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Abstract

In this paper, we study the class of pin-permutations, that is to say of permutations
having a pin representation. This class has been recently introduced in [16], where it is
used to find properties (algebraicity of the generating function, decidability of member-
ship) of classes of permutations, depending on the simple permutations this class con-
tains. We give a recursive characterization of the substitution decomposition trees of
pin-permutations, which allows us to compute the generating function of this class, and
consequently to prove, as it is conjectured in [18], the rationality of this generating func-
tion. Moreover, we show that the basis of the pin-permutation class is infinite.

1 Introduction

In the combinatorial study of permutations, simple permutations have been the core objects
of many recent works [2, 3, 14, 16, 17, 18, 20]. These simple permutations are the “building
blocks” on which all permutations are built, through their substitution decomposition. Similar
decompositions for other objects have been widely used in the literature: for relations [25,
26, 31, 33], for graphs [13, 35], or in a variety of other fields [19, 22, 34]. Substitution
decomposition of permutations has been recently introduced in combinatorics [2], and used
to exhibit relations between the basis of permutations classes, and the simple permutations
this class contains [16, 17, 18].

In the algorithmic field, the substitution decomposition (or interval decomposition) of per-
mutations has been defined in [5, 6, 37]. It takes its roots in the modular decomposition of
graphs (see for example [13, 21, 29, 35, 36]), where prime graphs play the same key role as
simple permutations. Some examples of an algorithmic use of the substitution decomposition
of permutations are the computation of the set of common intervals of two (or more) permu-
tations [6, 37], with applications to bio-informatics [5], or restricted versions of the longest
common pattern problem among permutations [8, 11, 12, 28].

In the study of substitution decomposition, there is a major difference between algorith-
mics and combinatorics: algorithms proceed through the substitution decomposition tree of
permutations, that is to say recursively decompose every block appearing in the substitution
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decomposition of a permutation. On the contrary, in combinatorics, the substitution decom-
position is mostly interested in the skeleton of the permutation, which corresponds to the
root of its decomposition tree.

In the present work, we take advantage of both points of view, and use the substitution
decomposition tree with a combinatorial purpose. We deal with permutations that admit
pin representations, denoted pin-permutations. These permutations were introduced recently
by Brignall et al. in [16] when studying the links between simple permutations and classes
of pattern avoiding permutations, from an enumerative point of view. The authors conjec-
tured that the class of pin-permutations has a rational generating function. We prove this
conjecture, focusing on the substitution decomposition trees of pin-permutations.

In Section 2, we start with recalling the definitions of substitution decomposition and of
pin-permutations, and describe some of their basic properties. The core of this work is the
proof of Theorem 3.1 which gives a complete characterization of the decomposition trees of
pin-permutations. This corresponds to Section 3. Section 4 focuses on the enumeration of
simple pin-permutations, using the notion of pin words defined in [18]. With this enumerative
result and the characterization of Theorem 3.1, standard enumerative techniques [24] allow us
to obtain the generating function of the pin-permutation class in Section 5. This generating
function being rational, this settles a conjecture of [18]. Finally, in Section 6, we are interested
in the basis of the pin-permutation class: we prove that the excluded patterns defining this
class of permutations are in infinite number.

2 Preliminaries

2.1 Permutations and patterns

A permutation σ of size n is a bijective map from [1..n] to itself. We denote by σi the image
of i under σ. For example the permutation σ = 1 4 2 5 6 3 is the bijective function such that
σ(1) = 1, σ(2) = 4, σ(3) = 2, σ(4) = 5 . . .

Definition 2.1. The graphical representation of a permutation σ ∈ Sn is the set of points in
the plane at coordinates (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)).

Definition 2.2. The bounding box of a set of points E is defined as the smallest axis-parallel
rectangle containing the set E in the graphical representation of the permutation (see Figure
1). This box defines several regions in the plane:

• The sides of the bounding box (U,L,R,D on Figure 1).

• The corners of the bounding box (1, 2, 3, 4 on the Figure 1).

• The bounding box itself.

Definition 2.3. A permutation π = π1 . . . πk is called a pattern of the permutation σ =
σ1 . . . σn, with k ≤ n, if and only if there exist integers 1 ≤ i1 < i2 < . . . < ik ≤ n such that
σiℓ < σim whenever πℓ < πm. We will also say that σ contains π. A permutation σ that does
not contain π as a pattern is said to avoid π.
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Figure 1 Graphical representation of σ = 12 13 11 3 1 7 10 2 9 8 5 6 4 and the bounding box of
{7, 2, 9, 5, 6}.
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Example 2.1. The permutation σ = 1 4 2 5 6 3 contains the pattern 1 3 4 2 whose occurrences
are 1 5 6 3, 1 4 6 3, 2 5 6 3 and 1 4 5 3. But σ avoids the pattern 3 2 1 as none of its
subsequences of length 3 is order-isomorphic to 3 2 1, i.e. is decreasing.

We write π ≺ σ to denote that π is a pattern of σ. This pattern-containment relation is
a partial order on permutations, and permutation classes are downsets under this order. In
other words, a set C is a permutation class if and only if for any σ ∈ C, if π ≺ σ, then π ∈ C.
Any class C of permutations can be defined by a set B of excluded patterns(see for example
[2, 10]), called the basis of C: σ ∈ C if and only if σ avoids every pattern in B. The basis of
a class of pattern-avoiding permutations may be finite or infinite.

Permutation classes have been widely studied in the literature, mainly from a pattern-
avoidance point of view. See [9, 23, 30, 38] among many others. The main result about the
enumeration of permutation classes is the recent proof of the Stanley-Wilf by Marcus and
Tardos [32], who established that for any class C, there is a constant c such that the number
of permutations of size n in C is at most cn.

Throughout this paper, we use the decomposition tree of permutations to characterize
pin-permutations. In these trees, permutations are decomposed along two different rules in
which two special kinds of permutation appear, the simple permutations and the linear ones.

Strong intervals and simple permutations, whose definitions are recalled below, are the
two key concepts involved in substitution decomposition. We refer the reader to [2, 3, 14] for
more details about simple permutations.

Definition 2.4. An interval or block in a permutation σ is a set of consecutive values whose
images by σ form a set of consecutive values. A strong interval is an interval that does not
overlap any other interval.

Definition 2.5. A permutation σ is simple when its non-empty intervals are exactly the
trivial ones: the singletons and σ.

Notice that the smallest simple permutations are 12, 21, 2413 and 3142. In particular,
there are no simple permutations of size 3. We will consider that 12 and 21 are not simple
permutations. Hence, simple permutations are of size at least 4.

If σ is a permutation of Sn and π ∈ Sp then substituting π in σ at position i leads
to the permutation α = σ̄1σ̄2 . . . σ̄i−1(π1 + σi − 1) . . . (πp + σi − 1)σ̄i+1 . . . σ̄n+p−1 where
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σ̄j =

{

σj if σj ≤ σi,

p + σj − 1 otherwise.
For convenience, as multiple substitution can occur in a per-

mutation we will denote by σ[1, 1, . . . , 1, π
︸︷︷︸

i

, 1] this substitution. This notation naturally

generalizes to σ[π1, π2, . . . , πn], and it has already been defined in [2] under the name of
inflation. Consider for example the substitution of π = 3 1 2 4 in σ = 2 5 4 6 7 1 3 at
position 3 (i.e. replacing σ3 = 4). We obtain permutation α = 2 8 6 4 5 7 9 10 1 3 and write
α = 2 5 4 6 7 1 3[1, 1, 3 1 2 4, 1, 1, 1, 1]. This operation of substitution is easier to describe on
the graphical representation of permutations: the graphical representation of σ[π1, π2, . . . , πn]
is obtained from the one of σ by replacing each point σi by a block containing the graphical
representation of πi.

We have now all the basic concepts necessary to define decomposition trees. For any
n ≥ 2, let In be the permutation 1 2 . . . n and Dn be n (n − 1) . . . 1. We use the notations
⊕ and ⊖ for denoting respectively In and Dn, for any n ≥ 2. Notice that in inflations of
the form ⊕[π1, π2, . . . , πn] = In[π1, π2, . . . , πn] or ⊖[π1, π2, . . . , πn] = Dn[π1, π2, . . . , πn], the
integer n is determined without ambiguity by the number of permutations πi of the inflation.

Definition 2.6. A permutation σ is ⊕-indecomposable (resp. ⊖-indecomposable) if it cannot
be written as ⊕[π1, π2, . . . , πn] (resp. ⊖[π1, π2, . . . , πn]), for any n ≥ 2.

Theorem 2.1. (first appeared implicitly in [27]) Every permutation σ ∈ Sn can be uniquely
decomposed as either:

• ⊕[π1, π2, . . . , πk], with π1, π2, . . . , πk ⊕-indecomposable,

• ⊖[π1, π2, . . . , πk], with π1, π2, . . . , πk ⊖-indecomposable,

• α[π1, . . . , πk] with α a simple permutation.

It is important for stating Theorem 2.1 that 12 and 21 are not considered as simple
permutations. An equivalent version of this theorem, which includes 12 and 21 among simple
permutations, is given in [2]. Notice that the πi’s correspond to strong intervals in the
permutation σ, and are necessarily the maximal strong intervals of σ strictly included in
{1, 2, . . . , n}. Another important remark is that:

Fact 2.1. Any block of σ = α[π1, . . . , πk] (with α a simple permutation) is either σ itself, or
is included in one of the πi’s.

For example, σ = 1 2 4 3 5 can be written either as 1 2 3[1, 1, 2 1 3] or 1 2 3 4[1, 1, 2 1, 1]
but in the first form, π3 = 2 1 3 is not ⊕-indecomposable, thus we use the second decom-
position. The decomposition theorem 2.1 can be applied recursively on each πi leading to a
complete decomposition where each permutation which appears is either Ik, Dk (denoted by
⊕,⊖ respectively) or a simple permutation.

Example 2.2. Let σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7. Its recursive decom-
position can be written as

3 1 4 2[⊕[1,⊖[1, 1, 1], 1], 1,⊖[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,⊖[1, 1], 1,⊕[1, 1, 1]]].
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Figure 2 The substitution decomposition tree and the graphical representation
(with non-trivial strong intervals marked by rectangles) of permutation σ =
10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7.
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The substitution decomposition recursively applied to maximal strong intervals leads to a
tree representation of this decomposition where a substitution α[π1, . . . , πk] is represented by
a node labeled α with k ordered children representing the πi’s. In the sequel we will say the
child of a node V instead of the permutation corresponding to the subtree rooted at a child
of node V .

Definition 2.7. The substitution decomposition tree T of the permutation σ is the unique
labeled ordered tree encoding the substitution decomposition of σ, where each internal node
is either labeled by ⊕,⊖ -those nodes are called linear- or by a simple permutation α -prime
nodes-. Each node labeled by α has arity |α| and each subtree maps onto a strong interval of
σ.

Notice that in substitution decomposition trees, there are no edges between two nodes
labeled by ⊕, nor between two nodes labeled by ⊖, since the πi’s are ⊕-indecomposable (resp.
⊖-indecomposable) in the first (resp. second) item of Theorem 2.1. See Figure 2 for an
example.

