from the preceding ones and must be pk+1. At that stage, {p1, . . . , pk+1} forms
an interval, and thus i = k+1 = n. In that case we have a simple permutation with
two active knights, which is actually a quasi-oscillation.

• the pin pi is in 6: Then again σ is a quasi-oscillation.

The second active knight is (p2, pi). Considering that (p2, p1, p3, . . . , pn) is another pin
representation for σ, this case has already been solved by the previous one.

The second active knight is (pi, pn). Assume first that i ≥ 4. Consider then the
bounding box of {p1, . . . , pi−2}. Without loss of generality suppose that pi−1 is above this
bounding box and that pi is a right pin as shown in Figure 15. Notice that since pi−1

Figure 15 Case for active knight (pi, pn), i ≥ 4.

p1, . . . , pi−2

pi−1

pi

1 2

3

4

56

7

8

is an up pin, in the bounding box of {p1, . . . , pi−2} there is a point in every row and in
every column, except in the column of pi−1. As pn and pi form an active knight, pn must
be in one of the 8 positions drawn in the figure. But positions 3, 4, 5, 6, 8 are forbidden
as another point lies in the same row. Position 7 is also forbidden for pn since it is inside
the bounding box of {p1, . . . , pi−2}. If pn is in position 2, then it means that the pin
representation r, which begins the reading of σ by r1 = pi, r2 = pn, then proceeds with
r3 = pi−1 and therefore pi−1 must lie at distance 2 of the bounding box of {pi, pn} i.e.
in the rightmost column of the bounding box of {p1, . . . , pi−2} which is impossible. So
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that pn is in position 1. As previously, r3 = pi−1. Then r4 is a down pin, r5 a left one,
and r alternates between down and left pins. Every other direction would put the pin on
the sides of the bounding box of {p1, . . . , pi−2}, contradicting Lemma 2.17. Thus σ is an
oscillation.

Suppose now that i < 4: It can be proved in a similar way that there are no such
permutations (using that n > 6).

A consequence of Lemma 4.6 that will be used in Subsection 4.3 is the following:

Lemma 4.7. For any n > 6, there are 4 simple pin-permutations with 4 active points, 8
with 3 active points, and all others have 2 active points.

For smaller values of n we have (see Table 2 p.23):

• size 4: 2 permutations with 4 active points

• size 5: 2 with 5 active points and 4 with 4 active points

• size 6: 4 with 4 active points, 12 with 3 active points, and 16 with 2 active points

Proof. From Definitions 3.2 and 4.5, and using Lemma 4.3, we obtain easily that active
points in a simple pin-permutation σ are equivalently defined as points belonging to active
knights in σ. With Table 2, we obtain the results for n ≤ 6. For n > 6 it is enough to
notice that the two active knights in a quasi-oscillation have one point in common, whereas
they have no point in common in an oscillation. Lemma 4.6 then gives the announced
result.

We finish this subsection by a remark that establishes a link between the numbers of
simple pin representations and of simple pin-permutations.

Remark 4.8. Given a simple pin-permutation σ with one active knight marked, then
there is a unique pin representation p (up to exchanging p1 and p2) that reads σ starting
with the marked active knight.

This remark follows from Definition 2.14 and Lemma 2.17. It will be used in Subsection
4.3 to obtain the enumeration of simple pin-permutations, from the enumeration of simple
pin representations.

4.2 Enumeration of simple pin representations

As noticed before (see p.21), not all proper pin representations are simple. In [16],
Theorem 3.4 states (with our terminology) that every proper pin representation nearly
is a simple pin representation, that is to say, for each proper pin representation p =
(p1, p2, . . . , pn), either p, (p2, p3, . . . , pn) or (p1, p3, . . . , pn) is a simple pin representation.
Refining the proof of this theorem, we show that nearly all proper pin representations are
simple, and exhibit the ones that are not, which is a slightly different point of view.
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We also noticed that for any proper pin representation p = (p1, p2, p3, . . . , pn), then
p∼ = (p2, p1, p3, . . . , pn) is also a proper pin representation. But those two objects repre-
sent the exact same thing: we choose first the set of points {p1, p2}, and then a pin p3
that separates p1 and p2, and proceed with separating pins at any step. That is why in
the enumeration, we count the two pin representations p and p∼ as one unique object.

For the goal of enumeration pursued here, we sometimes use simple pin words instead
of simple pin representation. Lemma 4.9 shows that it is equivalent, up to a multiplicative
factor of 4. In Theorem 4.12 we count the proper pin representations that are not simple.
Then we easily get the enumeration of simple pin representations given in Theorem 4.13.

