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Two-scale semi-lagrangian simulation of a charged particle

beam in a periodic focusing channel

Alexandre Mouton
IRMA, Université Louis Pasteur, F-67084 Strasbourg

Abstract

This paper is devoted to numerical simulation of a charged particle beam submitted to

a strong oscillating electric field. For that, we consider a two-scale numerical approach as

follows: we first recall the two-scale model which is obtained by using two-scale convergence

techniques; then, we numerically solve this limit model by using a backward semi-lagrangian

method and we propose a new mesh of the phase space which allows us to simplify the solution

of the Poisson’s equation. Finally, we present some numerical results which have been obtained

by the new method, and we validate its efficiency through long time simulations.

AMS subjects: 35B27, 76X05, 65M25 (65Y20).

Keywords: two-scale convergence, semi-lagrangian method, Vlasov-Poisson model.

1 Introduction

Recent papers have proved that the two-scale convergence theory developed by Allaire in [2] and
Nguetseng in [17] can be used successfully in order to develop numerical methods for solving ODEs
or PDEs with oscillatory singular perturbations: for example, Frénod, Salvarani and Sonnendrücker
have developed a two-scale PIC method in [13] for simulations of charged particle beams in a pe-
riodic focusing channel, and Frénod, Mouton and Sonnendrücker have developed a two-scale finite
volume method in [9] for solving the weakly compressible 1D Euler equations. We can also cite
the work of Ailliot, Frénod and Monbet in [1] about the simulation of tide oscillation for long term
drift forecast of objects in the ocean.

On the other hand, many papers devoted to the numerical simulation of Vlasov-type prob-
lems involve Particle-In-Cell methods (see Birdsall and Langdon [3]) or Eulerian methods like
semi-lagrangian schemes (see Sonnendrücker et al.[19], Grandgirard et al.[14], Filbet and Son-
nendrücker [7, 8], Cheng and Knorr [5]). Since papers like [9] or [13] can be viewed as parts of
a work programme which goal is the development of two-scale numerical methods for simulations
of magnetic confinement fusion, it can be interesting to couple two-scale convergence results on
Vlasov models such as two-scale models obtained in [12] with a semi-lagrangian scheme.

However, it is preferable in a first time to develop such a method on a more simple problem
in order to study its behavior especially in the context of non-smooth solutions. The context of
charged particle beams in a periodic focusing external field described in [13] offers a relatively
simple framework for answering these questions.

We recall that such a phenomenon can be successfully represented by the 3D Vlasov-Maxwell
system. In the same spirit of [13], we will consider non-relativistic long and thin beams, so we
can replace the full three-dimensional Vlasov-Maxwell system by its paraxial approximation. To
obtain this approximation, we do the following assumptions:

• the beam has already reached its stationary state,

• the beam is long and thin,

• the beam is propagating at constant velocity vz along the longitudinal axis z,

• the beam is sufficiently long so we can neglect the longitudinal self-consistent forces,
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• the external electric field is supposed to be l-periodic in z and independent of the time,

• the beam is axisymmetric,

• the initial distribution f0 is concentrated in angular momentum.

Under all these assumptions, the 3D Vlasov-Maxwell system reduces itself to a 2D Vlasov-Poisson
system where the longitudinal position coordinate z plays the role of time, and even to a 1D
axisymmetric Vlasov-Poisson system of the form

∂tf
ǫ +

vr

ǫ
∂rf

ǫ +
(

Eǫ
r + Ξǫ

r

)

∂vr
f ǫ = 0 ,

f ǫ(r, vr , t = 0) = f0(r, vr) ,

1

r
∂r(r Eǫ

r) =

∫

R

f ǫ dvr ,

Ξǫ
r(r, t) = −1

ǫ
H0 r + H1

(

ω1
t

ǫ

)

r ,

(1.1)

where r ≥ 0 is the radial component of the position vector in the transverse plane to the prop-
agation direction, vr ∈ R is the projection of the transverse velocity in the transverse plan to
the propagation direction, ǫ is the ratio between the characteristic transverse radius of the beam
and the characteristic longitudinal length of the beam, f ǫ = f ǫ(r, vr, t) is the distribution func-
tion of the particles, Eǫ

r = Eǫ
r(r, t) is the radial part of the transverse self-consistent electric field,

Ξǫ
r = Ξǫ

r(r, t) is the radial part of the transverse external electric field defined with the dimension-
less real constant ω1 and the tension functions H0 and H1 which are respectively constant and
periodic. All these quantities and variables are dimensionless. This system is naturally defined
for r ≥ 0 but we can extend it to r ∈ R by using the conventions f ǫ(−r,−vr, t) = f ǫ(r, vr, t),
Eǫ

r(−r, t) = −Eǫ
r(r, t), and Ξǫ

r(−r, t) = −Ξǫ
r(r, t).

The aim the paper is to simulate the system (1.1) with a two-scale semi-lagrangian scheme
when ǫ → 0. Inspired by Frénod, Salvarani and Sonnendrücker [13], and Frénod, Mouton and Son-
nendrücker [9], we derive the model (1.1) by using the two-scale convergence theory developed in
Allaire [2] and Nguetseng [17] and we obtain a new model which is independent of ǫ. Then, instead
of discretizing the model (1.1) with a classical semi-lagrangian scheme, we discretize the new model
with a semi-lagrangian method in order to obtain an approximation of a function F = F (r, vr, τ, t),
where τ is the second time scale, which verifies f ǫ(r, vr , t) ∼ 2πF (r, vr,

t
ǫ , t). Proceeding in such

a way presents the advantage that there is no longer 1
ǫ -oscillations in the limit model, so a very

small time step is no longer required in order to simulate these oscillations. However, since semi-
lagrangian schemes are based on interpolation on a phase space mesh, we have to pay attention to
the contributions of the second time scale τ in the limit model. For this reason, in the same spirit
of the work of Lang et al.[16], we introduce a τ -dependent moving mesh adapted for this two-scale
numerical method the goal of which is to reduce the number of interpolations during the simulation.

The paper is organized as follows: in section 2, we recall the procedure leading from the paraxial
approximation of the complete 3D Vlasov-Maxwell system to the model (1.1), and we will recall
some two-scale convergence results about this model. In section 3, we build the semi-lagrangian
method on the limit model and we see how to simplify it by considering a particular mesh. Section
4 is devoted to numerical results obtained with the two-scale semi-lagrangian method: on one
hand, we compare them to some results obtained from a classical semi-lagrangian method on the
system (1.1) in terms of quality of results and CPU time, and on the other hand, we see in this
section the consequences of the use of the new mesh in the same terms.

