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Emmanuel Ramasso, Michèle Rombaut, and Denis Pellerin

GIPSA-lab, Images and Signal Department,
46 av. Félix Viallet, 38031 Grenoble, France.

Emails: e ramasso @ yahoo.fr,

{rombaut,pellerin} @ gipsa-lab.inpg.fr

Abstract. The Transferable Belief Model (TBM) relies on belief func-
tions and enables one to represent and combine a variety of knowledge
from certain up to ignorance as well as conflict inherent to imperfect
data. A lot of applications have used this flexible framework however, in
the context of temporal data analysis of belief functions, a few work have
been proposed. Temporal aspect of data is essential for many applica-
tions such as surveillance (monitoring) and Human-Computer Interfaces.
We propose algorithms based on the mecanisms of Hidden Markov Mod-
els usually used for state sequence analysis in probability theory. The
proposed algorithms are the “credal forward”, “credal backward” and
“credal Viterbi” procedures which allow to filter temporal belief func-
tions and to assess state sequences in the TBM framework. Illustration
of performance is provided on a human motion analysis problem.

1 Introduction

Analysis of state sequence is important in many fields such as Signal Processing
and Computer Vision [1–3]. State sequence analysis is generally performed in
Bayesian framework using Hidden Markov models (HMM) [1, 2] where probabil-
ities are used to handle uncertainty on states. In HMM, one can only observe
some features related to states but not the states directly in part because of noise.
Given a sequence of noise observations, HMM machinery is able to retrieve the
best sequence of states using a Viterbi decoding [1] relying on a forward propa-
gation scheme. The latter is used for state filtering (online) whereas smoothing
(offline) is performed using a backward procedure. Particular combinations of
forward–backward procedures allow to estimate HMM parameters such as the
state transition matrix [1]. Usual HMM can only be applied on probabilities.

Transferable Belief Model (TBM) [4] can model more complex cases of un-
certainty than probabilities. It is a general model used to represent and combine
a variety of knowledge. In particular, doubt and conflict are explicitly empha-
sized. Doubt smartly represents ignorance (useful to initialize HMM and to rep-
resent state transition) and conflict emphasizes the contradiction within a fusion
process (can be exploited for state sequence analysis [5]).
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The TBM has seldom been used for temporal data and state sequence analysis
in a noise context. In this paper a method is proposed for this purpose and that
we call credal HMM (CrHMM). The CrHMM combines the genericity of TBM
and mecanisms of HMM. The idea to generalize HMM to evidence theory was
initiated by Pieczynski et al. (see [6] for a recent work) but the generalization
is based on Dempster’s rule of combination (with normalization) and assumes
that either the prior or (exclusively) the observation is evidential (and generally
a simple BBA obtained by discounting). Therefore, the combination yields a
Bayesian belief function. The formalism proposed in this paper handles general
belief functions (as understood in TBM), is strongly based on conflict and relies
on Smets’ work concerning Evidential Network [7–9]. Moreover, a first credal

Viterbi algorithm is proposed.
Credal forward-backward algorithms are expressed by commonalities in order

to mimick their counterpart in HMM. Then, particular combinations of credal
forward-backward algorithms are presented for CrHMM learning. Lastly, a credal
Viterbi decoding algorithm is proposed to retrieve the best sequence of states
when knowledge on observations and priors is modelled by belief functions. Both
the credal forward and the credal Viterbi decoding generate one criterion (based
on conflict information) used for inference in the context of competing CrHMMs.
Illustrations of algorithms capabilities concern human motion analysis in videos.

Section 2 presents HMM machinery. Section 3 describes some TBM’s tools
used in this paper. Section 4 is devoted to the credal version of the forward
algorithm. Section 5 focuses on the extension of the backward algorithm and
on some variables useful for learning credal HMM. Section 6 presents the credal
Viterbi decoding. Lastly, illustrations are provided.

2 Hidden Markov models: basics

In this section, main elements of HMM are recalled. For the remainder of this
paper, we assume the reader is familiar with basics in HMM. The reader can
read the well known tutorial of Rabiner [1] for details. We will refer to it several
times in this paper. All conditions of independance are assumed to be satisfied
in both the probabilistic [1] and credal cases [7, 10]. Fig. 1 depicts forward and
backward processes explained hereafter. This figure will be widely used for the
generalization in TBM framework.