Lemma 4.9. For any proper pin representation p of size at least 3, there are exactly four
strict pin words that encode p (regardless of the order of p1 and p2). Those four strict pin
words correspond to four possible readings of the active knight {p1, p2}.

Proof. From Figure 4 p.9, we can deduce that, if we consider both possible orders (p1, p2)
and (p2, p1), there are 8 possible length two prefixes of strict pin words encoding p. Among
those, 4 end with R or L and the other 4 end with U or D. When p3 separates p1 and p2
from above or below (resp. from right or left) then only the former (resp. latter) can be
extended to a strict pin word encoding p.

Lemma 4.10. For any n ≥ 3 there are 2n proper pin representations of size n.

Proof. We prove that there are 2n+2 strict pin words of size n, Lemma 4.9 then giving the
desired result immediately. There are four possibilities for the first letter of a strict pin
word (1, 2, 3, 4), then again four for the second letter (U,D, L,R), and starting from the
third letter only two possibilities, depending on the letter just before (only U and D can
follow L or R, and conversely). This gives 2n+2 strict pin words of size n and concludes
the proof.

The proof of Theorem 4.12 follows the structure of the proof of Theorem 3.4 in [16].

Lemma 4.11. [16, Lemma 3.3] In a proper pin representation p = (p1, p2, . . . , pn), for
any i ≥ 3, pi and pi+1 are separated either by pi−1 or by each of p1, . . . , pi−2.

Theorem 4.12. For any n ≥ 5 there are 16 proper pin representations of size n that are
not simple. The corresponding permutations are:

• the 8 quasi-oscillations with the auxiliary substitution point expanded by 12 or 21
(depending whether the quasi-oscillation is increasing or decreasing),

• 8 permutations obtained from the 4 oscillations by adding one element in their dia-
gram, in one of the two corners defining the diagonal which is the direction of the
oscillation.

For n = 4, only 8 proper pin representations are not simple. They correspond to the 8
permutations of the second item above.

Figure 16 gives a graphical view of the proper pin representations that are not simple.
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Figure 16 The two kinds of permutations that are not simple, but can be read by proper
pin representations.
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Proof. Consider p = (p1, . . . , pn) (with n ≥ 4) a proper pin representation encoding a
permutation σ. Assume that σ is not simple. Then there exists a non-trivial interval in
σ. We choose such an interval M ⊂ {p1, . . . , pn}, with the additional property that M is
minimal (it does not contain any intervals except the singletons). M containing at least
two points, we can pick i and j, with i < j such that {pi, pj} ⊆ M . We choose j minimal
among all possible values.

If i < j < n, then {pj+1, . . . , pn} ⊂ M , since all these pins separate two points
belonging to M . With Lemma 4.11, since j is minimal, we get that {p1, . . . , pj−2} ⊂ M ,
unless i = j−1. In this latter case, Lemma 4.11 and the minimality of j imply that j ≤ 3,
and we will consider this case later. We focus on the former case where {p1, . . . , pj−2} ⊂
M . By minimality of j, {p1, p2, . . . , pj−2} contains exactly one point which is pi. Hence
i = 1, j = 3 and p2 /∈ M . All pins starting from p4 separate two points of M so that they
belong to M . But because p2 /∈ M for no k must p2 be one the sides of the bounding box
of {p1, p3, . . . , pk}. It forces M to represent an oscillation, and p2 to be in the corner of
the bounding box of M , close to where p1 and p3 are. This is illustrated on the first part
of Figure 16.

We are left to consider the cases where i = j − 1 for j = 2 or 3. If j = 2, then
{p1, p2} ⊂ M , and we get inductively that for any k ≥ 3, pk ∈ M , as it separates two
points of M . We obtain that M = {p1, p2, . . . , pn}, which is a contradiction as before. If
j = 3, then {p2, p3} ⊂ M , and we get in the same way that {p2, p3, . . . , pn} ⊂ M . The
point p1 is not in M or we would get a contradiction. Consequently we obtain as before
the situation depicted on the first schema of Figure 16 (with the indices of p1 and p2
exchanged): M is an oscillation and p1 is in the corner of M , close to p2 and p3.