2 The two-scale model

Firstly, we recall in this section the way to obtain the system (1.1) from the paraxial approximation
of the 3D Vlasov-Maxwell equations. Then, we present a theorem about the two-scale convergence
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of the solutions of (1.1) which has been proved by Frénod, Salvarani and Sonnendrücker in [13].

2.1 Scaling of the paraxial model

By applying the hypothesis about the considered beam which are mentioned in the introduction,
the full three-dimensional Vlasov-Maxwell is reduced to

vz ∂zf + v · ∇xf +
q

m
(E + Ξ) · ∇vf = 0 ,

f(x, z = 0,v) = f0(x,v) ,

−∇xφ = E , −∆xφ =
ρ

ε0
=

q

ε0

∫

R2

f dv ,

(2.1)

where z is the longitudinal position coordinate, x = (x, y) is the transverse position vector, vz

is the constant longitudinal speed, v = (vx, vy) is the transverse speed vector, f = f(x, z,v)
is the distribution function of particles whose charge is q and mass is m, φ = φ(x, z) is the
potential linked with the transverse self-consistent electric field E = E(x, z), and Ξ = Ξ(x, z) is
the transverse external electric field. More details about this derivation can be found in [6] and
[8]. In this model, we assume that the external electric field is given by

Ξ(x, z) = −H0 x + H1

(

ω1
z

l

)

x , (2.2)

where H0 is a positive constant tension, H1 is a l-periodic tension and ω1 is a dimensionless real
constant.

In the same spirit of Frénod, Salvarani and Sonnendrücker [13], we build a dimensionless version
of the system (2.1)-(2.2) by introducing the dimensionless variables x′, z′,v′ defined by

x = λx′ , z = L z′ , v = vz v′ , (2.3)

where λ is the characteristic transverse radius of the beam and L is the characteristic length of
the beam. Moreover, we define the dimensionless quantities f ′, f ′

0,E
′, φ′, H ′

0, H
′
1 by

f(λx′, L z′, vz v′) =
m ε0

q2 λL
f ′(x′, z′,v′) , E(λx′, L z′) =

m v2
z

q L
E′(x′, z′) ,

f0(λx′, vz v′) =
m ε0

q2 λL
f ′
0(x

′,v′) , H0 = H0 H ′
0 ,

φ(λx′, L z′) =
m λv2

z

q L
φ′(x′, z′) , H1(τ) = H1 H ′

1(τ) .

(2.4)

With these new variables, the system (2.1)-(2.2) can be rewritten under the form

∂z′f ′ +
L

λ
v′ · ∇x

′f ′ +

[

E′ − H0 λ q L

v2
z m

H ′
0 x′ +

H1 λ q L

v2
z m

H ′
1

(ω1 L z′

l

)

x′

]

· ∇v
′f ′ = 0 ,

f ′(x′, z′ = 0,v′) = f ′
0(x

′,v′) ,

−∇x
′φ′ = E′ , −∆x

′φ′ =

∫

R2

f ′ dv′ .

(2.5)

Since the beam is supposed to be long and thin, it is natural to take the ratio

λ

L
= ǫ . (2.6)
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Furthermore, as we want to simulate the beam over a large number of periods of the external
electric field, we also consider the ratio

l

L
= ǫ . (2.7)

Finally, we suppose that the external electric field is much stronger than the self-consistent electric
field and that its oscillations in z direction are of the same order as E, so we consider that

H0 λ q L

v2
z m

=
1

ǫ
,

H1 λ q L

v2
z m

= 1 . (2.8)

Under all these hypothesis the system (2.5) reduces to

∂tf
ǫ +

1

ǫ
v · ∇xf ǫ + (Eǫ + Ξǫ) · ∇vf ǫ = 0 ,

f ǫ(x,v, t = 0) = f0(x,v) ,

−∇xφǫ = Eǫ , −∆xφǫ =

∫

R2

f ǫ dv ,

Ξǫ(x, t) = −1

ǫ
H0 x + H1

(ω1 t

ǫ

)

x ,

(2.9)

where the primed notations for the variables and the initial distribution have been eliminated, and
where z′ has been replaced by t, f ′ by f ǫ, E′ by Eǫ, φ′ by φǫ, and Ξ′ by Ξǫ.

We introduce the polar coordinates (r, θ, vr, vθ) linked with (x,v) by the relations

x = r cos θ , vr = vx cos θ + vy sin θ ,
y = r sin θ , vθ = vy cos θ − vx sin θ .

(2.10)

Since the beam is supposed to be axisymmetric, the system does not depend on θ. Furthermore,
we assume that the initial distribution is concentrated in angular momentum. Then the system
(2.9) reduces to (1.1).

2.2 Two-scale convergence results

Since the aim of the paper is to develop a two-scale numerical method in order to simulate the
model (1.1), we have to establish that the solution f ǫ of this model two-scale converges to a function
F = F (r, vr, τ, t) in a certain Banach space, and we have to find a system of equations verified by
F . These results have been proved in [13] and are recalled in the theorem below.

Theorem 1. We assume that H0 = 1 and that the initial distribution f0 of (1.1) satisfies the
following properties:

(i) f0 ∈ L1
(

R2; |r|drdvr

)

∩ Lp
(

R2; |r|drdvr

)

with p ≥ 2,

(ii) f0(r, vr) ≥ 0 for all (r, vr) ∈ R2,

(iii)

∫

R2

(

r2 + v2
r

)

f0(r, vr) |r| dr dvr < +∞ .

Then, considering a sequence of solutions (f ǫ,Eǫ
r) of (1.1) and extracting a subsequence from it,

we can say that f ǫ two-scale converges to F ∈ L∞
(

[0, T ] × [0, 2π]; L2(R2; |r|drdvr)
)

and Eǫ
r two-

scale converges to Er ∈ L∞
(

[0, T ]× [0, 2π]; W 1,3/2(R; |r|dr)
)

. Furthermore, there exists a function

G ∈ L∞
(

[0, T ]; L2(R2; |q|dqdur)
)

such that

F (r, vr, τ, t) = G
(

cos(τ) r − sin(τ) vr , sin(τ) r + cos(τ) vr , t
)

, (2.11)
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and (G, Er) is solution of

∂tG −
[

∫ 2π

0

sin(σ)Er

(

cos(σ) q + sin(σ)ur, σ, t) dσ

]

∂qG

−
[

∫ 2π

0

sin(σ)
IQ(ω1)

2π
H1(ω1 σ)

(

cos(σ) q + sin(σ)ur

)

dσ

]

∂qG

+

[

∫ 2π

0

cos(σ)Er

(

cos(σ) q + sin(σ)ur, σ, t) dσ

]

∂ur
G

+

[

∫ 2π

0

cos(σ)
IQ(ω1)

2π
H1(ω1 σ)

(

cos(σ) q + sin(σ)ur

)

dσ

]

∂ur
G = 0 ,

G(q, ur, t = 0) =
1

2π
f0(q, ur) ,

1

r
∂r

(

r Er(r, τ, t)
)

=

∫

R

G
(

cos(τ) r − sin(τ) vr , sin(τ) r + cos(τ) vr , t
)

dvr ,

(2.12)

where IQ(ω1) is equal to 1 if ω1 ∈ Q, and 0 otherwise.