Fig. 1. Computation (from [1]) of forward
(αt) and backward (βt) variables using past
and observations likelihood (bsi). Circles for
states and arrows for propagation direction.

An HMM is a stochastic state machine for the recognition of state sequence
from observations. A sequence is supposed to be composed of N states st

i at time
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t ∈ {1 . . . T} and at any time st
i ∈ Ωt where Ωt is called frame of discernment

(FoD) defined by Ωt = {st
1, s

t
2, . . . s

t
N}. The time t will be explicitly denoted

as superscript of states when required, for instance st
i is the state si at t. At a

given time t, states are said hidden and only observations denoted Ot ∈ ℜ
F are

effectively measured, one at each time t. Typically, observations Ot represent a
set of F features values. Models of observations are used to infer the likelihood
l of states given observations, i.e. [1] bsi

(Ot) = l(st
i|Ot) = P (Ot|s

t
i). These

likelihoods are generally provided by a mixture of Gaussians (MoG) for each
state [1]. Then, inference on Ωt is performed by Bayes’ theorem providing the
posterior probability of state si given observations and priors. Sequence analysis
by an HMM requires a transition matrix A = [aij ] = P (st

j |s
t−1
i ) (Markovian

assumption), a prior π (πi for state si) and observation models (MoG). These
three elements represent a particular HMM λ. In case distinct sequences are to
be recognized, one particular HMM λ is necessary for each sequence. An HMM is
used for several tasks [2]: online filtering (forward variable α), offline smoothing
(γ-variable obtained from backward β and α), learning (ξ-variable obtained from
β, α and γ) and evaluation (Viterbi decoding δ) of states sequences.

3 TBM background

In this section are recalled some basics of TBM used to derive the CrHMM.

3.1 Basic concepts

An agent’s belief is expressed on a finite FoD Ωt and is represented by a basic be-
lief assignment (BBA) mΩt from 2Ωt to [0, 1] with respect to

∑

Si⊆Ωt
mΩt(Si) =

1. For the sake of simplicity, braces around sets will be forgotten, {st
1, s

t
3} =

{st
1} ∪ {s

t
3} ≡ st

1 ∪ s
t
3. Belief functions are non-additive measures and this al-

lows to explicitly model doubt between states. This is a fundamental difference
with probability theory. In the sequel, a singleton is denoted with small cap (e.g.
st

i ∈ Ωt) whereas big cap is used for union of singletons (e.g. St
i ⊆ Ωt).

A BBA mΩt can be converted into plausibility plΩt and commonality qΩt

functions. These functions represent belief in different ways, emphasize some
particularities and allow to decrease some computational aspects. We denote
fΩt ∈ {qΩt , plΩt ,mΩt} these functions which are in one-to-one correspondance.
The relations that we will use are defined ∀Si, Sk ⊆ Ωt by:

plΩt(Si) =
∑

Si∩Sk 6=∅

mΩt(Sk) (1)mΩt(Si) =
∑

Sk⊇Si

(−1)|Sk|−|Si|qΩt(Sk)(2)

mΩt(Si) =
∑

Sk⊇Si

(−1)|Sk|−|Si|qΩt(Sk)(3) qΩt(Si) =
∑

Sk⊆Si

(−1)|Sk|+1plΩt+1(Sk) (4)

3.2 Combination, extension and marginalization

Given two distinct [10] BBAs, mΩt

1 and mΩt

2 defined on the same FoD Ωt, the
conjunctive rule of combination (CRC) is defined ∀Si, Sk, Sl ⊆ Ωt by:
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(mΩt

1
∩©mΩt

2 )(Sl) =
∑

Si∩Sk=Sl

mΩt

1 (Si) ·m
Ωt

2 (Sk) (5)

and equivalently (qΩt

1
∩© qΩt

2 )(Sl) = qΩt

1 (Sl) · q
Ωt

2 (Sl) (commonalities simplifies
computation). The disjunctive rule of combination (DRC) is [11, 7]:

(mΩt

1
∪©mΩt

2 )(Sl) =
∑

Si∪Sk=Sl

mΩt

1 (Si) ·m
Ωt

2 (Sk) (6)