Theorem 2.2. [2] Permutations are in one-to-one correspondence with substitution decom-
position trees.

2.2 Pin representations: basic definitions

We will consider the subset of permutations having a pin representation. This representation
was introduced in [16] in order to check whether a permutation class contains only a finite
number of simple permutations. Nevertheless, pin representations can be defined without
reference to simple permutations.

A diagram is a set of points in the plane such that two points never lie on the same
line or the same column. Notice that the graphical representation of a permutation is a
diagram and that a diagram is not always the graphical representation of a permutation but
is order-isomorphic to the graphical representation of a permutation -just delete blank lines
and columns from the diagram. In a diagram we say that a pin p separates the set E from
the set F when E and F lie on different sides from either a horizontal line going through p
or a vertical one.
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Definition 2.8. Let σ ∈ Sn be a permutation. A pin representation of σ is a sequence of
points (p1, . . . , pn) of the graphical representation of σ (covering all the points in it) such that
each point pi satisfies both of the following conditions

• the externality condition: pi lies outside of the bounding box of {p1, . . . , pi−1}

•







either the separation condition: pi must separate pi−1 from {p1, . . . , pi−2},

or the independence condition: pi is not on the sides of the bounding box

of {p1, . . . , pi−1}.

We say that a pin satisfying the externality and the independence (resp. separation)
conditions is an independent (resp. separating) pin. An example of a pin representation is
given in Figure 3.

Figure 3 A pin representation of permutation σ = 18 3 6 4 2 5 7. All pins p3, . . . , p8 are
separating pins, except p6 which is an independent pin.

p6

p7

p1

p3

p2

p5

p4

p8

Pin representations in our sense are more restricted than pin sequences in the sense of
[16, 18]: a pin representation covers all the points of the permutation, whereas this is not
required for a pin sequence. This difference justifies that we use the word representation
instead of sequence. Nevertheless our proper pin representations coincide with the proper pin
sequences defined in [16].

Definition 2.9. Let σ ∈ Sn be a permutation. A proper pin representation of σ is a sequence
of points (p1, p2, . . . , pn) of the graphical representation of σ such that each point pi satisfies
both the separation and the externality conditions.

Not every permutation has a pin representation, see for example σ = 71 2 3 8 4 5 6. We call
pin-permutation any permutation that has a pin representation. Pin-permutations correspond
to the permutations that can be encoded by pin words in the terminology of [16, 18]. In that
paper the authors conjecture the following result:

Conjecture 2.1. [18] The class of pin-permutations has a rational generating function.

In the sequel we prove this conjecture and exhibit the generating function of pin-permutations.
We first study some properties of pin representations.

2.3 Some properties of pin representations

We first give general properties of pin representations and define special families of pin-
permutations.
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Lemma 2.1. Let (p1, . . . , pn) be a pin representation of σ ∈ Sn. Then for each i ∈ {2, . . . , n−
1}, if there exists a point x on the sides of the bounding box of {p1, . . . , pi}, then it is unique
and x = pi+1.

Proof. Consider the bounding box of {p1, p2, . . . , pi} and let x be a point on the sides of
this bounding box. Suppose without loss of generality that x is above the bounding box.
By definition of the bounding box, and since it contains at least two points, x separates
{p1, . . . , pi} into two sets S1, S2 6= ∅. Now, there exists l ≥ i such that x = pl+1. Suppose
that l > i. The bounding box of {p1, . . . , pl} contains the one of {p1, . . . , pi} but does
not contain x, and thus x is still above it. Consequently, x = pl+1 does not satisfy the
independence condition. It must then satisfy the separation condition, so that x separates
pl from p1, . . . , pl−1. But S1, S2 ⊂ {p1, . . . , pl−1} and x separates S1 from S2 leading to a
contradiction.

Any pin representation can be encoded into a word on the alphabet {1, 2, 3, 4} ∪ {R,L,U, D}
called a pin word associated to the pin representation of the permutation and defined below.

Definition 2.10. Let (p1, p2, . . . , pn) be a pin representation. For any k ≥ 2, the pin pk+1 is
encoded as follows.

• If it separates pk from the set {p1, p2, . . . , pk−1}, thus it lies on one side of the bounding
box. Then pk+1 is encoded by L,R,U, D in the pin word depending on its position as
shown in Figure 1.

• If it respects the externality and independence conditions and therein lies in one of the
quadrant 1, 2, 3, 4 defined in Figure 1, then this number encodes pk+1 in the pin word.

To encode p1 and p2: choose a fictive point p0 of the plan and then encode p1 with the
numeral corresponding to the position of p1 relatively to p0 and encode p2 according to its
position relatively to the bounding box of {p0, p1}.

Notice that because of the choice of the fictive point p0, a pin representation is not
associated with a unique pin word. Some pin words associated with the pin representation of
σ = 18 3 6 4 2 5 7 given in Figure 3 are 11URD3UR, 3RURD3UR, . . .

Definition 2.11. A pin word w = w1 . . . wn is a strict pin word if and only if

• only w1 is a numeral,

• for any 2 ≤ i ≤ n − 1, if wi ∈ {L,R}, then wi+1 ∈ {U,D},

• for any 2 ≤ i ≤ n − 1, if wi ∈ {U,D}, then wi+1 ∈ {L,R}.

A strict pin word is the encoding of a proper pin representation. A proper pin represen-
tation corresponds to several pin words.

Lemma 2.2. Let (p1, . . . , pn) be a proper pin representation of σ ∈ Sn. Then, for 2 < i < n,
the pin pi is at a distance of exactly 2 cells from the bounding box of {p1, . . . , pi−1}.
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Proof. From Definition 2.9 of proper pin representations, for 2 ≤ i < n, pi+1 separates pi

from {p1, . . . , pi−1}, therefore pi is at a distance of at least 2 cells from the bounding box of
{p1, . . . , pi−1}. Moreover from Definition 2.9 again and Lemma 2.1, for 2 < i < n, pi is on
the sides of the bounding box of {p1, . . . , pi−1} and pi+1 is the only point on the sides of the
bounding box of {p1, . . . , pi}. Thus, for 2 < i < n, pi is at distance exactly 2 cells from the
bounding box of {p1, . . . , pi−1}.

Lemma 2.3. Let p = (p1, . . . , pn) be a proper pin representation of σ ∈ Sn. If the pin pi is
at a corner of the bounding box of {p1, . . . , pj}, then i = 1 or 2.

Proof. If the pin pi is at a corner of the bounding box of {p1, . . . , pj} for some j ≥ i, then pi

is not on the sides of the bounding box of {p1, . . . , pi−1}. As p is a proper pin representation,
this happens only when i = 1 or 2.

2.4 Weaving and quasi-weaving permutations

Amongst simple permutations some special ones, that we call weaving and quasi-weaving per-
mutations in the sequel, play a key role in the characterization of substitution decomposition
trees associated with pin-permutations (see Theorem 3.1).

Definition 2.12 (weaving permutation). We call weaving permutations the permutations
defined as follows. For n ≥ 5, there are exactly four weaving permutations of size n:

• If n ≥ 5 is even, one weaving permutation of size n is

σ = 2 4 1
︸︷︷︸

. . . (2p + 2) (2p − 1)
︸ ︷︷ ︸

. . . n (n − 3)
︸ ︷︷ ︸

(n − 1)

• If n ≥ 5 is odd, one weaving permutation of size n is

σ = 2 4 1
︸︷︷︸

6 3
︸︷︷︸

. . . (2p + 2) (2p − 1)
︸ ︷︷ ︸

. . . (n − 1) (n − 4)
︸ ︷︷ ︸

n (n − 2)

The only three other permutations obtained from the permutation σ above by symmetry (with
the inverse and the mirror transform for example) are the other weaving permutations of size
n. Moreover there are one weaving permutation of size 1, two weaving permutations of size 2
(1 2 and 2 1), four weaving permutations of size 3 (1 3 2, 2 1 3, 2 3 1 and 3 1 2) and two weaving
permutations of size 4 (2 4 1 3 and 3 1 4 2).

Notice that there are in general eight symmetries of a given permutation, but some can be
equal. This is the case for weaving permutations: for a weaving permutation σ of size n ≥ 5,
since mirror(σ)−1 = mirror(σ−1), the eight symmetries of σ describe only four permutations.

Here are a few properties of weaving permutations (see Figure 4) that can be proved by
exhaustive verification.

Lemma 2.4. (i) Weaving permutations of size at least 4 are simple pin-permutations.

(ii) For any weaving permutation of size at least 5, exactly one of the diagonals has the
property that every point is at a distance of at most 2 cells from this diagonal.

Point (ii) of Lemma 2.4 allows us to define the direction of a weaving permutation.
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Figure 4 An ascending weaving permutation of size 10 and a descending weaving permutation
of size 11, with a pin representation for each.

2 4 1 6 3 8 5107 9 9117105 8 3 6 1 4 2

Definition 2.13. A weaving permutation of size n ≥ 5 is said to be ascending when every
point of its graphical representation is at a distance of at most 2 cells from the main diago-
nal. Otherwise, the weaving permutation is said to be descending. For n ≤ 4 the ascending
weaving permutations are 1, 2 1, 2 3 1, 3 1 2, 2 4 1 3 and 3 1 4 2, and the descending weaving
permutations are 1, 1 2, 1 3 2, 2 1 3, 2 4 1 3 and 3 1 4 2. Notice that 1, 2 4 1 3 and 3 1 4 2 are
both ascending and descending.

Lemma 2.5. Any ascending (resp. descending) weaving permutation has proper pin repre-
sentations whose starting points can be chosen either in the top right hand corner or in the
bottom left hand corner (resp. either in the top left hand corner or in the bottom right hand
corner).

Proof. This is proved by exhaustive verification for n ≤ 4. For n ≥ 5, these proper pin
representations are obtained as indicated in the proof of Lemma 2.4 (i). On the weaving
permutations σ of odd and even size n given in Definition 2.12, we can check that 1RURU . . .
and 3LDLD . . . when n is even and 1RURU . . . and 3DLDL . . . when n is odd are pin
words that encode such proper pin representations. For every other weaving permutation we
conclude with symmetry arguments.

We need to introduce a few more definitions:

Figure 5 Two examples of quasi-weaving permutations of size 10 and 11. The points marked
M , A and O represent respectively the main and auxiliary substitution points, and the outer
point.

2104 1 6 3 8 5 7 9

M

A

O

4 1 6 3 8 5107 9112

M

A

O
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Definition 2.14 (quasi-weaving permutations). We call quasi-weaving permutations the per-
mutations defined as follows. For n ≥ 6 there are exactly eight quasi-weaving permutations
of size n:

• If n ≥ 6 is even, one quasi-weaving permutation of size n is

σ = 2n 4 1
︸︷︷︸

6 3
︸︷︷︸

. . . (2p + 2) (2p − 1)
︸ ︷︷ ︸

. . . (n − 2) (n − 5)
︸ ︷︷ ︸

(n − 3) (n − 1)

We define the main substitution point (resp. auxiliary substitution point) of σ as the
point of coordinates (n− 1, n− 3) (resp. (n, n− 1)) in the graphical representation of σ,
and the outer point of σ as the point of coordinates (2, n) in the graphical representation
of σ.