Of course, such a result exists for the solution of the system (2.9) and can be found in [13].

3 The two-scale semi-lagrangian method

In this section, we develop a two-scale semi-lagrangian method in order to approach the solution
f ǫ of (1.1), in the case where H0 = 1. As it has been suggested in the introduction, the strategy
is to discretize the model (2.11)-(2.12) in order to obtain a good approximation of F which can be
used for approaching f ǫ(r, vr, t) ∼ 2πF (r, vr,

t
ǫ , t). As in the two-scale PIC-method developed by

Frénod, Salvarani and Sonnendrücker in [13], there is an advantage by proceeding in such a way:
since there is no longer 1

ǫ -frequency oscillations in the system (2.12), we do not need a very small
time step for good simulation. In a first time, we recall the basis of a semi-lagrangian method.
Then we present a motivation for the development of a two-scale semi-lagrangian method through
the description of a classical backward semi-lagrangian method on the model (1.1). Finally, we
describe the two-scale numerical method itself and we suggest a new mesh in order to simplify it.

3.1 The semi-lagrangian method

In this paragraph, we recall the way to discretize the abstract model

∂tf(x, t) + U(x, t) · ∇xf(x, t) = 0 (3.1)

with a semi-lagrangian method. For this, we have to consider the characteristics of (3.1), which
are the solutions of

∂tX(t) = U
(

X(t), t
)

. (3.2)

It is an easy game to remark that f is constant along the characteristics, i.e.

∂t

(

f
(

X(t), t
))

= 0 , (3.3)

so we can write
f
(

X(t;x, s), t
)

= f(x, s) , (3.4)

where X(t;x, s) is the solution (3.2) with the condition X(s) = x.
This property of f is used in the semi-lagrangian method as follows: assuming that we know

the value of f at time tn − ∆t on the mesh points (xi)i = 0, ..., N , we use the property (3.4) to say
that

f(xi, tn + ∆t) = f
(

X(tn − ∆t;xi, tn + ∆t), tn − ∆t
)

, (3.5)
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so we have to compute the point X(tn −∆t;xi, tn + ∆t) first, then compute f
(

X(tn −∆t;xi, tn +

∆t), tn − ∆t
)

by interpolating f(·, tn − ∆t) on the points (xi)i =0, ..., N in order to obtain an
approximation of f(xi, tn + ∆t). Sonnendrücker et al. have suggested in [19] a way to compute a
second order approximation of X(tn − ∆t;xi, tn + ∆t): they discretize the equation (3.2) with a
finite difference method in order to obtain the following approximation:

X(tn − ∆t;xi, tn + ∆t) = xi − 2di , (3.6)

where di is solution of

di = ∆tU(xi − di, tn) . (3.7)

In many cases, U(·, tn) is only known at points xi. Then we have to replace (3.7) by

di = ∆t ΠU(xi − di, tn) , (3.8)

where Π is an interpolation operator on points (xi)i. Assuming that the polynomial function
x 7→ ΠU(x, tn) is regular enough, we write the following expansion of (3.8):

di = ∆tU(xi, tn) − ∆t∇x(ΠU)(xi, tn)di + O(∆t2) , (3.9)

because, in the expansion of ΠU in x, we get a O
(

|di|2
)

term, which is a O(∆t2). Then, we obtain
a second order accurate approximation of di given by

di = ∆t
(

Id + ∆t∇x(ΠU)(xi, tn)
)−1 × U(xi, tn) . (3.10)

Considering this approach, the semi-lagrangian method writes:

1. knowing f at time tn −∆t and U at time tn, we compute (di)i =0, ..., N by using the relation
(3.10) for each i,

2. we compute f at time tn + ∆t as follows:

f(xi, tn + ∆t) = Πf(xi − 2di, tn − ∆t) . (3.11)

3.2 Implementation of the non-homogenized model

In this paragraph, we describe a classical semi-lagrangian method on the system (1.1). Since the
electric fields Eǫ

r and Ξǫ
r do not depend on vr, we can do a time-splitting on the first equation of

the model, i.e. solving separately at each time step the equations

∂tf
ǫ +

vr

ǫ
∂rf

ǫ = 0 , (3.12)

and

∂tf
ǫ +

(

Eǫ
r + Ξǫ

r) ∂vr
f ǫ = 0 , (3.13)

with a second order in time numerical scheme instead of solving the complete equation with the
same scheme. As a consequence, we only do 1D interpolations instead of 2D interpolations. Then,
denoting f ǫ

n with the aproximation of f ǫ(·, ·, tn) and Eǫ
n with the approximation of En

r (·, tn) on the
uniform mesh (ri, vrj)i,j where ∆r is the size of one cell in r direction and ∆vr is the size of one
cell in vr direction, an iteration of the method is organized as follows:

1. Knowing f ǫ
n and Eǫ

n, we do a backward advection of ∆t
2 in vr direction and we define f ǫ

∗ by

f ǫ
∗(ri, vrj) = Πvr

f ǫ
n

(

ri, vrj −
∆t

2

(

Eǫ
n(ri) + Ξǫ

r(ri, tn)
)

)

, (3.14)

where Πvr
is a 1D cubic spline interpolation operator on the points (vrj)j .

6



2. We do an advection of ∆t in r direction and we define f ǫ
∗∗ by

f ǫ
∗∗(ri, vrj) = Πrf

ǫ
∗

(

ri −
∆t

ǫ
vrj , vrj

)

, (3.15)

where Πr is a 1D cubic spline interpolation operator on the points (ri)i.

3. We compute Eǫ
n+1 by discretizing the formula

Eǫ
n+1(ri) =















1

ri

∫ ri

0

∫

R

s f ǫ
∗∗(s, vr) dvr ds if ri 6= 0,

0 otherwise,

(3.16)

with the trapezoidal rule on the points (ri, vrj)i,j .