In case FoDs are different, e.g. one wants to combine mΩt and mΩt+1 , then
BBAs must be extended on the common FoD Ωt × Ωt+1 before combination
using the so-called vacuous extension [7] denoted “↑”. E.g. mΩt is redefined as:

mΩt↑Ωt×Ωt+1(S) =







mΩt(Si) if S = Si ×Ωt+1

and Si ⊆ Ωt

0 otherwise
(7)

After combination by the CRC or by the DRC, the result mΩt×Ωt+1 can be
marginalized onto Ωt+1 or Ωt. Assuming the marginal is computed on Ωt+1, the
marginalization operator, denoted “↓”, is defined ∀Sj ⊆ Ωt+1 by:

mΩt×Ωt+1↓Ωt+1(Sj) =
∑

S⊆Ωt×Ωt+1

S↓Ωt+1=Sj

mΩt×Ωt+1(S)
(8)

with “S↓Ωt+1 = Sj” means Sj is the projection of S on Ωt+1.

3.3 Conditioning and ballooning extension

In a state sequence, conditional beliefs describes how true can be the states in
Sj ⊆ Ωt+1 given the previous states in Si ⊆ Ωt. Given two BBAs: mΩt

i defined

by mΩt

i (Si) = 1 and mΩt×Ωt+1 , the conditional belief mΩt+1 [St
i ] is defined by:

mΩt+1 [St
i ] =

(

m
Ωt↑Ωt×Ωt+1

i ∩©mΩt×Ωt+1

)↓Ωt+1

(9)

Conversely, if a conditional BBA mΩt+1 [st
i] is provided ∀si ∈ Ωt, it is possible to

cancel the conditioning revision using the ballooning extension [7]. Let us denote
vj = ((si × Ωt+1) ∩ S)↓Ωt+1) (where si × Ωt+1 is called cylindrical extension of
state (singleton) si ∈ Ωt on Ωt ×Ωt+1), then Smets proves [7]:

qΩt×Ωt+1(S) =
∏

si∈Ωt

qΩt+1 [si](vj) (10)

Ballooning extension and vacuous extension [7] are used in this paper in order
to compute a belief on a joint space Ωt ×Ωt+1.

3.4 The Generalized Bayesian Theorem

Bayes’ theorem was extended in TBM framework by Smets [7] and is called
the Generalized Bayesian Theorem (GBT). The GBT alleviates the problem of
priors since belief functions allow to represent total ignorance.
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Definition - Given a vacuous prior (mΩt(Ω) = 1) and the set of conditional
beliefs fΩt+1 [si], the posterior fΩt+1(Sj), ∀Sj ∈ Ωt+1 is:

fΩt+1(Sj) =
∑

Si⊆Ωt

fΩt+1 [Si](Sj) ·m
Ωt(Si) (11)

Since the conditional belief is initially given conditionally to each singleton state
si ∈ Ωt, the belief defined conditionally to a subset Si is obtained by the DRC
(Eq. (6)) assuming distinctness [7]:

fΩt+1 [Si] = ∪©
si∈Si

fΩt+1 [si], ∀Si ⊆ Ωt (12)

Eq. (11)-(12) are the core of Evidential Networks [7, 8, 10].
Motivation: from likelihood to belief function - Assume a set of

features Ot taking values in ℜF . As emphasized in [12], often the conditional
belief over ℜF given si is represented by a probability function. In this case

plℜ
F

[si](Ot) = P (Ot|si) = l(si|Ot), so the vector of plausibilities equals the
vector of likelihoods of si given Ot [7, 12]. Given the likelihoods l(si|Ot) for each
si ∈ Ωt, then for Ot ∈ ℜ

F and for each S ⊆ Ωt, Smets [7] proves:

qΩt

b [Ot](S) =
∏

si∈S

l(si|Ot) (13)

where qΩt

b [Ot] is the posterior commonality conditionally to Ot and defined on
Ωt. It is the counterpart of the probability bsi

(Ot) [1] but now the commonality
is defined for union of states.