If on the contrary j = n, then by minimality of j, M = {pi, pn}. In the case i = n−1,
Lemma 4.11 gives a contradiction. If 3 ≤ i ≤ n − 2, then pi separates {p1, . . . , pi−1},
whereas pn cannot, which is again a contradiction, so that i = 1 or 2. Without loss of
generality, assume i = 1, that is to say M = {p1, pn}. Then it is impossible that {p2, pn}
be also an interval: p3 separating p1 from p2 must also separate pn from p2. Consequently,
we can suppose that M = {p1, pn} is the only interval in σ or we would be done by one of
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the previous cases. This implies in particular that the diagram of {p2, . . . , pn} represents
a simple permutation, and consequently that n ≥ 5. Without loss of generality, we can
assume that p1 and pn are in decreasing order, from left to right, as represented on the
second part of Figure 16. Then pn can be either a right or a down pin. We will assume
that it is a down pin, which is not a restriction, up to symmetry. Then it forces all pins
from p2 to pn−2 to be above and to the left of p1, and pn−1 to be a right pin. Necessarily,
the pins from p3 to pn−2 are an alternation of left and up pins, so that σ has to be a quasi-
oscillation where the auxiliary substitution point is expanded, by 21 on the case depicted
on Figure 16. In general this point is expanded by 12 or by 21, and this is determined by
the nature (increasing or decreasing) of the quasi-oscillation.

Theorem 4.13. For any n ≥ 5 there are 2n − 16 simple pin representations of size n,
and there are 8 of size 4, none of size smaller than 4. Hence, the generating function of
simple pin representations is SiRep(z) = 8z4 + 32z5

1−2z
− 16z5

1−z
.

Proof. The first point is an immediate consequence of Lemma 4.10 and Theorem 4.12.
The second one results from elementary computations.

4.3 Enumeration of simple pin-permutations

Recalling that a simple pin representation corresponds to a simple pin-permutation with
one marked active knight (see Remark 4.8), the enumeration given in Theorem 4.13 can
also be seen as the enumeration of simple pin-permutations, in which each permutation
is counted with a multiplicity equal to its number of active knights. This is not exactly
the generating function that is needed for the enumeration of pin-permutation in Section
5. However, it allows us to compute the two generating functions that we will need:
the generating function of the simple pin-permutations (without multiplicity), and the
generating function of the simple pin-permutations with a multiplicity equal to the number
of its active points.

Theorem 4.14. The generating function of simple pin-permutations (without multiplic-
ity) is Si(z) = 2z4 + 6z5 + 32z6 + 128z7

1−2z
− 28z7

1−z
.

Theorem 4.15. The generating function of simple pin-permutations, with a multiplicity
equal to the number of active points, is SiMult(z) = 8z4 + 26z5 + 84z6 + 256z7

1−2z
− 40z7

1−z
.

Proof. We prove here both Theorems 4.14 and 4.15. Putting Theorem 4.13 and Lemma
4.6 together, we get that:

• for n = 4, there are 2 simple pin-permutations, each of which have 4 active knights,

• for n = 5, there are 2 simple pin-permutations with 4 active knights and 4 with 2
active knights,

• for n = 6, there are 16 simple pin-permutations with 2 active knights and 16 with
1 active knight,
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• for any n ≥ 7, there are 12 simple pin-permutations with 2 active knights and
2n − 16− 2× 12 = 2n − 40 simple pin-permutations with 1 active knight.

The last point uses Remark 4.8: the 12 simple pin-permutations with 2 active knights
count for a total of 2× 12 simple pin representations.

We obtain

Si(z) = 2z4 + (2 + 4)z5 + (16 + 16)z6 +
∑

n≥7

(12 + 2n − 40)zn

= 2z4 + 6z5 + 32z6 +
∑

n≥7

(2n − 28)zn

which finishes, after some easy computations, the proof of Theorem 4.14.
For Theorem 4.15, we need to examine the number of active points of simple pin-

permutations. With Lemma 4.7, we immediately obtain

SiMult(z) = (2× 4)z4 + (2× 5 + 4× 4)z5 + (4× 4 + 12× 3 + 16× 2)z6

+
∑

n≥7

(4× 4 + 8× 3 + (2n − 40)× 2)zn

= 8z4 + 26z5 + 84z6 +
∑

n≥7

(2n+1 − 40)zn

which concludes the proof of Theorem 4.15.

5 Generating function of the pin-permutation class

This section is dedicated to the computation of the generating function of the pin-
permutation class. Actually, we compute the generating function of the substitution
decomposition trees of pin-permutations, which is equivalent from Theorem 2.12.