4. We compute f ǫ
n+1 by doing a last advection of ∆t

2 in vr direction:

f ǫ
n+1(ri, vrj) = Πvr

f ǫ
∗∗

(

ri, vrj −
∆t

2

(

Eǫ
n+1(ri) + Ξǫ

r(ri, tn+1)
)

)

. (3.17)

If we use such a method, we have to guarantee the accuracy of the scheme, especially we
consider the 1

ǫ -frequency oscillations of the external electric field. A solution is to assume that the
time step ∆t satisfies











ri − ∆r ≤ ri −
∆t

ǫ
vrj ≤ ri + ∆r ,

vrj − ∆vr ≤ vrj −
∆t

2

(

Eǫ
n(ri) + Ξǫ(ri, tn)

)

≤ vrj + ∆vr ,

(3.18)

for all i, j, n. Then, in order to obtain good results with this method, ∆t has to be of the same
order of ǫ which penalizes the method in terms of CPU time cost when we consider a very small ǫ.

3.3 Implementation of the two-scale model

In this paragraph, we adapt the semi-lagrangian method we have described in the paragraph 3.1
to the model (2.12). In this case, the characteristics of the system are the solutions of

{

∂tQ(t) = 〈E1〉
(

Q(t), Ur(t), t
)

,
∂tUr(t) = 〈E2〉

(

Q(t), Ur(t), t
)

,
(3.19)

where 〈E1〉 and 〈E2〉 are defined by











































〈E1〉(q, ur, t) = −
∫ 2π

0

sin(σ)
[

Er

(

cos(σ) q + sin(σ)ur, σ, t
)

+
IQ(ω1)

2π
H1(ω1 σ)

(

cos(σ) q + sin(σ)ur

)

]

dσ ,

〈E2〉(q, ur, t) =

∫ 2π

0

cos(σ)
[

Er

(

cos(σ) q + sin(σ)ur, σ, t
)

+
IQ(ω1)

2π
H1(ω1 σ)

(

cos(σ) q + sin(σ)ur

)

]

dσ .

(3.20)

As in the paragraph 3.1, we remark that the solution G of (2.12) is constant along the character-
istics, so we can write:

G(q, ur, tn+1) = G
(

Q(tn−1; q, tn+1), Ur(tn−1; ur, tn+1), tn−1

)

, (3.21)

where tn = n ∆t, and where
(

Q(tn−1; q, tn+1), Ur(tn−1; ur, tn+1)
)

is the solution of (3.19) with the

condition
(

Q(tn+1), Ur(tn+1)
)

= (q, ur).
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Firstly, we define the mesh in q and ur directions by considering the points qi = i ∆q and
urj = j ∆ur (i = −Pq, . . . , Pq, j = −Pur

, . . . , Pur
). We also consider the uniform mesh τm = m ∆τ

on [0, 2π] (m = 0, . . . , Pτ ). Finally, we fix a time step ∆t for the entire simulation. Then, denoting
Gn with the approximation of G at time tn, an iteration of the semi-lagrangian method is organized
as follows:

1. Assuming that we know the value of Gn and Gn−1 on the mesh (qi, urj)i,j , we compute En
r

with the formula

Er(qi, τm) =























1

qi

∫ qi

0

∫

R

s Gn
(

cos(τm)s − sin(τm)vr ,

sin(τm)s + cos(τm)vr

)

ds dvr if i 6= 0,

0 otherwise.

(3.22)

Since Gn is only known at points (qi, urj), we have to interpolate Gn. Assuming that the
support of Gn is included in [−(Pq + 1)∆q, (Pq + 1)∆q] × [−(Pur

+ 1)∆ur, (Pur
+ 1)∆ur]

with Pq, Pur
∈ N large enough, we use the trapezoidal rule in order to approach the integral

above. We obtain

En
r (qi, τm) ≈ ∆q ∆ur

2

Pur
∑

j =−Pur

(

Π2G
n(cos(τm)qi − sin(τm)urj , sin(τm)qi + cos(τm)urj

)

+
2

i

i−1
∑

k =1

k Π2G
n(cos(τm)qk − sin(τm)urj , sin(τm)qk + cos(τm)urj

)

)

,

(3.23)

where Π2 is a cubic spline interpolation operator on the points (qi, urj).

2. We compute 〈En
1 〉 and 〈En

2 〉 at points (qi, urj): since En
r is only known at points (qi, τm),

we have to interpolate En
r . By using the trapezoidal rule for approximating the integrals in

(3.20), we obtain



















































〈En
1 〉(qi, urj) ≈ −∆τ

Pτ
∑

m = 0

sin(τm)
[

Π1En
r

(

cos(τm) qi + sin(τm)urj , τm

)

+
IQ(ω1)

2π
H1(ω1 τm)

(

cos(τm) qi + sin(τm)urj

)

]

,

〈En
2 〉(qi, urj) ≈ ∆τ

Pτ
∑

m =0

cos(τm)
[

Π1En
r

(

cos(τm) qi + sin(τm)urj , τm

)

+
IQ(ω1)

2π
H1(ω1 τm)

(

cos(τm) qi + sin(τm)urj

)

]

,

(3.24)

where Π1 is a cubic spline interpolation operator on the points (qi)i.

3. We compute the the shifts (d1
i,j , d

2
i,j) by using the following formula:

(

d1
i,j

d2
i,j

)

= ∆tA−1
i,j

(

〈E1
n〉(qi, urj)

〈E2
n〉(qi, urj)

)

, (3.25)

where the matrix Ai,j is defined by

Ai,j = Id + ∆t





∂q

(

Π2〈E1
n〉
)

(qi, urj) ∂ur

(

Π2〈E1
n〉
)

(qi, urj)

∂q

(

Π2〈E2
n〉
)

(qi, urj) ∂ur

(

Π2〈E2
n〉
)

(qi, urj)



 . (3.26)

4. We compute Gn+1 by interpolating Gn−1 at the points (qi − 2 d1
i,j , urj − 2 d2

i,j):

Gn+1(qi, urj) = Π2G
n−1(qi − 2 d1

i,j , urj − 2 d2
i,j) . (3.27)
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5. We save the approximation of f ǫ at time tn+1 given by

f ǫ(r, vr, tn+1) ∼ 2 π Π2G
n+1
(

cos
( tn+1

ǫ

)

r−sin
( tn+1

ǫ

)

vr, sin
( tn+1

ǫ

)

r+cos
( tn+1

ǫ

)

vr

)

. (3.28)

In order to initialize this two time step advance, we have to compute G1 from G0 which is given
as an initial data: for this purpose, we perform a complete iteration such as decribed above where
∆t is replaced by ∆t

2 and where we assume that G1/2 = G0.