3.5 Decision-making

After combination of multiple sources of belief, a resulting BBA mΩt is obtained.
Decision-making under uncertainty and imprecision based on belief functions
must be made either on the pignistic probability [7] or on plausibilities [12], both
assign a value to each element (singleton) si ∈ Ωt. In the sequel, the pignistic
probability is used and it is defined by:

BetP{mΩt}(si) =
∑

Sk⊆Ωt

|si ∩ Sk|

|Sk|

mΩt(Sk)

1−mΩt(∅)
(14)

where mΩt(∅) is the conflict value and 1−mΩt(∅) is a normalizing coefficient.

4 Filtering belief functions: credal forward algorithm

In HMM, the forward algorithm allows to filter (online) probabilities that evolves
along time. The forward algorithm relies on the forward variable generally de-
noted α(t) [1].

A similar credal forward algorithm can be obtained. Commonalities are used
in order to mimick their counterpart based on probabilities. The algorithm is a
simple propagation scheme that follows left part of Fig. 1. The credal forward
algorithm consists of three steps:
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1. Initialization : ∀Si ⊆ Ω1, apply Eq. (15).
2. Induction: 1 ≤ t ≤ T − 1, Sj ⊆ Ωt+1, apply Eq. (16).
3. Termination: apply Eq. (17).

We denote fΩt
α ∈ {qΩt

α , plΩt
α ,mΩt

α } the credal version of the forward variable.
Subscripts α, a and b are used to mimick, respectively, the forward variable,
transition probabilities and observations likelihood as defined for usual HMM [1].

4.1 Initialization

One asset of using belief functions is the possibility to explicitly model a vacuous
prior for t = 1 (no prior):

qΩt=1

α (Si) = 1, ∀Si ⊆ Ωt (15)

or equivalently mΩt=1
α (Ω) = 1. This lack of information is well handled and

smartly represented using belief functions whereas probabilities require priors.
One can also use more complex initialization such as consonant belief functions.

4.2 Induction

Induction can be retrieved from Smets’ work on Evidential Network [7, 8]. It
relies on the credal forward variable. Given:

1. mΩt
α the BBA of the forward variable of states at t,

2. q
Ωt+1
a [Si], ∀Si ⊆ Ω the set of conditional commonality distribution which

links states and set of states from t to t+1 (obtained from Eq. (11) and (12)),

3. q
Ωt+1

b [Ot] the observations, obtained e.g. from a mixture of Gaussians and
GBT (Eq. (13)) at t+ 1.

The credal forward variable is a commonality that combines past information,
transition and current observations (left part of Fig. 1) by:

q
Ωt+1
α (Sj) =

(

∑

Si⊆Ωt

mΩt
α (Si) · q

Ωt+1

a [Si](Sj)
)

· q
Ωt+1

b [Ot](Sj) (16)

defined ∀Sj ⊆ Ωt+1. This equation has a close form compared to the probability-
based forward pass but this one works on belief functions and on sets of states.
The first part is the application of the GBT with priors (mΩt

α (Si)) and condi-

tional commonalities (q
Ωt+1
a [Si](Sj)). The second part represents observations

(q
Ωt+1

b [Ot](Sj)) conjunctively combined using the CRC.

4.3 Termination step

In HMM, the termination step of the forward algorithm [1] is
∑

si∈ΩT
αT (si) =

P (O1:T |λ) and represents the state sequence probability. However, we can not
apply the same termination step with the credal version because belief on focal
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sets of mΩt
α always sum to 1 for any t. Actually, the BBA obtained at T does

not reflect the whole sequence but only the belief on states at T . Instead, we
propose to exploit conflict for state sequence analysis. The proposed criteria has a
similar role to the log-likelihood used for MAP classification. Given several HMM
λ1 . . . λk . . . λK , the best model λ∗ explaining observations on [1, T ] minimizes
conflict along the sequence of observations O1:T :

L1
c(λ) =

1

T

T
∑

t=1

log(mΩt
α [λ](∅)) (17) λ∗ = argmin

k

L1
c(λk) (18)

During induction, we keep track of this conflict and then normalize the BBA.
Eq. (17) is similar to the one proposed and justified by Ristic and Smets [13]
where it is used as a distance measure between objets for association purpose.
Using commonalities, the computation in the credal forward algorithm is close
to the probability-based version [1] but the former is greedy (see [14, 7] for com-
putational solutions).