• If n ≥ 6 is odd, one quasi-weaving permutation of size n is

σ = 4 1
︸︷︷︸

6 3
︸︷︷︸

. . . (2p + 2) (2p − 1)
︸ ︷︷ ︸

. . . (n − 1) (n − 4)
︸ ︷︷ ︸

(n − 2) n 2

We define the main substitution point (resp. auxiliary substitution point) of σ as the
point of coordinates (n− 2, n− 2) (resp. (n− 1, n)) in the graphical representation of σ,
and the outer point of σ as the point of coordinates (n, 2) in the graphical representation
of σ.

The seven other permutations obtained by symmetry from the permutation σ above are the
seven other quasi-weaving permutations of size n.

For n = 4 or 5, there are two quasi-weaving permutation of size n: 2 4 1 3, 3 1 4 2, 2 5 3 1 4
and 4 1 3 5 2. Each of them has four possible choices for its main and auxiliary substitution
points. See Figure 6 for more details. We do not define the outer point of a quasi-weaving
permutation of size less than 6.

Here are a few properties of quasi-weaving permutations:

Lemma 2.6. (i) Every quasi-weaving permutation is a simple pin-permutation.

(ii) For every quasi-weaving permutation of size at least 6, exactly one of the two diagonals
has the property that every point except the outer point is at a distance of at most 3
cells from this diagonal.

Proof. (i) Checking simplicity is done by exhaustive verification. One pin representation
of a quasi-weaving permutation can be obtained starting with its main substitution point,
then reading the auxiliary substitution point, and proceeding through the quasi-weaving
permutation using separating pins at any step, to finish with the outer point, when defined.

(ii) On the quasi-weaving permutations σ of size n given in Definition 2.14, we can check
that the difference between i and σi, for each i ∈ [1..n], is less than or equal to 3, except
for the outer point. This proves that the main diagonal satisfies the claim. It is also clear
that the other diagonal does not satisfy it. For every other quasi-weaving permutation, we
conclude with symmetry arguments.

Point (ii) of Lemma 2.6 allows us to define the direction of a quasi-weaving permutation.

10



Figure 6 The graphical representations of the quasi-weaving permutations of size 4, 5 and
6. The points marked M , A (or A+ or A−, see p.18 for the notations) and O represent
respectively the main substitution point, the auxiliary substitution point, and the outer point
(when defined) of each quasi-weaving permutation..

Size quasi-weaving permutations

4
2 4 1 3

A
+

M
2 4 1 3

M

A
−

2 4 1 3

M

A
+

2 4 1 3

M

A
−

3 1 4 2

M

A
−

3 1 4 2

M

A
+

3 1 4 2

M

A
−

3 1 4 2

M

A
+

5
2 5 3 1 4

M

A
−

2 5 3 1 4

M
A

+

2 5 3 1 4

M

A
−

2 5 3 1 4

M

A
+

4 1 3 5 2

M

A
+

4 1 3 5 2

M

A
−

4 1 3 5 2

M

A
+

4 1 3 5 2

M
A

−

6
2 6 4 1 3 5

M

A

O

3 6 2 4 1 5

M
A

O

2 4 6 3 1 5

M

A

O
2 6 3 5 1 4

M
A

O

5 3 1 4 6 2

M

A

O

4 1 5 3 6 2

M
A

O

5 1 3 6 4 2

M

A

O
5 1 4 2 6 3

M
A

O

Definition 2.15. A quasi-weaving permutation of size n ≥ 6 is said to be ascending when
every point of its graphical representation (except the outer point) is at a distance of at most
3 cells from the main diagonal. Otherwise, the other diagonal verifies this property, and the
quasi-weaving permutation is said to be descending.

We can notice that the direction of the diagonal in point (ii) of Lemma 2.6 is the same
direction that is defined by the alignment of M and A, the main and auxiliary substitution
points of the quasi-weaving permutation Therefore, we can reformulate Definition 2.15 into
Definition 2.16, generalizing it to quasi-weaving permutations of size 4 and 5. Recall that,
from Definition 2.14, there are four possible choices for the main and auxiliary substitution
points when the size of the quasi-weaving permutation is 4 or 5.

Definition 2.16. A quasi-weaving permutation together with a choice of the main and auxil-
iary substitution points is said to be ascending (resp. descending) when these points form an
occurrence of the pattern 12 (resp. 21) (see Figure 5).
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3 Characterization of the decomposition tree

Permutations are in one-to-one correspondence with decomposition trees. In this section we
give some necessary and sufficient conditions on a decomposition tree for it to be associated
with a pin-permutation through this correspondence.

Theorem 3.1. A permutation σ is a pin-permutation if and only if its substitution decom-
position tree Tσ satisfies the following conditions:

(C1) any linear node labeled by ⊕ (resp. ⊖) in Tσ has at most one child that is not an
ascending (resp. descending) weaving permutation.

(C2) any prime node in Tσ is labeled by a simple pin-permutation α and satisfies one of the
following properties:

– it has at most one child that is not reduced to a one-point permutation; moreover
the point of α corresponding to the non-trivial child (if it exists) is an active point
of α.

– α is an ascending (resp.descending) quasi-weaving permutation, and the node has
exactly two children that are not reduced to a one-point permutation: one of them
expands the main substitution point of α and the other one is the permutation 12
(resp. 21), expanding the auxiliary substitution point of α.

3.1 Preliminary remarks

Let σ be a pin-permutation. Then σ has pin representations, but not every point of σ can be
the starting point for such a representation. Therefore we define:

Definition 3.1. An active point of a pin-permutation σ is a point that is the starting point
of some pin representation of σ.

We now recall some basic properties of the set of pin-permutations.

Lemma 3.1 ([18]). The set of pin-permutations is a class of permutations. Moreover, if p
is a pin representation for some permutation σ, then for any π ≺ σ, a pin permutation for π
can be extracted from p, by keeping the points pi that form an occurrence of π in σ.

Instead of random patterns of a pin-permutation σ, we will often be interested in patterns
defined by blocks of σ and state a restriction of Lemma 3.1 to this case:

Consequence 3.1. If σ is a pin-permutation, then the permutation associated to every block
of σ is also a pin-permutation.

Notice the following fact used many times in the next proofs:

Fact 3.1. Consider a pin-permutation σ whose substitution decomposition tree has a root V ,
and B the block of σ corresponding to a given child of V . If a pin representation of σ satisfies
that there exists indices i < j < k with pi ∈ B, pj ∈ B, and pk is a pin separating pi from pj,
then pk also belongs to B.

12



Assume σ is a pin-permutation and consider nodes in the substitution decomposition tree
Tσ of σ. They are roots of subtrees of Tσ corresponding to permutations that are blocks of σ,
and that are consequently pin-permutations. As a consequence, for finding properties of the
nodes in the substitution decomposition tree of a pin-permutation, it is sufficient to study the
properties of the roots of the substitution decomposition trees of pin-permutations. Before
attacking this problem, we introduce two definitions useful to describe the behavior of a pin
representation of σ on the children of the root of Tσ.

Definition 3.2. Let σ be a pin-permutation and p = (p1, . . . , pn) be a pin representation of
σ. For any set B of points of σ, if k is the number of maximal factors pi, pi+1, . . . , pi+j of p
that contain only points of B, we say that B is read in k times by p.

Mostly, we use Definition 3.2 on sets B’s that are blocks of σ, and even more precisely
children of the root of the substitution decomposition tree of σ.

Consider a pin-permutation σ whose substitution decomposition tree has a root V , and
let p = (p1, . . . , pn) be a pin representation of σ. We say that some child B of V is the k-th
child to be read by p if, letting i be the minimal index such that pi belongs to B, the points
p1, . . . , pi−1 belong to exactly k − 1 different children of V .

3.2 Properties of linear nodes

We analyse first the structure of pin representations of any pin-permutation σ whose substi-
tution decomposition tree has a root that is a linear node V . We prove in Lemma 3.2 that
some of these pin representations have a child by child way of reading σ. This will allow us
to have a precise description of the children of V in Lemma 3.3.

Lemma 3.2. If σ is a pin-permutation whose substitution decomposition tree has a root that
is a linear node V , then there exists a pin representation of σ that reads every child of V in
one time.

Proof. Assume that the node V has label ⊕, the other case being similar. Let T1, . . . , Tk

be the children of V , from left to right. Since σ is a pin-permutation, there exists a pin
representation p of σ. Let i0 be the index of the child Ti to which belongs the first point of p.
Assume that p is reading both Ti and Tj (with i < j), that is to say, that p has read some but
not all points in both Ti and Tj . Consider the bounding box B of the points already read by
p: any child Tℓ of V is completely included in B if i < ℓ < j, or completely outside B if ℓ < i
or ℓ > j. Consequently, p has already completed the reading of the Tℓ for i < ℓ < j, and has
not started the reading of the Tℓ for ℓ < i or ℓ > j. Consequently, from the pin representation
p of σ, we can extract as described in Lemma 3.1 (see p.12):

• a pin representation qi0 of Ti0 ,

• for any i < i0 (resp. i > i0), a pin representation qi of Ti whose first point corresponds
to a pin satisfying in p the independence condition and which is in the bottom left
(resp. top right) hand corner of the bounding box of the points already read by p,
which contains at least one point in Ti0 , and all the points in Tℓ for i < ℓ < i0 (resp.
i0 < ℓ < i).

It is now easy to check that q = qi0qi0−1 . . . q1qi0+1 . . . qk is a pin representation for σ, and
that it reads every child of V in one time.

13



Lemma 3.3. Let σ be a pin-permutation whose substitution decomposition tree has a root
that is a linear node V labeled by ⊕ (resp. by ⊖). Then at most one child of V is not reduced
to an ascending (resp. descending) weaving permutation.

Proof. Assume that the node V has label ⊕, the other case being similar. Let T1, . . . , Tk be
the children of V , from left to right. By Lemma 3.2, there exists a pin representation p of σ
that reads the children of V one at a time. Denote by Ti0 the first child that is read by p.
Suppose some child Tℓ (for ℓ ≥ i0) has just been read by p. Then the points of Tℓ+1 are in the
top right hand corner with respect to the points that have already been read by p (that are all
the children Tm, . . . , Ti0 , . . . , Tℓ of V for some m ≤ i0, because p reads every child of V in one
time). Therefore, they correspond to pins that are encoded by a symbol 1, U or R in a pin
word. Furthermore, the only point that is encoded by the symbol 1 is the first point of Tℓ+1

that is read by p. Indeed, any other symbol 1 would signify that p starts the reading of the
following child Tℓ+2. Consequently, Tℓ+1 is a permutation represented by a pin word of the
form either 1URURUR . . . or 1RURURURU . . ., that is to say, Tℓ+1 is an ascending weaving
permutation. In the same way, we can prove that any Tℓ−1 with ℓ ≤ i0 is a permutation
encoded by a pin word of the form either 3LDLDLDLD . . . or 3DLDLDLDL . . ., or in other
words, that Tℓ−1 is again an ascending weaving permutation. As a conclusion, the only child
of V that might not be an ascending weaving permutation is the first child that is read by a
pin representation of σ.