5.1 Substitution decomposition trees of pin-permutations

We denote by S the set of substitution decomposition trees of pin-permutations and by
S(z) its generating function. Let us also denote by E+ (resp. E−) the set of substitution
decomposition trees of increasing (resp. decreasing) oscillations, and by N+ (resp. N−)
the substitution decomposition trees of pin-permutations that are not increasing (resp.
decreasing) oscillations, and whose root is not ⊕ (resp. ⊖). Notice that the set N+

(resp. N−) represents the trees that do not correspond to increasing (resp. decreasing)
oscillations, but that can however be the children of a linear node labeled ⊕ (resp. ⊖) in
the substitution trees of pin-permutations.

With α (resp. β+, resp. β−) being a generic notation for simple pin-permutations
(resp. increasing quasi-oscillations, resp. decreasing quasi-oscillations), we can represent
the characterization of Theorem 3.1 with the following equation:
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S = + ⊕

E+ E+ . . . E+

+ ⊕

E+ . . .

N+

. . . E+

+ ⊖

E− E− . . . E−

+ ⊖

E− . . .

N−

. . . E−

+ α

. . .

+ α

. . .

S \ { }

. . .

+ β+

. . .

S \ { }

. . . 12

+ β−

. . .

S \ { }

. . . 21

This equation comes from the fact that a permutation σ is a pin-permutation if and
only if its substitution decomposition tree Tσ satisfies one of the following conditions:

• Tσ is a singleton.

• The root of Tσ is a linear node (labeled by ⊕ for example) and all of its children are
increasing oscillations.

• The root of Tσ is a linear node (labeled by ⊕ for example) and all of its children are
increasing oscillations except one which belongs to N+.

• The case where the root of Tσ is a linear node labeled by ⊖ is similar to the two
previous points, with E+, N+ and increasing replaced by E−, N− and decreasing
respectively.

• The root of Tσ is a prime node labeled by a simple pin-permutation α and every
child is a leaf.

• The root of Tσ is a prime node labeled by a simple pin-permutation α and it has
exactly one child that is not a leaf, and which expands an active point (denoted by

) of α.

• The root of Tσ is a prime node labeled by an increasing quasi-oscillation β+ and it
has two children that are not leaves: one of them expands the main substitution
point (denoted ) of β+ and the other one is the permutation 12 expanding the
auxiliary substitution point (denoted ) of β+.

• The case where the root of Tσ is labeled by a decreasing quasi-oscillation β− is the
same as the preceding one except for the child 12 which should be replaced by 21.
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5.2 The basic generating functions involved

In the preceding decomposition, many generating functions are involved. In each case,
the + and − versions have the same generating function, therefore we use an unsigned
notation for both of them.

• E+, E−: This represents the sets of trees associated to oscillations (increasing or
decreasing). There are two different increasing (resp. decreasing) oscillations of each
size except for n = 1, 2 where there is only one. So that, the common generating
function E(z) of E+ and E− is: E(z) = z+z3

1−z
. Notice that E+

⋂
E− = { , T2413, T3142}.

• ⊕

E+ E+ . . . E+

, ⊖

E− E− . . . E−

: The common generating function is TE(z) = (E(z))2

1−E(z)
.

• ⊕

E+. . .

N+

. . .E+

, ⊖

E−. . .

N−

. . .E−

: This represents decomposition trees that have a

root labeled by ⊕ (resp. ⊖), with all of its children (it has at least two children)
corresponding to increasing (resp. decreasing) oscillations, except one which belongs
to N+ (resp. N−). Denoting TEN(z) the generating function for sequences of
increasing (resp. decreasing) oscillations, one of which is replaced by a tree of N+

(resp. N−), and N(z) the one for decomposition trees in N+ (resp. N−), we obtain:

TEN(z) =
2E(z)−E2(z)

(1− E(z))2
N(z)

• N+, N−: The class N+ (resp. N−) denotes the set of substitution decomposition
trees that do not correspond to increasing (resp. decreasing) oscillations and whose
roots are not labeled by ⊕ (resp. ⊖). From now on, we consider the case of N+

only, the case of N− being very similar. Since every oscillation of size at least 4
is simple, every element of size at least 4 in E+ is of the form α

. . .

for simple

pin-permutations α. From Definition 2.22, the permutations of size at most 3 in
E+ are 1, 21, 231 and 312, and the corresponding decomposition trees have a root
labeled by ⊖, except for 1 whose tree is of the form . Hence, the intersection of
E+ with the set of trees whose root is labeled ⊕ is empty. Consequently, we have:

N+ = S − E+ − ⊕

E+ E+ . . . E+

− ⊕

E+ . . .