5 Smoothing and towards learning

State sequence can be filtered offline, this is called smoothing [2]. Smoothing is
used for learning HMM parameters. Rabiner [1] presents three variables used
for smoothing/learning: the backward (β) variable (as in right part of Fig. 1),
the γ-variable and the ξ-variable. The first one is generally combined with the
forward variable for offline smoothing. The ξ-variable is exploited for learning the
transition matrix of HMM. Learning the transition matrix includes an iterated
procedure that we will not be developed for the CrHMM. We only propose the
equivalent expressions of the three variables.

5.1 The credal backward induction

Likewise to the credal forward variable, the credal backward variable is com-
puted using belief propagation and following the right part of Fig. 1. The credal
backward induction is defined ∀Si ⊆ Ωt by:

qΩt

β (Si) =
∑

Sj⊆Ωt+1

(

(

m
Ωt+1

β
∩©m

Ωt+1

b [Ot]
)

(Sj) · q
Ωt
a [Sj ](Si)

)

(19)

where
(

m
Ωt+1

β
∩©m

Ωt+1

b [Ot]
)

(Sj) is the value of the BBA on set Sj resulting

from the combination by the CRC of both m
Ωt+1

β and m
Ωt+1

b [Ot]. Since only

q
Ωt+1
a [Si](Sj) is known (i.e. the conditional belief of proposition Sj at t + 1

given Si at t), it is required to derive q
Ωt+1
a [Sj ](Si) from it. For that, we use

the Generalized Likelihood Principle [7] which postulates that pl
Ωt+1
a [Si](Sj) =

plΩt
a [Sj ](Si), where pl

Ωt+1
a [Si](Sj) is the conditional plausibility (Eq. (1)) of being

in state Sj at t+ 1 given Si at t and which is known. From plausibility plΩt
a [Sj ],

commonality qΩt
a [Sj ] is derived by Eq. (4). The backward variable is initialized

with a vacuous prior.
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5.2 The credal γ variable

The joint observation of both the credal forward and backward variables can be
obtained by the CRC:

qΩt
γ = qΩt

α ∩© qΩt

β (20)

obtained ∀Si ⊆ Ωt. The credal variable qΩt
γ might be useful for learning HMM

parameters in the credal case. Another role of qΩt
γ is to assess the best state s∗t

at t of the current sequence by s∗t = argmax si∈Ωt
BetP{mΩt

γ }(si) for 1 ≤ t ≤ T
and where BetP is defined by Eq. (14).

5.3 The credal ξ variable

Since the probability-based ξ variable is used to learn the transition matrix [1],
it would be interesting to define it in TBM framework for further learning. In
case learning might be done online or offline, we propose hereafter two versions

of the credal ξ variable: one to estimate it on-the-fly and denoted f
Ωt−1×Ωt

ξon
and

one for the off-line case denoted f
Ωt×Ωt+1

ξoff
, both defined on the product space

of two successive time slices. The joint space allows to explicitly model the link
(transition) between each couple of states likewise to the transition matrix but
the credal version explicitly models doubt between states.

On-line estimation In the online case, only the available information up to
time t are combined. Thus it is based on the credal forward algorithm, observa-
tions (at t), priors (if available, at t− 1) and conditional beliefs (t given t− 1).
We define it for Si ⊆ Ωt−1, Sj ⊆ Ωt and S ⊆ Ωt ×Ωt−1 as:

q
Ωt−1×Ωt

ξon
(S) = q

Ωt−1↑Ωt−1×Ωt
α (S)× q

Ωt−1×Ωt
a (S)× qΩt

b [Ot]
↑Ωt−1×Ωt(S) (21)

and where q
Ωt−1×Ωt
a (S) is computed by Eq. (10). Moreover, the marginalization

of q
Ωt−1×Ωt

ξon
onto Ωt results in the forward variable, i.e. qΩt

α = q
Ωt−1×Ωt↓Ωt

ξon
.