3.3 Properties of prime nodes

We will often use Fact 2.1 (p.4) in the proofs of this subsection. A formulation of this fact in
terms of substitution decomposition trees is:

Fact 3.2. Consider a permutation σ whose substitution decomposition tree has a root V that
is a prime node. There is no block in σ that intersects several children of V , except σ itself.

We start with proving a technical lemma:

Lemma 3.4. Let σ be a pin-permutation whose substitution decomposition tree has a prime
node V as root, and let p = (p1, . . . , pn) be a pin representation of σ. If a pin pi that satisfies
the externality and independence conditions is the first point of a child B of V to be read by
p, then B is either the first or the second child of V that is read by p.

Proof. Assume that B is a child of V that is not the first neither the second to be read
by p, and denote by pi the first point of B that is read by p. Proving that pi satisfies the
separation condition (and therefore does not satisfy the independence condition) will give the
announced result. Denote by C the child of V that is read (maybe not entirely) by p just
before B, and D the child of V that is read by p just before C. Since B is at least the third
child of V that is read by p, C and D are well defined. Now, if pi satisfied the externality
and independence conditions, {p1, . . . , pi−1} would form a block in σ intersecting more than
one child of V (at least children C and D) but not all of them (not B), and so contradicting
Fact 3.2 and concluding the proof.

Consider a pin-permutation σ whose substitution decomposition tree has a root V that is
a prime node. Unlike linear nodes, there does not always exist a pin representation of σ that
reads every child of V in one time. (consider by example the permutation σ = 54 1 2 6 3)
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However, the situations in which a child of a prime node V can be read in more than one
time are very restricted. Lemma 3.5 and Consequence 3.2 are dedicated to these cases.

Lemma 3.5. Let σ be a pin-permutation whose substitution decomposition tree with a prime
node V as root and a pin representation p = (p1, . . . , pn) of σ. If there is a child B of V that
p reads in more than one time, then the second part of B read by p is reduced to pn.

Proof. We write the pin representation p as p = (p1, . . . , pi, . . . , pj , pj+1, . . . , pk, . . . , pn) where
pi is the first point of B that is read by p, all the pins from pi to pj are points of B, pj+1

does not belong to B, and pk is the first point belonging to B after pj+1. These points are
well-defined since B is read by p in more than one time. To obtain the announced result, we
only need to prove that k = n.

For k ≤ h ≤ n, ph satisfies the externality and separation conditions. Otherwise ph would
satisfy the externality and independence conditions and we would have a block p1, . . . , pk−1

in σ intersecting more than one child of V (namely B and the block pj+1 belongs to), con-
tradicting Fact 3.2 since V is prime. Moreover we can prove inductively that ph ∈ B for
k ≤ h ≤ n. This is already done for h = k. Consider h ∈ {k + 1, . . . , n}. By induction
hypothesis, ph−1 belongs to B. As ph satisfies the separation condition, it separates ph−1

from {pi, . . . , pj} ⊂ {p1, . . . , ph−2} and therefore belongs to B from Fact 3.1 (p.12). As a
conclusion, all points pk, pk+1, . . . , pn are points of B.

Moreover at most one child of V is discovered before pi. Indeed it is the case when
i ≤ 2 and when i ≥ 3, we prove that pi is a pin satisfying the externality and independence
conditions. Otherwise since pi is the first point of B that is read, all the points of B would
be (like pi) on the sides of the (non-trivial) bounding box of {p1, . . . , pi−1}, contradicting
Lemma 2.1. We conclude with Lemma 3.4 that at most one child of V appears before B.
Consequently since any simple permutation is of length at least 4 (see p.3) and p can be
decomposed as p = ( p1, . . . , pi−1

︸ ︷︷ ︸

at most one child

, pi, . . . , pj
︸ ︷︷ ︸

∈B

, pj+1, . . . , pk−1
︸ ︷︷ ︸

/∈B

, pk, . . . , pn
︸ ︷︷ ︸

∈B

), there are, among

pj+1, . . . , pk−1, points belonging to at least two different children of V , both different from B.
Let us denote by C the child of V pk−1 belongs to, and by D another child of V that appears
in pj+1, . . . , pk−1. As pk separates pk−1 from the previous pins, and as it belongs to B, B
(through pk) separates C (to which pk−1 belongs) from D (to which some other pin before
pk−1 belongs). But then any point of B that has not yet been read, namely any point of
{pk, . . . , pn}, is on the sides of the bounding box of {p1, . . . , pk−1}. Since from Lemma 2.1 (p.
7) there is at most one point on the sides of this bounding box, we conclude that k = n.

Consequence 3.2. (i) If some child of a prime node is read in more than one time by a
pin representation p, then it is read in exactly two times, the second part being reduced
to the last point of p.

(ii) At most one of the children of a prime node can be read in two times by a pin represen-
tation.

At that point, given a pin-permutation σ whose substitution decomposition tree Tσ has a
prime root, we know how a pin representation of σ proceeds through the children of this root.
In Lemma 3.6 and Consequence 3.3, we tackle the problem of characterizing those children
more precisely.
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Lemma 3.6. Let σ be a pin-permutation whose substitution decomposition tree has a prime
root V and p = (p1, . . . , pn) be a pin representation of σ. Suppose there exists a child B of V
which is not reduced to a one-point permutation, and such that B is not the first child of V
to be read by p. Then B is a two-point permutation, which is read in two times by p, whose
pin reading the first point of B satisfies the externality and independence conditions.

Proof. In the pin representation p of σ, we denote by pi the first point of B that is read by
p. By hypothesis, i ≥ 2 and i 6= n.

Suppose that pi satisfies the externality and separation conditions. Then necessarily, i ≥ 3
(it is impossible for pi to separate a set of less than 2 points), and pi is on the sides of the
bounding box of {p1, . . . , pi−1}. But since pi is the first point of B that is read, any point
of B is also on the sides of this bounding box. With Lemma 2.1, this contradicts that B
is not reduced to a one-point permutation. Consequently, pi satisfies the externality and
independence conditions. By Lemma 3.4, and since we assumed it is not the first, B is the
second child of V to be read by p. Let us denote by C the first child of V that is read by
p. Because V is prime, there must be a point in σ, belonging to another child D of V , that
separates child B from child C of V . This point separates in particular pi from p1, and it is
necessarily pi+1, since no pin after pi+1 can separate p1 from pi. This proves that pi+1 /∈ B.
With Consequence 3.2(i), we get that either B = {pi} or B = {pi, pn}. Because B is not a
one-point permutation, the latter holds, concluding the proof.

With Lemma 3.4 and Consequence 3.2, we can deduce from Lemma 3.6 that the first child
of V is read by p in one time, that B is the second child to be read by p, and that pn is the
second point of B.

Consequence 3.3. A prime node has at most two children that are not reduced to one-point
permutations. Moreover, if a prime node has exactly two non-trivial children, then every pin
representation of the associated pin-permutation starts with reading one of those two children
entirely, and the other non-trivial child is characterized in Lemma 3.6.

3.4 Proof of Theorem 3.1: necessary condition

With the previous technical lemmas, we prove in this section that conditions (C1) and (C2)
of Theorem 3.1 (p.12) are necessary conditions on the substitution decomposition tree Tσ of
σ for σ to be a pin-permutation.

Let σ be a pin-permutation whose substitution decomposition tree is Tσ. Any node V
in Tσ is the root of some subtree T of Tσ. Moreover, T is the substitution decomposition
tree Tπ of some permutation π ≺ σ, and π is a pin-permutation by Consequence 3.1 (p.12).
Consequently, we only need to prove that:

• if V is a linear node, condition (C1) is satisfied by the root of Tπ,

• if V is a prime node, condition (C2) is satisfied by the root of Tπ.

When V is a linear node, we conclude thanks to Lemma 3.3 (p.14).
So, let us assume that V is a prime node, labeled by a simple permutation α. With

Lemma 3.1 (p.12), it is immediate to prove that the simple permutation α labelling node V
is a simple pin-permutation, since it is a pattern of π. By Consequence 3.3, V has at most 2
children that are not reduced to a one-point permutation.
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Assume V has exactly one child B that is not reduced to a one-point permutation, and
consider a pin representation p = (p1, . . . , pn) of π. We need to prove that this child expands
an active point of α. If p starts with reading B (even if not entirely), then there is an
occurrence of α in π in which B is represented by the first point p1 of p, and by Lemma 3.1
we can extract from p a pin representation for α whose first point, active for α by Definition
3.1, is the one representing B. When p does not start with reading B, we apply Lemma 3.6:
B contains exactly two points, the first one read in p is p2 (read just after the first child read
by p, which is a one-point permutation – hence reduced to p1 – by hypothesis) and the second
one is pn. Observing that the first two points in a pin representation play symmetric roles,
it does not matter in which order there are taken: a consequence is that p2, p1, p3, . . . , pn is
another admissible pin representation for π and an occurrence of α in π is composed of all
points of p except pn. Therefore p2, p1, p3, . . . , pn−1 is a pin representation for α in which B
is represented by p2 and thus B expands an active point of α.

Let us now assume that node V has exactly two children that are not reduced to one-point
permutations. Consequence 3.3 shows that any pin representation p = {p1, . . . , pn} of π is
composed as follows:

• p reads entirely one of the non-trivial children of V denoted by C, the other one denoted
by B being reduced to two points,

• the first point of B read by p satisfies the externality and independence conditions,

• the second and last point of B read by p is pn.

Without loss of generality (that is to say up to symmetry), we can assume that B is in
the top right hand corner with respect to C. This situation is represented on Figure 7.

Figure 7 Permutation π around its two non-trivial children B and C.

B

C

Bounding box
when p has read C

and the first point of B

acceptable

not acceptable

If the block B contains the permutation 21, then the second point of B would be on the
sides of the bounding box when p has read C and the first point of B, and by Lemma 2.1
(p.7) this second point of B would have to be read just after the first one contradicting the
primality of V (since a prime node has at least 4 children). Consequently, B contains the
permutation 12.

Between the two points of B, p reads all the points of π that correspond to trivial children
of V . Because V is prime, from Fact 3.2 (p.14) all of these points are pins satisfying the
externality and separation conditions and there are at least two of them. There are four
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possible positions for the first such pin that is read by p, but only two of them are acceptable
since we need α to be simple. Indeed, choosing the up or right pin on Figure 7 (pins that
are indicated as not acceptable) would imply that the second point of B is on the sides of
the bounding box, so it has to be taken now, and since it is the last point of p, the pin
representation stops, contradicting as before the primality of V . Therefore we can assume
that the first pin after the first point of B is the one in the top left hand corner of C, the
other possible one leading to a symmetric configuration. The pin representation is then an
alternation of down and left pins, until pn−1 which is an up or right pin.