N+

. . . E+

From the generating functions point of view, this gives:

N(z) = S(z)− (E(z) + TE(z) + TEN(z))

=
(z3 + 2z − 1)(z3 + S(z)z3 + 2S(z)z + z − S(z))

1− 2z + z2
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• β+, β−: We will denote by QE(z) the generating function of quasi-oscillations
counted with a multiplicity equal to their number of substitution points pairs. By
Definition 2.25, if n ≥ 6 there are four increasing (resp. decreasing) quasi-oscillations
of each size and for n < 6 (and of course n ≥ 4) there are only two such permutations
but with multiplicity 2, thus:

QE(z) =
4z4

1− z

Notice also that {β+}
⋂
{β−} = ∅ if we consider as in the generating function that

quasi-oscillations have fixed main and auxiliary substitution points.

5.3 The generating function of the class of pin-permutations

Before coming to the computation of S(z) some other terms of the equation need to be
considered.

• α

. . .

: These terms are enumerated by Si(z) defined in Theorem 4.14.

• α

. . .

S \ { }

. . .

: The root is a prime node and one of the active point is not a leaf.

Theorem 4.15 gives the generating function SiMult(z) of simple pin-permutations
counted according to their number of active points. Thus the generating function
for these terms is SiMult(z)(S(z)−z

z
).

• β+

. . .

S \ { }

. . .12

, β−

. . .

S \ { }

. . .21

: For these decomposition trees, the root is

labeled by an increasing (resp. decreasing) quasi-oscillation with fixed main and
auxiliary substitution points (enumerated by QE(z) defined above) and such that:

– in the main substitution point, we replace the leaf by the tree of a permutation
in S \ { }. This corresponds to the multiplication by S(z)−z

z
, and

– in the auxiliary substitution point, we replace the leaf by 12 (resp. 21). It
corresponds to the multiplication by z.

Thus we obtain that the generating functions for terms of the above shapes are

QE(z)
(

z S(z)−z
z

)

and QE(z)
(

z S(z)−z
z

)

.
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We can finally rewrite the equation for S into an equation for the generating function
S(z) of pin-permutations, and we obtain:

S(z) = z +
E(z)2

1−E(z)
+

2E(z)−E(z)2

(1−E(z))2
N(z) +

E(z)2

1− E(z)
+

2E(z)− E(z)2

(1−E(z))2
N(z) + Si(z) + SiMult(z)

(S(z)− z

z

)

+QE(z)
(

z
S(z)− z

z

)

+QE(z)
(

z
S(z)− z

z

)

Solving this equation leads to the following result:

Theorem 5.1. The class of pin-permutations has a rational generating function:

S(z) = z
8z6 − 20z5 − 4z4 + 12z3 − 9z2 + 6z − 1

8z8 − 20z7 + 8z6 + 12z5 − 14z4 + 26z3 − 19z2 + 8z − 1

The Taylor expansion of S leads to:

S(z) = z + 2z2 + 6z3 + 24z4 + 120z5 + 664z6 + 3596z7 + 19004z8

+99596z9 + 521420z10 +O(z11)

Notice that the first eight terms are already given in [18]. We can also remark that
singularity analysis [24] applied to Theorem 5.1 allows us to derive that the exponential
growth factor of the pin-permutation class is approximately equal to 5.24.

6 Infinite basis for the pin-permutation class

Let B be the basis of excluded patterns defining the pin-permutation class. This basis B is
the set of minimal permutations that have no pin representation, minimal being intended
in the sense of the pattern involvement relation ≺. More formally, it is equivalent to write
that B = {σ : σ has no pin representation but ∀τ ≺ σ, τ 6= σ, τ has a pin representation}.

Brignall, Ruškuc and Vatter consider that ”it is not even obvious that the pin-
permutation class has a finite basis” [18]. Indeed, this basis B is infinite. We prove
this result by exhibiting an infinite antichain (σ(n))n≥8 in the basis of the pin-permutation
class. We can notice that (σ(n)) could be extended by σ(6) = 361524 and σ(7) = 3746152,
but by no permutation of size 5, as shown in [18].

The study of infinite antichains of permutations has recently received much attention,
see for example [4, 7, 14]. In [14], infinite antichains are obtained by adding pins around a
small pattern. This technique will also apply in our case. The permutations (σ(n))n≥8 are
built by insertion of separating pins around the permutation π = 15243, whose graphical
representation is given on Figure 17, and which has the particular following property:
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Lemma 6.1. Let π be the permutation 15243 and denote by x the rightmost element in
its grid representation, corresponding to 3. There is no pin representation of π that ends
with x. However, every pattern of π obtained by removing an element y 6= x in π has a
pin representation ending with x.