Off-line estimation For the offline case, both backward (up to t + 1) and
forward (up to t) propagations are combined. The link between t and t + 1 is
made by the conditonal belief. We define it ∀S ⊆ Ωt ×Ωt+1 by:

q
Ωt×Ωt+1

ξoff
(S) = q

Ωt↑Ωt×Ωt+1
α (S)× q

Ωt+1↑Ωt×Ωt+1

β (S)

× q
Ωt+1

b [Ot]
↑Ωt×Ωt+1(S)× q

Ωt×Ωt+1
a (S)

(22)

There is one commonality q
Ωt×Ωt+1

ξoff
at each time. The joint form of the con-

ditional belief is obtained by applying Eq. (10) on q
Ωt+1
a [Sj ](Si) as explained

Section 5.1 for the backward variable. Note that marginalizing q
Ωt×Ωt+1

ξoff
onto

Ωt+1 yields the credal γ variable, i.e. q
Ωt+1
γ = q

Ωt×Ωt+1↓Ωt+1

ξoff
.
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6 Credal Viterbi procedure

The goal is to determine which state si ∈ Ωt−1 at t − 1 (current candidate)
accounts for the ended-state sequence sj at time t (current hypothesis).

State-of-knowledge between t and t− 1 is given by Eq. (21). Therefore, like-
wise to the probabilistic case, the credal Viterbi relies on the forward pass.
Since it is required to test each hypothesis sj ⊆ Ωt, the BBA obtained from
Eq. (21) and (3) is conditioned on the current hypothesis sj . Moreover, it is
necessary to determine which state si is the best candidate therefore, the condi-
tioning result is marginalized onto the space Ωt−1 where the current candidate
si is defined. Hence, the BBA used for decision is formally defined by:

m
Ωt−1

dec
[sj ] = m

Ωt−1×Ωt

ξon
[sj ]

↓Ωt−1 (23)

Conditioning is equivalent to a conjunctive combination with a categorical belief

mass of the form m
Ωt−1×Ωt

j (sj) = 1 (Section 3.3). Therefore, a conflict may
appear and quantifies the incoherence of being in state sj at t. This conflict is
used in the decision process and it is the core of the credal Viterbi procedure.
Let us denote Ct(sj) the value of the coherence at time t:

Ct(sj) = 1−m
Ωt−1

dec
[sj ](∅) (24)

Decision must be made on the pignistic probability distribution (Eq. (14))
defined over Ωt−1 from Eq. (23). This space, Ωt−1, is characterized by a set of
coherences Ct−1(si) (si is used because time index is t − 1) computed at the
previous time slice from Eq. (24). Therefore, coherences are taken into account
in the decision process performed at time t on space Ωt−1 by weighting the
pignistic probabilities defined over Ωt−1:

Pt[sj ](si) = Ct−1(si) ·BetP{m
Ωt−1

dec
[sj ]}(si) (25)

It is required to normalize the coherences in order to obtain a probability dis-

tribution. The BBA m
Ωt−1

dec
[sj ] is obtained at time t from knowledge at both t

and t−1 (it is projected onto Ωt−1) whereas coherences concern time index t−1
(not t) obtained at the previous time. From the obtained (weighted) probability
distribution (Eq. (25)), the decision (choosing the best candidate si) is made.

Lastly, we compute another log-contradiction criteria L2
c(λ) using the results

of the credal Viterbi procedure (see step 4b)). Indeed, when the path is recovered,
we take into account the coherence along the sequence. The basic idea is that
the lower the conflict along the path, the better the sequence corresponds to the
model λ. We define it in the following algorithm:

1. Initialization : ∀si ∈ Ω1, C1(si) = 1, L2
c(λ) = 0 and ψΩ1(si) = 0

2. Recursion: 2 ≤ t ≤ T − 1, ∀sj ∈ Ωt, ∀si ∈ Ωt−1

a) Compute m
Ωt−1

dec
[sj ] with Eq. (23)

b) Pt[sj ](si) = Ct−1(si) ·BetP{m
Ωt−1

dec
[sj ]}(si)

c) ψt(sj) = argmax si∈Ωt−1
[Pt[sj ](si)]

d) Compute Ct(sj) with Eq. (24)
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3. Termination: s∗T = argmax ∀sj∈ΩT
[max∀si∈ΩT−1

PT [sj ](si)]
4. Path backtracking:

a) s∗t = ψt+1(s
∗
t+1)

b) L2
c(λ)← L2

c(λ) + log(1−Ct(s
∗
t ))

where ”←” is an assignment in order to update the second proposed log-
contradiction criteria. The variable Ct is computed at t for all sj ⊆ Ωt (line d))
and is used for the next step.