Consequently there is only one possible way of putting the pins corresponding to the trivial
children of V that does not contradict that α is simple, nor that B contains two points. This
only possible configuration is represented on Figure 8, and it corresponds to the case in which
α is a quasi-weaving permutation, with C expanding its main substitution point, and B
expanding its auxiliary substitution point. Moreover, when the size of α is at least 6, if the
quasi-weaving permutation is ascending (resp. descending), then B contains the permutation
12 (resp. 21). The reason is that the direction defined by the alignment of blocks B and C is
the same as the direction of the quasi-weaving permutation.

Figure 8 The only configuration (up to symmetry) of a pin-permutation whose root is a
prime node (of arity at least 6) with two non trivial children.

B

pn

C

··
·

pn−2

pn−1

Notice that in the case of a quasi-weaving permutation of size 4 or 5, with fixed main
and auxiliary substitution points, the content of the block B is also determined, again by
the direction defined by the alignment of the two blocks B and C. On Figure 6 (p.11), the
auxiliary substitution points written A+ (resp. A−) are the ones that can be substituted with
12 (resp. 21) in this context. We omit the proof, which is done by simple examination of
each of the 16 cases.

This concludes the proof that conditions (C1) and (C2) are necessary conditions on a
permutation σ for σ to be a pin-permutation..

3.5 Proof of Theorem 3.1: sufficient condition

We can now end the proof of Theorem 3.1 by proving that conditions (C1) and (C2) are
sufficient for a permutation σ to be a pin-permutation. In the following we prove by induction
on the size of σ that a permutation satisfying conditions (C1) and (C2) is a pin-permutation.
Remind that Tσ denotes the substitution decomposition tree of σ. Notice that for σ = 1,
conditions (C1) and (C2) are vacuously true. The pin representation with only one pin is a
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pin representation for σ. Assume now that |σ| > 1, and that any permutation π such that
|π| < |σ| satisfying conditions (C1) and (C2) is a pin-permutation. We distinguish two cases,
according to the type (linear or prime) of the root of Tσ.

When the root of Tσ is a linear node, consider σ = ⊕[σ1, σ2, . . . , σk], without loss of
generality, and assume that σ satisfies (C1) and (C2). Since the decomposition trees of the
(σi)1≤i≤k are subtrees of Tσ, we get that the (σi)1≤i≤k also satisfy conditions (C1) and (C2).
We can use the induction hypothesis on the (σi)1≤i≤k, and obtain that they are all pin-
permutations. Moreover, condition (C1) holds for the root of Tσ, and we deduce that at
most one of the (σi)1≤i≤k is not an ascending weaving permutation. We define i0 as the
index such that σi0 is not an ascending weaving permutation, if it exists. Otherwise, we can
pick any integer i0 ∈ [1..k]. Since σi0 is a pin-permutation, it admits a pin representation
pi0 . By Lemma 2.5 (p.9), for any i < i0 (resp. any i > i0), there exist pin representations
pi of σi (which is an ascending weaving permutation) whose origin is in the top right hand
corner (resp. in the bottom left hand corner). Now p = pi0pi0−1 . . . p1pi0+1 . . . pk is a pin
representation for σ, proving that σ is a pin-permutation. We can remark that many other
pin representations p for σ could have been defined from the (pi)1≤i≤k. Namely, p = pi0w
with w any shuffle of pi0−1 . . . p1 and pi0+1 . . . pk is suitable.

When the root of Tσ is a prime node, consider σ = α[σ1, σ2, . . . , σk] for a simple permu-
tation α, and assume that σ satisfies (C1) and (C2). As before, by induction hypothesis, the
(σi)1≤i≤k are all pin-permutations. We denote by pi a pin representation of σi. Recall that
every permutation σi expands the point αi of α. Applying condition (C2) to the root of Tσ,
we also get that α is a pin-permutation. By condition (C2), at most two permutations among
σ1, σ2, . . . , σk are not reduced to 1.

When all permutations σ1, σ2, . . . , σk are trivial , then σ = α, implying that σ is a pin-
permutation. When σi is the only permutation that is not reduced to 1, then by condition
(C2) σi expands an active point of α. Thus, there exists a pin representation p of α with
p1 = αi. To get a pin representation for σ, we replace p1 in p with the pin representation pi

of σi. By exhibiting a pin representation for σ, we proved that σ is a pin-permutation.
When two permutations among σ1, σ2, . . . , σk are not trivial, then without loss of gener-

ality α is an ascending quasi-weaving permutation, and among the two children that are not
reduced to 1, one (say σi) expands the main substitution point αi of α and the other one
(say σj) is the permutation 12, expanding the auxiliary substitution point αj of α. Let p be
the pin representation of α with p1 corresponding to the main substitution point and p2 to
the auxiliary one. In order to get a pin representation for σ, we first remove the first pin of
p and replace it by the pin representation pi of σi. Then replace p2 with the point of σj that
is closest to the block σi. Because the two points expanding αj follow the direction defined
by the alignment of the main and auxiliary substitution points of α, we can define the notion
of the point of σj closest to the block expanding the main substitution point of α. Proceed
reading all following points in p and finally read the second point of σj , which separates the
last point read in p (the outer point when |α| ≥ 6) from all the previous ones.

This finally gives a pin representation for σ, showing that σ is a pin-permutation and
thus ending the proof that conditions (C1) and (C2) are sufficient for a permutation to be a
pin-permutation.

In Section 5, we compute the generating function for the class of pin-permutations, proving
that it is rational. The proof is based on the characterization of the decomposition trees
of the pin-permutations, given in Theorem 3.1, and it uses standard tools in enumerative
combinatorics [24]. However, it requires to compute as a starting point the generating function
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of the simple pin-permutations. Section 4 is dedicated to this goal.

4 Generating function of the simple pin-permutations

We introduce some more terminology here.

Definition 4.1. A pin representation p = (p1, p2, . . . , pn) is said to be a simple pin represen-
tation and a pin word w = w1w2 . . . wn is said to be a simple pin word if the permutation σ
they encode is simple.

Notice that a simple pin representation is always a proper pin representation (see Defini-
tion 2.9). However, not every proper pin representation (or strict pin word) encodes a simple
pin-permutation.

We shall be interested in characterizing the simple pin representations for enumerating
them, in order to get the generating function of the simple pin-permutations. The enumeration
of simple pin representations will be done in Subsection 4.2. Although there is not a one-
to-one correspondence between simple pin representations and simple pin-permutations, we
can compute how many simple pin representations are associated with a single simple pin-
permutation. This will allow us to derive the enumeration of simple pin-permutations from
the one of simple pin representations in Subsection 4.3.

Before this, we start with important properties of the first two points of every proper pin
representation. This is presented in Subsection 4.1, together with relations between strict pin
words and proper pin sequences (see Definitions 2.9 and 2.11).

4.1 Possible starts of a pin representation of a simple pin-permutation

Definition 4.2. Consider a permutation σ given by its graphical representation. We say that
two points x and y of σ are (or that the pair of points (x, y) is) in knight position when the
distance between the points x and y is exactly 3 cells and the two points are neither on the
same row nor on the same column (see Figure 9).

Figure 9 Knight position between two points.

Lemma 4.1. Let p = (p1, p2, . . . , pn) denote a proper pin representation of some permutation
σ. If |σ| > 2 the first two pins p1, p2 are in knight position.

Proof. By definition of proper pin representations, and since |σ| > 2, p3 separates p2 from p1,
and no other future pin separates p2 from p1. Thus p1 and p2 can only be separated by p3.
This proves that p1 and p2 are in knight position.

Lemma 4.2. Let σ be a simple pin-permutation and p = (p1, p2, . . . , pn) be one of its simple
pin representations. If two points pi and pj of σ are in knight position then i or j is equal to
1, 2 or n.
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Proof. First recall that, by Fact 3.2 (p.14) as σ is simple, every pin pi (i ≥ 3) separates
pi−1 from {p1, . . . , pi−2}. Consider the pin pi. We will be looking for all the points pj , with
j < i, such that (pi, pj) are in knight position in σ. We want to prove that for each such j,
{i, j} ∩ {1, 2, n} 6= ∅. Assume i ≥ 3 and i < n, the claim being obviously true for i = 1 or 2
or n. Without loss of generality, we suppose that pi separates the previous pins from above
as shown in Figure 10 and that pi−1 lies on the right of pi. The thick rectangle represents the
bounding box of {p1, . . . , pi−1}.

Figure 10 Pin representations where i < n in the proof of Lemma 4.2.

c′c

pi−1

pi pi+1

Since i < n, pi+1 separates pi from the previous pins, from the left or the right as shown
in Figure 10. Thus pi could only be in knight position with a previous pin pj in one of the
two gray cells c and c′.

There is a pin in c′: Only pi−1 can be in c′ and in that case it means that pi−1 is either
p1 or p2 otherwise from Lemma 2.3 it could not be at a corner of the bounding box. Thus,
there could be a pair of pins in knight positions between (p1, p2) or (p2, p3).

There is a pin in c: The pin in c must be p1 or p2, otherwise it would separate vertically
two previous pins, one on its left and one on its right, inside the bounding box and the only
pin on its right is pi−1. Thus there could be a pair of pins in knight position between pi and
the pin in c, namely p1 or p2.

In all cases, {i, j} ∩ {1, 2, n} 6= ∅.

Definition 4.3. An active knight in a pin-permutation σ is a pair of points (x, y) in knight
position that can be the first two points of a pin representation of σ.

As a consequence of Lemma 4.1 the number of pin representations of a simple pin-
permutation depends on its number of active knights.

Lemma 4.3. In any simple pin-permutation σ, there are at most two active knights except
for the four permutations : 3 1 4 2, 2 4 1 3, 2 5 3 1 4 and 4 1 3 5 2 which have four active knights.
The simple pin-permutations of size at most 6 and their active knights are represented on
Figure 11.

For each n > 6, all simple pin-permutations of size n have exactly only one active knight,
except twelve of them that have two active knights, and that are:

• the four weaving permutations of size n,

• the eight quasi-weaving permutations of size n.