3.4 The two-scale mesh

In most of test cases, we assume that the support of the initial distribution f0 is compact and is
included in some Ω = [−R, R]× [−vR, vR] ⊂ R2 for R > 0, vR > 0 large enough. Then, if we follow
the algorithm presented in the previous paragraph, the first thing we have to compute is E0

r by
approximating the integral in (3.22): for numerical reasons, we have to reduce the integral on R to
an integral on a compact interval. Furthermore, since we can only say that the support of (r, vr) 7→
f0

(

cos(τ) r−sin(τ) vr , sin(τ) r+cos(τ) vr

)

is included in Ω′ = [−R−vR, R+vR]×[−R−vR, R+vR] as
it is illustrated in Figure 1, the integral on R in (3.22) is reduced to an integral on [−R−vR, R+vR].
As a consequence, we have to do all the simulation on Ω′ instead of Ω in order to avoid losing
some data and we have to increase the number of mesh points in order to keep good interpolation
results, even if the distribution function will be equal to 0 at many new points.

R

vR

−R

−vR

−R − vR R + vR

vR + R

−vR − R

r

vr

Figure 1: Support of (r, vr) 7→ f0(r, vr) and (r, vr) 7→ f0

(

cos(τ) r − sin(τ) vr , sin(τ) r + cos(τ) vr

)

with τ = 2π
3 .

In this paragraph, we present a different approach in order to avoid this extension of the
simulation domain and its mesh. Before explaining the main idea of this new method, we consider
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the following meshes on Ω and [0, 2π]:

M(Ω) =
{

(ri, vrj) = (i ∆r, j ∆vr) : i = −Pr, . . . , Pr , j = −Pvr
, . . . , Pvr

}

,

M
(

[0, 2π]
)

=
{

τm = m ∆τ : m = 0, . . . , Pτ

}

,

M
(

[−R, R]
)

=
{

ri = i ∆r : i = −Pr, . . . , Pr

}

,

(3.29)

where ∆r = R
Pr+1 , ∆vr = vR

Pvr
+1 and ∆τ = 2π

Pτ+1 . Considering the function γ defined by

γ : R2 × [0, 2π] −→ R2

(r, vr , τ) 7−→
(

cos(τ) r − sin(τ) vr , sin(τ) r + cos(τ) vr

) , (3.30)

we define Ω(τ) and M
(

Ω(τ)
)

by

Ω(τ) = γ
(

Ω × {τ}
)

⊂ R2 ,

M
(

Ω(τ)
)

=
{

γ(ri, vrj , τ) : i = −Pr, . . . , Pr , j = −Pvr
, . . . , Pvr

}

.
(3.31)

r

vr

Figure 2: Mesh M(Ω) = M
(

Ω(0)
)

and support of (r, vr) 7→ f0(r, vr).
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r

vr

Figure 3: Mesh M
(

Ω(π
3 )
)

and support of (r, vr) 7→ f0 ◦ γ(r, vr,
π
3 ).

r

vr

Figure 4: Mesh M
(

Ω(2π
3 )
)

and support of (r, vr) 7→ f0 ◦ γ(r, vr,
2π
3 ).

The main idea of our new method is to compute (r, vr) 7→ F (r, vr, τm, tn) at points (ri, vrj) ∈
M(Ω) and to compute r 7→ Er(r, τm, tn) at points ri ∈ M

(

[−R, R]
)

, whereas the function (q, ur) 7→
G(q, ur, tn) is computed at points γ(ri, vrj , τm) ∈ M

(

Ω(τm)
)

for every τm ∈ M
(

[0, 2π]
)

. This
approach is similar as the time-dependent moving grid described by Lang et al. in [16], even if, in
our case, the mesh M

(

Ω(τ)
)

only depends on M(Ω) and τ , and is completely defined before the
beginning of the simulation.
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As a first consequence, considering that the support of (r, vr) 7→ f0(r, vr) is included in Ω is
equivalent to considering that the support of (r, vr) 7→ f0

(

γ(r, vr, τ)
)

is included in Ω(τ) for any
τ ∈ [0, 2π] such as illustrated in Figures 2,3, and 4, where the support of a Kapchinsky-Vladimirsky
distribution is represented (see [15], [18] or [8] for more details about this distribution). Then we
do not have to extend Ω in order to avoid losing some data. Furthermore, the equation (2.11)
reads

F (r, vr, τ, t) = G
(

γ(r, vr, τ), t
)

. (3.32)

Considering this approach, we fix a time step ∆t for all the simulation. Then, an iteration of
this new semi-lagrangian method is organized as follows:

1. Assuming that Gn−1 and Gn are known on the mesh M
(

Ω(τm)
)

for all τm ∈ M
(

[0, 2π]
)

,

we compute En
r at points (ri, τm) ∈ M

(

[−R, R]
)

× M
(

[0, 2π]
)

. With the new notations, the
equation (3.22) simplifies itself to

En
r (ri, τm) =















1

ri

∫ ri

0

∫

R

s Gn
(

γ(s, vr, τm)
)

dvr ds if i 6= 0,

0 otherwise.

(3.33)

Assuming that the support of Gn
(

γ(·, ·, τm)
)

is included in Ω(τm) for each τm (which is

equivalent to assume that the support of Gn
(

γ(·, ·, 0)
)

is included in Ω), we use the trapezoidal
rule to approximate the integral above:

En
r (ri, τm) ≈ ∆r ∆vr

2

Pvr
∑

j =−Pvr

(

Gn
(

γ(ri, vrj , τm)
)

+
2

i

i−1
∑

k =1

k Gn
(

γ(rk, vrj, τm)
)

)

. (3.34)

We remark here that, contrary to the computation done in (3.23), we do not have to inter-
polate Gn.

2. We compute 〈En
1 〉 and 〈En

2 〉 at points γ(ri, vrj , τm) ∈ M
(

Ω(τm)
)

:











































〈En
1 〉
(

γ(ri, vrj , τm)
)

= −
∫ 2π

0

sin(σ)
[

En
r

(

cos(σ − τm) ri + sin(σ − τm) vrj , σ
)

+
IQ(ω1)

2π
H1(ω1 σ)

(

cos(σ − τm) ri + sin(σ − τm) vrj

)

]

dσ ,

〈En
2 〉
(

γ(ri, vrj , τm)
)

=

∫ 2π

0

cos(σ)
[

En
r

(

cos(σ − τm) ri + sin(σ − τm) vrj , σ
)

+
IQ(ω1)

2π
H1(ω1 σ)

(

cos(σ − τm) ri + sin(σ − τm) vrj

)

]

dσ .