Proof. Let us denote by B the bounding box all elements of π but x. The element x divides
B into two subsets of cardinality 2, so that x can satisfy neither the separation nor the
independence condition with respect to B. This proves that π has no pin representation
that ends with x. The second point is proved by exhaustive examination.

Notice also that π is a pin-permutation. Indeed, all permutations of size at most 5 are
pin-permutations.

Figure 17 The permutation 15243, which is the starting point for the construction of
every permutation σ(n) of the infinite antichain in the basis of the pin-permutation class.

x

We then define the permutations (σ(n))n≥8 around this starting point as follows:

Definition 6.2. If n = 2k + 1, (k ≥ 4), then σ(n) is the permutation obtained from
π inserting separating pins called s6, s7, . . . , sn according to the schema (UR)k−3DR. If
n = 2k, (k ≥ 4), then σ(n) is the permutation obtained from π inserting separating pins
called s6, s7, . . . , sn according to the schema (UR)k−4ULU . In both cases, the first pin
separates x from the four other points in π, and every other pin separates the previous
one from the other points.

Notice that the index n corresponds to the size of σ(n) and that each σ(n) contains a
unique occurrence of π. Some examples are given on Figure 18.

Proposition 6.3. For any n, the permutation σ(n) has no pin representation, but any
permutation obtained from σ(n) by removing one element is a pin-permutation.

Proof. The proof is a extensive case-study using results of Lemmas 6.1 and 4.3.

Corollary 6.4. The sequence (σ(n)) is an antichain (for the pattern involvement relation
≺), and for any n, σ(n) belongs to the basis B of excluded patterns defining the pin-
permutation class.

This allows us to conclude that:

Theorem 6.5. The pin-permutation class has an infinite basis.
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Figure 18 The permutations σ(n) for n = 8, 9, 10, 14 and 15.

s6

s7

s8
s6

s7

s8

s9

s6

s7

s8

s9

s10

s6

s7

s8

s9

s10

s11

s12

s13

s14

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

Classes of permutations having both an infinite basis and a rational generating function
are pretty rare in the literature. We found only one example in [1]: the classes Tk of
permutations obtained after k transposition switches in series, for k ≥ 5. We can notice
that in [1] the rationality of the generating functions is obtained with automata-theoretic
techniques, and this can be compared to our proof of Theorem 5.1 where the language of
pin words plays a key role.

Another shared characteristic of the basis of the pin-permutation class and the bases
of the classes Tk is that they contain infinite antichains built from oscillations. We can
wonder whether there exist classes with a rational generating function and an infinite
basis that is not related to oscillations.

7 Conclusion and open questions

Before turning back to the original motivations of their definition, we summarize the im-
provements that we obtained in the study of pin-permutations. Theorem 3.1 characterizes
the decomposition trees of pin-permutations, but most importantly it gives a recursive
description of these permutations. Another way for enlightening structure in permutation
classes is to describe their basis. For pin-permutations, although we prove that the basis
is infinite, there is as far as we know no complete description of the basis.

Let us now get back to the context in which pin-permutations were originally defined.
Albert and Atkinson proved in [2] that every class of permutations containing a finite
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number of simple permutations has an algebraic generating function. Brignall, Ruškuc,
and Vatter then defined in [18] a procedure for checking this criterion automatically, that
is to say, for deciding whether the number of simple permutations in a class C given by its
finite basis B is finite or not. In this procedure, they check three properties of the class
C: does C contains arbitrarily long parallel alternations? wedge simple permutations?
permutations with proper pin representations? The first two points are easy: they can
be reformulated into properties of the permutations in the basis B in terms of pattern-
avoidance. The third point is the main step in the decision procedure, and uses finite
automata techniques.

One question that remains open is the complexity of this decision problem. Analyzing
carefully the procedure of [18], we can observe that the construction of the automata that
are used can be done in polynomial time, until a last step involving the determinization of
a transducer. This causes an exponential blow-up in the complexity of the algorithm. A
natural question is to ask if there exists a polynomial-time algorithm for deciding whether
a class contains a finite number of simple permutations, and how our characterization of
pin-permutations can be used to serve this goal.

Acknowledgement The authors wish to thank an anonymous referee for insightful
comments and suggestions, and Adeline Pierrot for a careful reading of preliminary ver-
sions of the document.
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