Proof. The results presented in Figure 11 can be obtained by exhaustive examination.
Let σ be a simple pin-permutation of size n > 6 and let p = (p1, p2, . . . , pn) be a pin

representation of σ. By Lemma 4.1, the pair of points (p1, p2) is an active knight of σ. We
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Figure 11 The simple pin-permutations of size n ≤ 6 and their number of active knights.

n 1 active knight 2 active knights 4 active knights

4 2 4 3 1, 3 1 4 2

5 2 4 1 5 3, 3 1 5 2 4,
3 5 1 4 2, 4 2 5 1 3

2 5 3 1 4, 4 1 3 5 2

6 2 5 1 4 6 3, 2 5 3 1 6 4,
2 5 3 6 1 4, 2 6 4 1 5 3,
3 1 6 4 2 5, 3 5 1 4 6 2,
3 6 1 4 2 5, 3 6 4 1 5 2,
4 1 3 6 2 5, 4 1 6 3 5 2,
4 2 6 3 1 5, 4 6 1 3 5 2,
5 1 3 6 2 4, 5 2 4 1 6 3,
5 2 4 6 1 3, 5 2 6 3 1 4

2 4 1 6 3 5, 2 4 6 3 1 5,
2 5 1 3 6 4, 2 6 3 5 1 4,
2 6 4 1 3 5, 3 1 4 6 2 5,
3 1 5 2 6 4, 3 6 2 4 1 5,
4 1 5 3 6 2, 4 6 2 5 1 3,
4 6 3 1 5 2, 5 1 3 6 4 2,
5 1 4 2 6 3, 5 2 6 4 1 3,
5 3 1 4 6 2, 5 3 6 1 4 2

want to prove that every permutation with at least 2 active knights is a weaving permutation
or a quasi-weaving permutation. It can be easily checked that weaving permutations and
quasi-weaving permutations have exactly 2 active knights. Assume σ has more than one
active knight, one of them being (p1, p2). By Lemma 4.2 the second active knight could be
either (p1, pi), (p2, pi) or (pi, pn), for some i.

The second active knight is (p1, pi). Without loss of generality, consider p1 and p2 in
relative positions shown in Figure 12. Then there are 7 different possible positions for a point
pi to be in knight position with p1 as shown in the figure. Positions 7 and 3 are in conflict
(same row or same column) with point p2. A pin in position 1 creates an interval with p2,
which is impossible since σ is simple. Thus the only remaining possible positions for pi are
2, 4, 5 and 6.

Figure 12 Knights between (p1, p2) and (p1, pi).

p1p2

2

4

1

7

3

56

• the pin pi is in 5: Let r be a pin representation associated with σ but which begins with
(p1, pi). (This pin representation exists as (p1, pi) = (r1, r2) is an active knight.) Then
r3 lies on the row between r1 and r2. By Lemma 2.2, r3 is at distance 2 of the bounding
box of {r1, r2}. It cannot lies to the left of it as it would be in the same column as p2.
Thus r3 is on the right side as shown in Figure 13. For the same reason p3 lies below
the bounding box of {p1, p2} as shown in the first schema of Figure 13.

Then p4 has two different possible positions. It lies in the row separating p2 from p3, at
distance 2 of the bounding box of {p1, p2, p3} but is either on the right or on the left of
it (see Figure 13). If it lies on the right then the six points {p1, p2, p3, p4, pi, r3} form a
permutation of size 6, or an interval. This contradicts that σ is simple and n > 6. So
p4 lies on the left. Then we can build a pin representation by alternating left and down
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Figure 13 Different cases for active knight (p1, pi).
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pi

r3

p3

p4 p4
p2

p3

p1

pi

pins until we put a right or a up pin. It cannot be an up pin as it will not respect the
distance 2 with the bounding box of the previous points (otherwise it would be in the
same row as pi). If it is a right pin, it lies in the column separating pi = r2 from r3 and
thus is r4. But in that case, reading the pin representation r, r4 is not at distance 2 of
the bounding box of {r1, r2, r3} contradicting Lemma 2.2.

• the pin pi is in 4: By similar arguments, it implies that permutation is of size stricly
less than 6.

• the pin pi is in 2: p3 lies in the column between p1 and p2 at distance two of the bounding
box of {p1, p2}. It cannot lie below this bounding box as it would form an interval with
p1, p2, pi. Therefore it is above as shown in the second schema of Figure 13. Then there
could be a pin representation made of alternating left and up pins until we have a right
or down one at position k. But then, pi separates this pin from the preceding ones and
must be pk+1. At that stage, {p1, . . . , pk+1} forms an interval, and thus i = k + 1 = n.
In that case we have a simple permutation (quasi-weaving permutation) with two active
knights.

• the pin pi is in 6: Then again σ is a quasi-weaving permutation.

The second active knight is (p2, pi). Considering that (p2, p1, p3, . . . , pn) is another pin
representation for σ, this case has already been solved by the previous one.

The second active knight is (pi, pn). Assume first that i ≥ 4. Consider then the bounding
box of {p1, . . . , pi−2}. Without loss of generality suppose that pi−1 is above this bounding
box and that pi is a right pin as shown in Figure 14. Notice that since pi−1 is an up pin,

Figure 14 Case for active knight (pi, pn), i ≥ 4.

p1, . . . , pi−2

pi−1

pi

1 2

3

4

56

7

8

in the bounding box of {p1, . . . , pi−2} there is a point in every row and in every column,
except in the column of pi−1. As pn and pi form an active knight, pn must be in one of the
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8 positions drawn in the figure. But positions 3, 4, 5, 6, 8 are forbidden as another point
lies in the same row. Position 7 is also forbidden for pn since it is inside the bounding box
of {p1, . . . , pi−2}. If pn is in position 2, then it means that the pin representation r, which
begins the reading of σ by r1 = pi, r2 = pn, then proceeds with r3 = pi−1 and therefore pi−1

must lie at distance 2 of the bounding box of {pi, pn} i.e. in the rightmost column of the
bounding box of {p1, . . . , pi−2} which is impossible. So that pn is in position 1. As previously,
r3 = pi−1. Then r4 is a down pin, r5 a left one, and r alternates between down and left pins.
Every other direction would put the pin on the sides of the bounding box of {p1, . . . , pi−2},
contradicting Lemma 2.1. Thus σ is a weaving permutation.

Suppose now that i < 4: It can be proved in a similar way that there are no such
permutations (n ≥ 6).

A consequence of Lemma 4.3 that will be used in Subsection 4.3 is the following:

Lemma 4.4. For any n > 6, there are 4 simple pin-permutations with 4 active points, 8 with
3 active points, and all others have 2 active points..

For smaller values of n we have (see Figure 11 p.22):

• size 4: 2 permutations with 4 active points

• size 5: 2 with 5 active points and 4 with 4 active points

• size 6: 4 with 4 active points, 12 with 3 active points, and 16 with 2 active points

Proof. From Definitions 3.1 and 4.3, and using Lemma 4.1, we obtain easily that active points
in a simple pin-permutation σ are equivalently defined as points belonging to active knights in
σ. With Figure 11, we obtain the results for n ≤ 6. For n > 6 it is enough to notice that the
two active knights in a quasi-weaving permutation have one point in common, whereas they
have no point in common in a weaving permutation. Lemma 4.3 then gives the announced
result.

We finish this subsection by a remark that establishes a link between the numbers of
simple pin representations and of simple pin-permutations.

Fact 4.1. Given a simple pin-permutation σ with one active knight marked, then there is
a unique pin representation p (up to exchanging p1 and p2) that reads σ starting with the
marked active knight.

In Subsection 4.3, this fact will be used to obtain the enumeration of simple pin-permutations,
from the enumeration of simple pin representations.

4.2 Enumeration of simple pin representations

As noticed before (see p.20), not all proper pin representations are simple. In [16], Theorem
3.4 states (with our terminology) that every proper pin representation nearly is a simple pin
representation, that is to say, for each proper pin representation p = (p1, p2, . . . , pn), either
p, (p2, p3, . . . , pn) or (p1, p3, . . . , pn) is a simple pin representation. Refining the proof of this
theorem, we show that nearly all proper pin representations are simple, and exhibit the ones
that are not, which is a slightly different point of view.
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We also noticed that for any proper pin representation p = (p1, p2, p3, . . . , pn), then p∼ =
(p2, p1, p3, . . . , pn) is also a proper pin representation. But those two objects represent the
exact same thing: we choose first the set of points {p1, p2}, and then a pin p3 that separates
p1 and p2, and proceed with separating pins at any step. That is why in the enumeration, we
count the two pin representations p and p∼ as one unique object.

For the goal of enumeration pursued here, we sometimes use simple pin words instead of
simple pin representation. Lemma 4.5 shows that it is equivalent, up to a multiplicative factor
of 4. In Theorem 4.1 we count the proper pin representations that are not simple. Then we
easily get the enumeration of simple pin representations given in Theorem 4.2.

Lemma 4.5. For any proper pin representation p of size at least 3, there are exactly 4 strict
pin words that encode p (regardless of the order of p1 and p2). Those 4 strict pin words
correspond to 4 possible readings of the active knight {p1, p2}.

Proof. There are 12 different possible positions for the origin (p0) but only 4 among these
positions lead to a strict pin word.

Lemma 4.6. For any n ≥ 3 there are 2n proper pin representations of size n..

Proof. We prove that there are 2n+2 strict pin words of size n, Lemma 4.5 then giving the
desired result immediately. There are 4 possibilities for the first letter of a strict pin word
(1, 2, 3, 4), then again 4 for the second letter (U,D,L,R), and starting from the third letter
only two possibilities, depending on the letter just before (only U and D can follow L or R,
and conversely). This gives 2n+2 strict pin words of size n and concludes the proof.

The proof of Theorem 4.1 follows the structure of the proof of Theorem 3.4 in [16]. Lemma
4.7 is proved in this paper (as Lemma 3.3).

Lemma 4.7. In a proper pin representation p = (p1, p2, . . . , pn), for any i ≥ 3, pi and pi+1

are separated either by pi−1 or by each of p1, . . . , pi−2.

Theorem 4.1. For any n ≥ 5 there are 16 proper pin representations that are not simple.
The corresponding permutations are:

• the 8 quasi-weaving permutations with the auxiliary substitution point expanded by 12
or 21 (depending whether the quasi-weaving permutation is ascending or descending),

• 8 permutations obtained from the 4 weaving permutations by adding one element in their
diagram, in one of the two corners defining the diagonal which is the direction of the
weaving permutation.

For n = 4, only 8 proper pin representations are not simple. They correspond to the 8
permutations of the second item above.

Figure 15 gives a graphical view of the proper pin representations that are not simple.

Proof. Consider p = (p1, . . . , pn) (with n ≥ 4) a proper pin representation encoding a per-
mutation σ. Assume that σ is not simple. Then there exists a non-trivial interval in σ. We
choose such an interval M ⊂ {p1, . . . , pn}, with the additional property that M is minimal (it
does not contain any intervals except the singletons). M containing at least two points, we
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Figure 15 The two kinds of permutations that are not simple, but can be read by proper
pin representations.
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can pick i and j, with i < j such that {pi, pj} ⊆ M . We choose j minimal among all possible
values.

If i < j < n, then {pj+1, . . . , pn} ⊂ M , since all these pins separate two points belonging
to M . With Lemma 4.7, since j is minimal, we get that {p1, . . . , pj−2} ⊂ M , unless i = j − 1.
In this latter case, Lemma 4.7 and the minimality of j imply that i ≤ 2, and we will consider
this case later. We focus on the former case where {p1, . . . , pj−2} ⊂ M . If j ≥ 4, pj−1

separates two points of M , so that is belongs to M also, and we get M = {p1, p2, . . . , pn},
which is a contradiction (M describes a simple permutation whereas σ is not simple). If
j ≤ 2, we get the same contradiction: M = {p1, p2, . . . , pn}. If j = 3, we assume without
loss of generality that i = 2 and p1 /∈ M . All pins starting from p4 separate two points of
M so that they belong to M . But because p1 /∈ M for no k must p1 be one the sides of the
bounding box of {p2, . . . , pk}. It forces M to represent a weaving permutation, and p1 to be
in the corner of the bounding box of M , close to where p2 and p3 are. This is illustrated on
the first part of Figure 15.