(3.35)

We approximate the integrals with the trapezoidal rule. However, since En
r is only known

at points of M
(

[−R, R]
)

× M
(

[0, 2π]
)

, we have to interpolate it: for that we choose a cubic

spline interpolation operator on the mesh M
(

[−R, R]
)

and we denote it with Π1. Then we
have the following approximations:



















































〈En
1 〉
(

γ(ri, vrj , τm)
)

≈−∆τ

Pτ
∑

k = 0

sin(τk)
[

Π1En
r

(

cos(τk − τm) ri + sin(τk − τm) vrj , τk

)

+
IQ(ω1)

2π
H1(ω1 τk)

(

cos(τk − τm) ri + sin(τk − τm) vrj

)

]

,

〈En
2 〉
(

γ(ri, vrj , τm)
)

≈∆τ

Pτ
∑

k =0

cos(τk)
[

Π1En
r

(

cos(τk − τm) ri + sin(τk − τm) vrj , τk

)

+
IQ(ω1)

2π
H1(ω1 τk)

(

cos(τk − τm) ri + sin(τk − τm) vrj

)

]

.

(3.36)
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3. We compute the shifts d(ri, vrj , τm) verifying

d(ri, vrj , τm) = ∆t

(

〈En
1 〉
(

γ(ri, vrj , τm) − d(ri, vrj , τm)
)

〈En
2 〉
(

γ(ri, vrj , τm) − d(ri, vrj , τm)
)

)

. (3.37)

For that, we consider the cubic spline interpolation operator Πm
2 on the mesh M

(

Ω(τm)
)

and, inspired by (3.10), we consider the following approximation of d(ri, vrj , τm):

d(ri, vrj , τm) = ∆tA−1
i,j,m

(

〈En
1 〉
(

γ(ri, vrj , τm)
)

〈En
2 〉
(

γ(ri, vrj , τm)
)

)

, (3.38)

where the matrix Ai,j,m is defined by

Ai,j,m = Id + ∆t





∂q

(

Πm
2 〈En

1 〉
)(

γ(ri, vrj , τm)
)

∂ur

(

Πm
2 〈En

1 〉
)(

γ(ri, vrj , τm)
)

∂q

(

Πm
2 〈En

2 〉
)(

γ(ri, vrj , τm)
)

∂ur

(

Πm
2 〈En

2 〉
)(

γ(ri, vrj , τm)
)



 . (3.39)

4. We compute Gn+1 on the meshes M
(

Ω(τm)
)

for all τm ∈ M
(

[0, 2π]
)

:

Gn+1
(

γ(ri, vrj, τm)
)

= Πm
2 Gn−1

(

γ(ri, vrj , τm) − 2d(ri, vrj , τm)
)

(3.40)

5. Assuming that there exists a fixed integer K ∈ N such that

∆t = ǫ ∆τ K , (3.41)

we save the approximation of f ǫ on M(Ω) given by

f ǫ(ri, vrj , tn+1) ∼ 2π Gn+1
(

γ(ri, vrj , τ(n+1) K)
)

. (3.42)

Contrary to the scheme described in the previous paragraph, we do not have to interpolate
Gn+1 to obtain an approximation of f ǫ at time tn+1.

Concerning the initialization of this two time step advance, we compute G0 = 1
2π f0 on the meshes

M
(

Ω(τm)
)

for all τm ∈ M
(

[0, 2π]
)

and, assuming that G1/2 = G0, we compute G1 by performing

a complete iteration such as described above with ∆t replaced by ∆t
2 .

We have built another two-scale semi-lagrangian method based on a mesh depending on the
variable τ . Compared to the semi-lagrangian method described in the paragraph 3.3, this technique
allows us to avoid some interpolations not only when we compute the two-scale limit of the electric
field E but also when we build the approximation of f ǫ defined by (3.42). As a consequence, we
reduces the global numerical diffusion within the simulation. However, we have to compute G and
〈E〉 on each mesh M

(

Ω(τm)
)

, which can be expensive in CPU time.

4 Numerical results

In this section, we present some numerical results obtained with the two-scale semi-lagrangian
methods described in the paragraphs 3.3 and 3.4. Following the approach of [13] for validating our
new methods, we study in a first time some linear cases where we can find an analytic expression
of the solution G of the system (2.12). Then we test the methods on non-linear cases.

4.1 Linear cases

In order to validate the two-scale semi-lagrangian methods described in the paragraphs 3.3 and
3.4, we simulate some linear cases, i.e. with a self-consistent electric field set to 0. This assumption
allows us to compute analytically the solution G of the system (2.12) under an adequate choice of
ω1 and H1.
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t = 1.1088 t = 6.468

Figure 5: Simulations of type (I) (first row), (II) (second row), (III) (third row), and (IV) (fourth
row) for a semi-gaussian beam wihout self-consistent electric field and ω1 = 4

√
2, H1(τ) = cos(τ).

In a first example, we suppose that ω1 /∈ Q, so we obtain that G is stationary in t, and is equal
to 1

2π f0. Then, the two-scale simulation reduces itself to the computation of

(r, vr, t) 7−→ f0

(

cos
( t

ǫ

)

r − sin
( t

ǫ

)

vr, sin
( t

ǫ

)

r + cos
( t

ǫ

)

vr

)

, (4.1)

for any function H1. It is much simpler than simulating the model (1.1) with the semi-lagrangian
method described in the paragraph 3.2. In Figure 5, we observe such a case, with ω1 = 4

√
2,

H1(τ) = cos(τ), and f0 given by

f0(r, vr, t) =
n0√

2π vth

exp
(

− v2
r

2 v2
th

)

χ[−rm,rm](r) , (4.2)

with χ[−rm,rm](r) = 1 if |r| ≤ rm and 0 otherwise. This corresponds to a semi-gaussian beam in
particle accelerator physics. In these Figures, we suppose that rm = 0.75, vth = 0.1, n0 = 4 and
ǫ = 10−2. Furthermore, the simulations (I), (II), (III) and (IV) correspond to
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• simulation (I): we solve the system (1.1) with a classical semi-lagrangian method, with Pr =
Pvr

= 64 and R = vR = 3,

• simulation (II): we solve the system (1.1) with a classical semi-lagrangian method, with
Pr = Pvr

= 128 and R = vR = 3,

• simulation (III): we solve the system (2.12) with a two-scale semi-lagrangian method on a
two-scale mesh, with Pr = Pvr

= 64, Pτ = 16 and R = vR = 3,

• simulation (IV): we solve the system (2.12) with a two-scale semi-lagrangian method on a
uniform mesh, with Pq = Pur

= 128, Pτ = 16, and R = vR = 3, and we compute the
approximation (3.28) on a uniform 129× 129 grid in (r, vr) on [−R, R] × [−vR, vR].