Transition and ambiguity detection - The coherence measure is used
for states transition detection. When the decision is made (step 3)), one can
compel the probability (step 2b)) to be greater than a given threshold σ in order
to trust the decision (e.g. σ = 1/N with N the number of states).

7 Illustration: human motion analysis
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Fig. 2. Results: (top) Gaussian mixture outputs (blue dots) and smoothing by credal
γ variable (red, bold). (bottom-left) Credal Viterbi decoding in CrHMM. (bottom-
right) Viterbi decoding of HMM. Ground truth: running on [12, 65], jumping on
[66, 103], falling on [104, 154] (there is no standing-up action in this sequence).

Our aim is to illustrate some of the proposed algorithms : smoothing, evalu-
ation and classification a posteriori. For that, we use data of previous communi-
cations [15, 16] that concern the recognition of three athletics jumps (activity):
long jumps, pole vaults and high jumps. For this paper, each activity is mod-
elled by one HMM and one CrHMM. Each model of activity is made of four
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states (actions) with Ωt = {running, jumping, falling, standing}. Given a set of
features extracted at each video frame, a likelihood on each action is computed
using a mixture of gaussians. Likelihoods at each video frame are transformed
into belief on actions using Eq. (13). HMM parameters are learned using Baum-
Welch algorithm [1] on the half of the database. Learning CrHMM is still in its
infancy: actually we proposed some equations in previous sections that need to
be embedded in an iterated procedure such as CrEM [17] in order to compute
it. The credal transition matrix is thus computed from the probabilistic one by
transforming each conditional probability into conditional consonant BBA [18]
that is discounted contextually [19] to spread beliefs on subsets (thus we obtain
a ”filled” matrix).

Smoothing - We use the credal γ variable (Eq. (20)) that combines both
forward-backward algorithms to filter (offline) a noise BBA. Fig. 2-top shows
the smoothing results with likelihoods (blue dots) vs. pignistic probabilities (red
line) after application of the credal γ variable.

Inference - We apply the credal Viterbi algorithm on the previous set of
likelihoods in order to decode the best sequences of states. The results of both
the credal (Fig. 2-bottom-left) and probabilistic (Fig. 2-bottom-right) Viterbi
decoding are shown. The proposed credal Viterbi scheme is able to detect the
transitions (which size varies) as well as ambiguous instants (where the largest
pignistic is low). These information are represented by green stems on the figure
(with σ = 1/N = 0.25). The credal Viterbi yields better decoding here.

Classification - In order to assess the recognition criteria integrated in
the Viterbi decoding (L2

c), we propose a classification problem. We use 26 videos
(about 3000 frames) of pole vaults analyzed by the three models (long jump (λ1),
high jump (λ2) and pole vault (λ3) models). We compare the criteria L2

c (λ∗ =
argmin k={1,2,3} L

2
c(λk)) to the usual log-likelihoods (Ll, λ

∗ = argmax k={1,2,3}

Ll(λk)). We assess two things:
1) The classification rate: we compute it by dividing the number of correctly

classified videos by 26. We obtain 81% for the CrHMM and 58% for the usual
HMM. The classification rate is better for the CrHMM mainly because of doubt
that is used to model knowledge about states. When a wrong decision is made
in a HMM, it is propagated. In the credal Viterbi (CrHMM), the decision is not
propagated since we keep the belief mass for the next instant.

2) The mean square of the difference between the two best normalized criteria
values (by ranking the values for the criteria Ll and L2

c): it reflects the “discrim-
inative power” during classification (ideally one criteria equals 1 and the two
others are null). We obtain 7% for the CrHMM and 1% for the usual HMM.
This means that the CrHMM is much more discriminative than the HMM on
this dataset therefore, the decision is more reliable.

8 Conclusion

We have presented a general methodology to use HMM machinery in Trans-
ferable Belief Model (TBM) framework which is useful when knowledge is rep-
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resented by belief functions instead of probabilities. The proposed modelling
exploits doubt and conflict emphasized in the TBM. Experiments have illus-
trated some concepts and demonstrated encouraging results for video-oriented
applications. Future work will be focused on learning and comparison with fuzzy
HMM.
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