We are left to consider the cases where i = j−1 for i = 1 or 2. If i = 1, then {p1, p2} ⊂ M ,
and we get inductively that for any k ≥ 3, pk ∈ M , as it separates two points of M . We obtain
that M = {p1, p2, . . . , pn}, which is a contradiction as before. If i = 2, then {p2, p3} ⊂ M , and
we get in the same way that {p2, p3, . . . , pn} ⊂ M . The point p1 is not in M or we would get
a contradiction. Consequently we obtain as before the situation depicted on the first schema
of Figure 15: M is a weaving permutation and p1 is in the corner of M , close to p2 and p3.

If on the contrary j = n, then by minimality of j, M = {pi, pn}. In the case i = n − 1,
Lemma 4.7 gives a contradiction. If 3 ≤ i ≤ n−2, then pi separates {p1, . . . , pi−1}, whereas pn

cannot, which is again a contradiction, so that i = 1 or 2. Without loss of generality, assume
i = 1, that is to say M = {p1, pn}. Then it is impossible that {p2, pn} be also an interval:
p3 separating p1 from p2 must also separate pn from p2. Consequently, we can suppose that
M = {p1, pn} is the only interval in σ or we would be done by one of the previous cases. This
implies in particular that the diagram of {p2, . . . , pn} represents a simple permutation, and
consequently that n ≥ 5. Without loss of generality, we can assume that p1 and pn are in
decreasing order, from left to right, as represented on the second part of Figure 15. Then pn

can be either a right or a down pin. We will assume that it is a down pin, which is not a
restriction, up to symmetry. Then it forces all pins from p2 to pn−2 to be above and to the
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left of p1, and pn−1 to be a right pin. Necessarily, the pins from p3 to pn−2 are an alternation
of left and up pins, so that σ has to be a quasi-weaving permutation where the auxiliary
substitution point is expanded, by 21 on the case depicted on Figure 15. In general this point
is expanded by 12 or by 21, and this is determined by the nature (ascending or descending)
of the quasi-weaving permutation.

Theorem 4.2. For any n ≥ 5 there are 2n − 16 simple pin representations of size n, and
there are 8 of size 4, none of size smaller than 4. Hence, the generating function of simple
pin representations is SiRep(z) = 8z4 + 32z5

1−2z − 16z5

1−z .

Proof. The first point is an immediate consequence of Lemma 4.6 and Theorem 4.1. The
second one results from elementary computations.

4.3 Enumeration of simple pin-permutations

Recalling that a simple pin representation corresponds to a simple pin-permutation with one
marked active knight (see Fact 4.1), the enumeration given in Theorem 4.2 can also be seen
as the enumeration of simple pin-permutations, in which each permutation is counted with a
multiplicity equal to its number of active knights. This is not exactly this generating function
that is needed for the enumeration of pin-permutation in Section 5. However, it allows us
to compute the two generating functions that we will need: the generating function of the
simple pin-permutations (without multiplicity), and the generating function of the simple
pin-permutations with a multiplicity equal to the number of its active points.

Theorem 4.3. The generating function of simple pin-permutations (without multiplicity) is

Si(z) = 2z4 + 6z5 + 32z6 + 128z7

1−2z − 28z7

1−z .

Theorem 4.4. The generating function of simple pin-permutations, with a multiplicity equal
to the number of active points, is SiMult(z) = 8z4 + 26z5 + 84z6 + 256z7

1−2z − 40z7

1−z .

Proof. We prove here both Theorems 4.3 and 4.4. Putting Theorem 4.2 and Lemma 4.3
together, we get that:

• for n = 4, there are 2 simple pin-permutations, each of which have 4 active knights,

• for n = 5, there are 2 simple pin-permutations with 4 active knights and 4 with 2 active
knights,

• for n = 6, there are 16 simple pin-permutations with 2 active knights and 16 with 1
active knight,

• for any n ≥ 7, there are 12 simple pin-permutations with 2 active knights and 2n −16−
2 × 12 = 2n − 40 simple pin-permutations with 1 active knight.

The last point uses Fact 4.1: the 12 simple pin-permutations with 2 active knights count for
a total of 2 × 12 simple pin representations.

We obtain

Si(z) = 2z4 + (2 + 4)z5 + (16 + 16)z6 +
∑

n≥7

(12 + 2n − 40)zn

= 2z4 + 6z5 + 32z6 +
∑

n≥7

(2n − 28)zn
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which finishes, after some easy computations, the proof of Theorem 4.3.
For Theorem 4.4, we need to examine the number of active points of simple pin-permutations.

With Lemma 4.4, we immediately obtain

SiMult(z) = (2 × 4)z4 + (2 × 5 + 4 × 4)z5 + (4 × 4 + 12 × 3 + 16 × 2)z6

+
∑

n≥7

(4 × 4 + 8 × 3 + (2n − 40) × 2)zn

= 8z4 + 26z5 + 84z6 +
∑

n≥7

(2n+1 − 40)zn

which concludes the proof of Theorem 4.4.

5 Generating function of the pin-permutation class

This section is dedicated to the computation of the generating function of the pin-permutation
class. Actually, we compute the generating function of the substitution decomposition trees
of pin-permutations, which is equivalent from Theorem 2.2.

5.1 An equation defining the substitution decomposition trees of pin-permutations

We denote by S the set of substitution decomposition trees of pin-permutations. Let us also
denote by W+ (resp. W−) the set of substitution decomposition trees of ascending (resp.
descending) weaving permutations, and by N+ (resp. N−) the substitution decomposition
trees of pin-permutations that are not ascending (resp. descending) weaving permutations,
and whose root is not ⊕ (resp. ⊖). Notice that the set N+ (resp. N−) represents the trees
that do not correspond to ascending (resp. descending) weaving permutations, but that can
however be the children of a linear node labeled ⊕ (resp. ⊖) in the substitution trees of
pin-permutations.

With α (resp. β+, resp. β−) being a generic notation for simple pin-permutations (resp.
ascending quasi-weaving permutations, resp. descending quasi-weaving permutations), we
can represent the characterization of Theorem 3.1 with the following equation:

S = + ⊕

W+W+ . . . W+

+ ⊕

W+ . . .

N+

. . . W+

+ ⊖

W−W− . . . W−

+ ⊖

W− . . .

N−

. . . W−

+ α

. . .

+ α

. . .

S \ { }

. . .

+ β+

. . .

S \ { }

. . . 12

+ β−

. . .

S \ { }

. . . 21
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We justify this equation by recalling the conditions on the substitution decomposition tree
of a permutation for it to be a pin-permutation: a permutation σ is a pin-permutation if and
only if its substitution decomposition tree Tσ satisfies one of the following conditions:

• Tσ is a single leaf.

• The root of Tσ is a linear node (labeled by ⊕ for example) and all of its children are
ascending weaving permutations.

• The root of Tσ is a linear node (labeled by ⊕ for example) and all of its children are
ascending weaving permutations except one which belongs to N+.

• The case where the root of Tσ is a linear node labeled by ⊖ is similar to the two previous
points, with W+, N+ and ascending replaced by W−, N− and descending respectively.

• The root of Tσ is a prime node labeled by a simple pin-permutation α and every child
is reduced to a leaf.

• The root of Tσ is a prime node labeled by a simple pin-permutation α and it has exactly
one child that is not reduced to a leaf, and which expands an active point (denoted by

) of α.

• The root of Tσ is a prime node labeled by an ascending quasi-weaving permutation β+

and it has two children not reduced to a leaf: one of them expands the main substitution
point (denoted ) of β+ and the other one is the permutation 12 expanding the
auxiliary substitution point

• The case where the root of Tσ is labeled by a descending quasi-weaving permutation
β− is the same as the preceding one except for the child 12 which should be replaced
by 21.

5.2 The basic generating functions involved

In the preceding decomposition, many generating functions are involved:

• W+, W−: This represents the sets of trees associated to weaving permutations (ascend-
ing or descending). By Definition 2.12, those two have the same enumerative sequence
and we will denote by W (z) their common generating function. There are two different
ascending (resp. descending) weaving permutations of each size except for n = 1, 2

where there is only one. So that: W+(z) = W−(z) = W (z) = z+z3

1−z . Notice that
W+

⋂
W− = { , T2413, T3142}.

• ⊕

W+W+ . . .W+

, ⊖

W−W− . . .W−

: The corresponding generating functions denoted by

TW+(z) and TW−(z) are given by: TW+(z) = TW−(z) = TW (z) = (W (z))2

1−W (z) .

• ⊕

W+. . .

N+

. . .W+

, ⊖

W−. . .

N−

. . .W−

: This represents decomposition trees that have a

root labeled by ⊕ (resp. ⊖), with all of its children (it has at least two children)
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corresponding to ascending (resp. descending) weaving permutations, except one which
belongs to N+ (resp. N−). Denoting TWN(z) the generating function for sequences
of ascending (resp. descending) weaving permutations, one of which is replaced by a
tree of N+ (resp. N−), and N(z) the one for decomposition trees in N+ (resp. N−),
we obtain:

TWN+(z) = TWN−(z) = TWN(z) =
2W (z) − W 2(z)

(1 − W (z))2
N(z)

• N+, N−: The class N+ (resp. N−) denotes the set of substitution decomposition
trees that do not correspond to ascending (resp. descending) weaving permutations and
whose roots are not labeled by ⊕ (resp. ⊖). From now on, we consider the case of N+

only, the case of N− being very similar. Since every weaving permutation of size at
least 4 is simple, every element of size at least 4 in W+ is of the form α

. . .

for

simple pin-permutations α. From Definition 2.13, the permutations of size at most 3
in W+ are 1, 21, 231 and 312, and the corresponding decomposition trees have a root
labeled by ⊖, except for 1 whose tree is reduced to . Hence, the intersection of W+

with the set of trees whose root is labeled ⊕ is empty. Consequently, we have:

N+ = S −W+ − ⊕

W+W+ . . . W+

− ⊕

W+ . . .

N+

. . . W+

From the generating functions point of view, this gives:

N(z) = N−(z) = N+(z) = S(z) − (W (z) + TW (z) + TWN(z))

=
(z3 + 2z − 1)(z3 + S(z)z3 + 2S(z)z + z − S(z))

1 − 2z + z2

• β+, β−: We will denote by QW (z) the generating function of quasi-weaving permu-
tations counted with a multiplicity equal to their number of substitution points pairs.
By Definition 2.14, if n ≥ 6 there are four ascending (resp. descending) quasi-weaving
permutations of each size and for n < 6 (and of course n ≥ 4) there are only two such
permutations but with multiplicity 2, thus:

QW+(z) = QW−(z) = QW (z) =
4z4

1 − z
(1)

Notice also that {β+}
⋂
{β−} = ∅ if we consider as in the generating function that

quasi-weaving permutations have fixed main and auxiliary substitution points.