Since we can compute an analytic solution G of (2.12), we can compare the approximations of
the solution f ǫ of (1.1) to the function defined by (4.1). These comparisons are summarized in
Figure 6: in this figure, we present the L1 norm of the difference between the function (4.1) and
the approximation fh of f ǫ obtained with each of the simulations (I), (II), (III), (IV).

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

time

  (I)

  (II)

  (III)

  (IV)

Figure 6: Evolution of the L1 norm of the difference between the function (4.1) and the approxi-
mation fh computed with the simulations (I), (II), (III), and (IV).

In a second example, we suppose that ω ∈ N≥ 2. Then, if we assume that H1(τ) = cos2(τ), the
model (2.12) reduces itself to

∂tG − ur

4
∂qG +

q

4
∂ur

G = 0. (4.3)

Knowing the initial data f0, we can write

G(q, ur, t) =
1

2π
f0

(

cos(
t

4

)

q + sin(
t

4

)

ur,− sin(
t

4

)

q + cos(
t

4

)

ur

)

, (4.4)

so the two-scale simulation reduces itself to the computation of

(r, vr , t) 7−→ f0

(

cos(
t

4
− t

ǫ

)

r + sin(
t

4
− t

ǫ

)

vr,− sin(
t

4
− t

ǫ

)

r + cos(
t

4
− t

ǫ

)

vr

)

. (4.5)
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In Figure 7, we observe such a case with ω1 = 2, f0 given by (4.2) with rm = 0.75, vth = 0.1 and
ǫ = 10−2.

t = 0.2957 t = 5.9875

Figure 7: Simulations of type (I) (first row), (II) (second row), (III) (third row), and (IV) (fourth
row) for a semi-gaussian beam wihout self-consistent electric field and ω1 = 2, H1(τ) = cos2(τ).

As we can see in Figures 5 and 7, the classical semi-lagrangian method needs a very refined
mesh in r and vr directions in order to produce good results. Otherwise, it produces results which
do not correspond to physics. We can explain it by the small time step induced by the condi-
tion (3.18) in order to guarantee the robustness of the method, and then a very high number of
interpolations which introduce numerical diffusion. As an example, we have taken a time step
∆tNH ≈ 1.5 × 10−4 for the simulation of type (I) of the second case.

On the other hand, both two-scale numerical methods we have described in paragraphs 3.3
and 3.4 produce good results, even if we consider a non-refined mesh in r and vr directions: this
phenomenon can be explained by the independence of the time step in ǫ. Consequently, we are
allowed to take a time step ∆tH much larger than we can in the classical semi-lagrangian context,
and then, we can significantly reduce the number of interpolations and the numerical diffusion
which is induced. For example, for simulations of type (III) and (IV) on the second test case, we
have defined ∆tH with the formula (3.41) where K = 2, giving us ∆tH ≈ 7.4 × 10−3.
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Finally, by observing Figure 6, we remark that the use of the two-scale mesh in the first case
reduces significantly the error between the function defined by (4.1) and the approximation of f ǫ

given by the discretization of the two-scale model (2.12): indeed, the L1 norm of this error is
nearby 10−6 when the approximation of f ǫ is given by the simulation (III) whereas it oscillates
between 0 and 0.75 when the approximation of f ǫ is given by the simulation (IV). Furthermore,
the oscillations of this error for simulations (I), (II), and (IV) are due to the fact that we discretize
a non-smooth semi-gaussian distribution the support of which rotates in the phase space under the
action of the external electric field and that we do it on a uniform phase space mesh.

As a first conclusion, we can say that, on linear cases, the two-scale semi-lagrangian methods
we have proposed give much better results than the classical semi-lagrangian method on the same
mesh in r and vr, which is promising for non-linear cases. Furthermore, as it was announced in the
paragraph 3.4, the use of the two-scale mesh reduces significantly the numerical diffusion linked
with the global number of interpolations within the simulation.

4.2 Non-linear cases

t = 1.4784 t = 3.234 t = 5.544

Figure 8: Simulations of type (II’) (first row), (III) (second row), and (IV) (third row) for a
semi-gaussian beam with H1(τ) = cos(τ) and ω1 = 4

√
2.

In this paragraph, we do not assume that the self-consistent electric field vanishes. Then, in
most of cases, we are not able to find an analytic expression of the solution G of (2.12). So, in
order to validate our two-scale methods, we have to compare their results on such a case to the
results produced by a classical semi-lagrangian method on (1.1) with the same initial data, and
pay attention to the development of thin structures within the beam. For that, we consider the
simulations (I), (II’), (III) and (IV), where the simulation type (II’) corresponds to a classical
semi-lagrangian method on the system (1.1) with Pr = Pvr

= 256 and r = vr = 3. Since the
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simulation (I) already gives bad results on linear cases, it is not really useful to present its results
in terms of quality on non-linear cases. However, we have to pay attention to its CPU time cost
in order to compare it to the other simulation types ones1.

In a first case, we suppose that H1(τ) = cos(τ), ω1 = 4
√

2, ǫ = 10−2, and f0 is given by (4.2)
with rm = 0.75 and vth = 0.1. In order to guarantee the robustness of the two-scale schemes, we
suppose that the time step ∆tH is computed by using the the formula (3.41) with K = 5, giving
us ∆tH ≈ 0.0185, whereas the time step ∆tNH for the simulations (I) and (II’) is of the form ∆tH

N
with N large enough in order to verify the condition (3.18). In Figure 8, we observe the results
obtained with simulations of type (II’), (III), and (IV), and we can find some results in terms of
CPU time in the Table 1.

In a second case, we suppose that H1(τ) = cos2(τ), ω1 = 2, ǫ = 10−2, and f0 is given by (4.2)
with rm = 0.75 and vth = 0.1. In order to guarantee the robustness of the two-scale schemes,
we suppose that ∆tH is defined by (3.41) with K = 2, which gives us ∆tH ≈ 7.392 × 10−3, and
∆tNH = ∆tH

N with N large enough. In Figure 9, we observe the results obtained with simulations
of type (II’), (III), and (IV) and CPU times costs for each simulation can be found in the Table 1.

t = 1.1458 t = 3.6221 t = 5.8027

Figure 9: Simulations of type (II’) (first row), (III) (second row), and (IV) (third row) for a
semi-gaussian beam with ω1 = 2, H1(τ) = cos2(τ).

As we can see in Figures 8 and 9, the three simulations (II’), (III) and (IV) produce results
of the same quality, even if the mesh in r and vr directions used in the classical semi-lagrangian
method is much more refined than the one used for the two-scale simulations, which enlarge to
non-linear cases the conclusion we have established at the end of the previous paragraph.

1All the simulations have been conducted on a Sun Fire X4600 server with an AMD Opteron 8220 processor
(Dual Core 3000 Mhz) under SunOS 5.10 system.
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Case Simulation (I) Simulation (II’) Simulation (III) Simulation (IV)
CPU time N CPU time N CPU time CPU time

ω1 = 4
√

2, H1 = cos 35m 122 35h 6m 50s 480 1h 43m 39s 55m 3s
ω1 = 2, H1 = cos2 37m 32s 49 38h 7m 6s 192 5h 45m 25s 2h 37m 25s

Table 1: CPU time costs: the final time is T = 6.93 for the case where ω1 = 4
√

2 and H1 = cos,
and T = 6.9854 for the case where ω1 = 2 and H1 = cos2.

Furthermore if we observe the CPU times costs of each simulations (see Table 1), we remark
that both two-scale numerical methods are much slower than the classical semi-lagrangian method
when they are ran on a same mesh in r and vr directions. It is not surprising because of the high
number of fixed point problems we have to solve during the two-scale simulations. But on the other
hand, if we compare the CPU time costs of the simulations (II’), (III) and (IV) which give the
same quality of results, we remark that both two-scale numerical methods we have described are
much faster than a precise classical semi-lagrangian method. One more time, this phenomenon can
be explained by the condition (3.18) imposed to the time step ∆tNH within the classical method:
if we refine the mesh of the phase space, we diminish the time step, and then increase the number
of iterations in time we need to reach the the final time of the simulation. As a conclusion, we can
say that if we want high quality results, it is preferable in terms of CPU time cost to run one of
the two-scale methods we have developed instead of the classical method.

In a last case, we suppose that H1(τ) = cos2(τ), ω1 = 1, ǫ = 10−2, and f0 is given by (4.2)
where n0 = 4, rm = 1.85 and vth = 0.1. As in the previous tests, we suppose that the time step
∆tH for the two-scale methods is given by (3.41) where K = 1, and that the time step ∆tNH for
the classical semi-lagrangian method is of the form ∆tH

N with N large enough. The goal of this
numerical experiment is to observe the same structures as Frénod, Salvarani and Sonnendrücker
have observed in [13]. Since the structures we want to observe are quite thin, we consider the
simulation types (II”), (III’) and (IV’) corresponding to

• simulation (II”): we solve the system (1.1) with a classical semi-lagrangian method, with
Pr = Pvr

= 256 and R = vR = 3,

• simulation (III’): we solve the system (2.12) with a two-scale semi-lagrangian method on a
two-scale mesh, with Pr = Pvr

= 128, Pτ = 20 and R = vR = 3,

• simulation (IV’): we solve the system (2.12) with a two-scale semi-lagrangian method on a
uniform mesh, with Pq = Pur

= 256, Pτ = 20, and R = vR = 3, and we compute the
approximation (3.28) on a uniform 257× 257 grid in (r, vr) on [−R, R] × [−vR, vR].

In the Figure 10, we can observe some results obtained with the simulations (II”), (III’) and
(IV’). One more time, we can remark that the two-scale methods do not need a mesh as refined
as the classical method’s one for producing high quality results. Furthermore, we can observe
in the last column of the Figure 10 that the beam simulated with the classical semi-lagrangian
method becomes unfocused in long time, even if we consider a highly refined mesh. This remark
is confirmed by the Figure 11 where we notice the thin structures are better determined with a
two-scale method. Moreover, the result given by the classical method is slightly out of phase and
more diffusive. One more time, the main reason of this problem is the condition (3.18) imposed on
the time step in the classical semi-lagragian simulation: if we consider a 513 × 513 grid in (r, vr),
this condition induces a so small value of ∆tNH (nearby 3.84× 10−5) that the numerical diffusion
introduced by the interpolations makes the beam unfocused in a long time simulation. On the
other hand, the two-scale results match well with the expected long time behavior as described in
[13].
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t = 1.3464 t = 4.3388 t = 5.1462

Figure 10: Simulations of type (II”) (first row), (III’) (second row) and (IV’) (third row) for a
semi-gaussian beam with ω1 = 1, H1(τ) = cos2(τ) and rm = 1.85.

(II”) (III’)

Figure 11: Simulations of type (II”) and (III’) for a semi-gaussian beam at time t = 5.984 with
ω1 = 1, H1(τ) = cos2(τ) and rm = 1.85.

5 Conclusion and perspectives

We have built a two-scale semi-lagrangian method and proposed a new mesh in order to simplify
the computation of the electric field and, which leads to another two-scale semi-lagrangian method.
These methods have been tested on non-smooth initial conditions, especially semi-gaussian beam
initial conditions: on linear cases, we have concluded that these two-scale methods are very efficient,
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even if we consider a coarse mesh in r and vr directions, contrary to a classical semi-lagrangian
scheme on the model (1.1) which needs much more points to produce good results. On non-
linear cases, we have reached the same conclusion for short time simulation, not only in terms
of quality of results, by also in terms of CPU time costs. These results are very promising for
extensions to higher dimensional problems such as the two-scale limit models obtained by Frnod
and Sonnendrcker in [10, 11, 12], the finite Larmor radius approximation obtained in [4], or other
charged particle beam problems which cannot allow any time splitting. Furthermore, for long time
simulation, both two-scale numerical methods we have developed give very good results, contrary
to the classical semi-lagrangian method which is so penalized by its numerical diffusion for long
time simulations that it produces results which do not not correspond to the expected behavior.
These results are also promising since they consolidate the conclusions of Frnod, Salvarani and
Sonnendrücker in [13], which are that a two-scale numerical method can be successfully used in a
context of non-smooth initial data.

Finally, we also have remarked that, even if they are faster than the classical semi-lagrangian
method for obtaining the same quality of results, both two-scale numerical methods need a very
high CPU time cost. Since this time is essentially spent for computing the fixed point problems
within the methods, it can be interesting to find a way to improve this part of the methods.

Acknowledgements The author wishes to thank E. Frénod and E. Sonnendrücker for the dis-
cussions on the topic.
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periodic focusing channel via a two-scale PIC-method, ArXiv: 0710.3983v1, to appear in Math.
Models Methods Appl. Sci.

[14] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih,

G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, and L. Vil-
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