5.3 The generating function of the class of pin-permutations

Before coming to the computation of S(z) some other terms of the equation need to be
explicited.

• α

. . .

: These terms are enumerated by Si(z) defined in Theorem 4.3.
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• α

. . .

S \ { }

. . .

: The root is a prime node and one of the active point is non-

reduced to a leaf. Theorem 4.4 gives the generating function SiMult(z) of simple
pin-permutations with multiplicity equals to the number of active points. Thus the
generating function for these terms is SiMult(z)(S(z)−z

z ).

• β+

. . .

S \ { }

. . . 12

, β−

. . .

S \ { }

. . . 21

: For these decomposition trees, the root is la-

beled by an ascending (resp. descending) quasi-weaving permutation with fixed main
and auxiliary substitution points (enumerated by QW (z) defined in Equation 1) and
such that:

– in the main substitution point, we replace the leaf by the tree of a permutation in
S \ { }. This corresponds to the multiplication by S(z)−z

z , and

– in the auxiliary substitution point, we replace the leaf by 12 (resp. 21). It corre-
sponds to the multiplication by z.

Thus we obtain that the generating functions for terms of the above shapes are

QW+(z)
(

z S(z)−z
z

)

and QW−(z)
(

z S(z)−z
z

)

.

We can finally rewrite the equation for S into an equation for the generating function
S(z) of pin-permutations, and we obtain:

S(z) = z +
W+(z)2

1 − W+(z)
+

2W+(z) − W+(z)2

(1 − W+(z))2
N+(z) +

W−(z)2

1 − W−(z)
+

2W−(z) − W−(z)2

(1 − W−(z))2
N−(z) + Si(z) + SiMult(z)

(S(z) − z

z

)

+QW+(z)
(

z
S(z) − z

z

)

+ QW−(z)
(

z
S(z) − z

z

)

Solving this equation leads to the following result:

Theorem 5.1. The class of pin-permutations has a rational generating function:

S(z) = z
8z6 − 20z5 − 4z4 + 12z3 − 9z2 + 6z − 1

8z8 − 20z7 + 8z6 + 12z5 − 14z4 + 26z3 − 19z2 + 8z − 1

The Taylor expansion of S leads to:

S(z) = z + 2z2 + 6z3 + 24z4 + 120z5 + 664z6 + 3596z7 + 19004z8

+99596z9 + 521420z10 + O(z11)

Notice that the eight first terms are already given in [18].
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6 Infinite basis for the pin-permutation class

Let B be the basis of excluded patterns defining the pin-permutation class. This basis B is
the set of minimal permutations that have no pin representation, minimal being intended in
the sense of the pattern involvement relation ≺. More formally, it is equivalent to write that
B = {σ : σ has no pin representation but ∀τ ≺ σ, τ 6= σ, τ has a pin representation}.

Brignall, Ruškuc and Vatter consider that ”it is not even obvious that the pin-permutation
class has a finite basis” [18]. Indeed, this basis B is infinite. We prove this result by exhibiting
an infinite antichain (σn)n≥8 in the basis of the pin-permutation class. We can notice that
(σn) could be extended by σ6 = 361524 and σ7 = 3746152, but by no permutation of size 5,
as shown in [18].

The study of infinite antichains of permutations has recently received much attention,
see for example [4, 7, 15]. In [15], infinite antichains are obtained by adding pins around a
small pattern. This technique will also apply in our case. The permutations (σn)n≥8 are built
inserting separating pins around the permutation π = 15243, whose graphical representation
is given on Figure 16, and which has the particular following property:

Lemma 6.1. Consider the permutation π = 15243 and let us denote by x the rightmost
element in its grid representation, corresponding to 3. There is no pin representation of π
that ends with x. However, every pattern of π obtained by removing an element y 6= x in π
has a pin representation ending with x.

Proof. Let us denote by B the bounding box all elements of π but x. The element x divides
B into two subsets of cardinality 2, so that x can satisfy neither the separation nor the
independence condition with respect to B. This proves that π has no pin representation that
ends with x. The second point is proved by exhaustive examination.

Notice also that π is a pin-permutation. Indeed, all permutations of size at most 5 are
pin-permutations.

Figure 16 The permutation 15243, which is the starting point for the construction of every
permutation σn of the infinite antichain in the basis of the pin-permutation class.

x

We then define the permutations (σn)n≥8 around this starting point as follows:

Definition 6.1. If n = 2k + 1, (k ≥ 4), then σn is the permutation obtained from π inserting
separating pins called s6, s7, . . . , sn according to the schema (UR)k−3DR. If n = 2k, (k ≥ 4),
then σn is the permutation obtained from π inserting separating pins called s6, s7, . . . , sn

according to the schema (UR)k−4ULU . In both cases, the first pin separates x from the
four other points in π, and every other pin separates the previous one from the other points.

Notice that the index n corresponds to the size of σn and that each σn contains a unique
occurrence of π. Some examples are given on Figure 17.

Proposition 6.1. For any n, the permutation σn has no pin representation, but any permu-
tation obtained from σn by removing one element is a pin-permutation.
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Figure 17 The permutations σn for n = 8, 9, 10, 14 and 15.
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Proof. The proof is a extensive case-study using results of Lemmas 6.1 and 4.1.

Consequence 6.1. The sequence (σn) is an antichain (for the pattern involvement relation
≺), and for any n, σn belongs to the basis B of excluded patterns defining the pin-permutation
class.

Proof. We prove the first point by contradiction. Assume that (σn) is not an antichain. Then
there exist n, k, with k < n such that σk is a pattern of σn. Because k < n, it implies that
there exists a permutation τ of size n − 1, obtained from σn by removing one element, such
that σk ≺ τ ≺ σn. By Theorem 6.1, τ is a pin-permutation. With Lemma 3.1, we conclude
that σk is also a pin-permutation, contradicting Theorem 6.1.

Theorem 6.1 implies that every strict pattern of σn is a pin-permutation, since the set of
pin-permutations is a class of permutation (see Lemma 3.1). The second point then comes
easily from the definition of the basis of a permutation class.

This allows us to conclude that:

Theorem 6.1. The pin-permutation class has an infinite basis.

Classes of permutations having both an infinite basis and a rational generating function are
pretty rare in the literature. We found only one example in [1]: the classes Tk of permutations
obtained after k transposition switches in series, for k ≥ 5. We can notice that in [1] the
rationality of the generating functions is obtained with automata-theoretic techniques, and
this can be compared to our proof of Theorem 5.1 where the language of pin words plays a
key role.
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7 Conclusion and open questions

Before turning back to the original motivations of their definition, we summarize the im-
provements that we obtained in the study of pin-permutations. Theorem 3.1 characterizes
the decomposition trees of pin-permutations, but most importantly it gives a recursive de-
scription of these permutations. Another way for enlightening structure in permutation classes
is to describe their basis. For pin-permutations, although we prove that the basis is infinite,
there is as far as we know no complete description of the basis.

Let us now get back to the context in which pin-permutations were originally defined.
Albert and Atkinson proved in [2] that every class of permutations containing a finite number
of simple permutations has an algebraic generating function. Brignall, Ruškuc, and Vatter
then defined in [18] a procedure for checking this criterion automatically, that is to say, for
deciding whether the number of simple permutations in a class C given by its finite basis
B is finite or not. In this procedure, they check three properties of the class C: does C
contains arbitrarily long parallel alternations? wedge simple pin-permutations? proper pin-
permutations? The first two points are easy: they can be reformulated into properties of the
permutations in the basis B in terms of pattern-avoidance. The third point is the main step
in the decision procedure, and uses finite automata techniques.

One question that remains opened is the complexity of this decision problem. Analyzing
carefully the procedure of [18], we can observe that the construction of the automata that
are used can be done in polynomial time, until a last step involving the determinization of
a transducer. This causes an exponential blow-up in the complexity of the algorithm. A
natural question is to ask if there exists a polynomial-time algorithm for deciding whether a
class contains a finite number of simple permutations.
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[19] Hermann Buer and Rolf H. Möhring. A fast algorithm for the decomposition of graphs
and posets. Mathematics of Operations Research, 8(2):170–184, May 1983.

[20] Sylvie Corteel, Guy Louchard, and Robin Pemantle. Common intervals in permutations.
Discrete Mathematics and Theoretical Computer Science, 8:189–214, 2006.

[21] Alain Cournier and Michel Habib. A new linear algorithm for modular decomposition. In
Sophie Tison, editor, 19th International Colloquium Trees in Algebra and Programming
- CAAP’94, volume 787 of Lecture Notes in Computer Science, pages 68–84. Springer,
1994.

[22] Sinisa Crvenkovic, Igor Dolinka, and Petar Markovic. A survey of algebra of tournaments.
Novi Sad Journal of Mathematics, 29(2):95–130, 1999.

[23] Sergi Elizalde. Statistics on pattern-avoiding permutations. PhD thesis, MIT, 2004.

35



[24] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

[25] Roland Fräıssé. On a decomposition of relations which generalizes the sum of ordering
relations. Bull. Amer. Math. Soc., 59:389, 1953.

[26] Tibor Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scien-
tiarum Hungaricae, 18(1-2):25–66, 1967.

[27] Steffen Heber and Jens Stoye. Finding all common intervals of k permutations. In
12th Annual Symposium Combinatorial Pattern Matching, (CPM 2001), volume 2089 of
Lecture Notes in Computer Science, pages 207–218. Springer Verlag, 2001.

[28] Louis Ibarra. Finding pattern matchings for permutations. Information Processing Let-
ters, 61:293–295, 1997.

[29] Pierre Ille. Indecomposable graphs. Discrete Mathematics, 173:71–78, 1997.

[30] Sergey Kitaev and Toufik Mansour. A survey on certain pattern problems. available at
http://www.ru.is/kennarar/sergey/publications.html, 2003.

[31] Frederic Maffray and Myriam Preissmann. A translation of Tibor Gallai’s paper: Tran-
sitiv orientierbare Graphen. In J.L. Ramirez-Alfonsin and B.A. Reed, editors, Perfect
graphs, pages 25–66. J. Wiley, 2001.
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[33] Rolf H. Möhring and Franz J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete Math,
19:257–356, 1984.

[34] James H. Schmerl and William T. Trotter. Critically indecomposable partially ordered
sets, graphs, tournaments and other binary relational structures. Discrete Mathematics,
113:191–205, 1993.

[35] Jeremy Spinrad. P4-trees and substitution decomposition. Discrete Applied Mathematics,
39(3):263–291, 1992.

[36] David P. Sumner. Indecomposable graphs. PhD thesis, Univ. of Massachusetts, 1971.

[37] Takeaki Uno and Mutsunori Yagiura. Fast algorithms to enumerate all common intervals
of two permutations. Algorithmica, 14:209–227, 2000.

[38] Vincent Vatter. Enumeration schemes for restricted permutations. Comb. Probab. Com-
put., 17(1):137–159, 2008.

36


