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ON THE TOTAL ORDER OF REDUCIBILITY OF A PENCIL OF

ALGEBRAIC PLANE CURVES

LAURENT BUSÉ AND GUILLAUME CHÈZE

Abstract. In this paper, the problem of bounding the number of reducible
curves in a pencil of algebraic plane curves is addressed. Unlike most of the
previous related works, each reducible curve of the pencil is here counted with
its appropriate multiplicity. It is proved that this number of reducible curves,
counted with multiplicity, is bounded by d

2
− 1 where d is the degree of the

pencil. Then, a sharper bound is given by taking into account the Newton’s
polygon of the pencil.

Introduction

Given a pencil of algebraic plane curves such that a general element is irreducible,
the purpose of this paper is to give a sharp upper bound for the number of reducible
curves in this pencil. This question has been widely studied in the literature, but
never, as far as we know, by counting the reducible factors with their multiplicities.

Let r(X, Y ) = f(X, Y )/g(X, Y ) be a rational function in K(X, Y ), where K is
an algebraically closed field. It is commonly said to be non-composite if it cannot
be written r = u ◦ h where h(X, Y ) ∈ K(X, Y ) and u ∈ K(T ) such that deg(u) ≥ 2
(recall that the degree of a rational function is the maximum of the degrees of its
numerator and denominator after reduction). If d = max(deg(f), deg(g)), we define

f ♯(X, Y, Z) = Zdf

(

X

Z
,
Y

Z

)

, g♯(X, Y, Z) = Zdg

(

X

Z
,
Y

Z

)

that are two homogeneous polynomials of the same degree d in K[X, Y, Z]. The set

σ(f, g) = {(µ : λ) ∈ P1
K
| µf ♯ + λg♯ is reducible in K[X, Y, Z]} ⊂ P1

K

is the spectrum of r and a classical theorem of Bertini and Krull implies that it is
finite if r is non-composite. Actually, σ(f, g) is finite if and only if r is non-composite
and if and only if the pencil of projective algebraic plane curves µf ♯ + λg♯ = 0,
(µ : λ) ∈ P1

K
, has an irreducible general element (see for instance [Jou79, Chapitre

2, Théorème 3.4.6] and [Bod08, Theorem 2.2] for detailed proofs). Notice that the
study of σ(f, g) is trivial if d = 1. Therefore, throughout this paper we will always
assume that d ≥ 2.

Given (µ : λ) ∈ σ(f, g), a complete factorization of the polynomial µf ♯ + λg♯ is
of the form

(⋆) µf ♯ + λg♯ =

n(µ:λ)
∏

i=1

P
e(µ:λ),i

(µ:λ),i
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2 L. BUSÉ AND G. CHÈZE

where each polynomial P(µ:λ),i is irreducible and homogeneous in K[X, Y, Z]. If

σ(f, g) is finite the total order of reducibility1 ρ(f, g) of r is then defined by

ρ(f, g) =
∑

(µ:λ)∈P1
K

(

n(µ : λ) − 1
)

.

Observe that this sum is finite because n(µ : λ) 6= 1 implies that (µ : λ) ∈ σ(f, g).

It is known that ρ(f, g) is bounded above by d2−1 where d stands for the degree
of r. As far as we know, the first related result has been given by Poincaré [Poi91].
He showed that

|σ(f, g)| ≤ (2d − 1)2 + 2d + 2

This bound was improved only very recently by Ruppert [Rup86] who proves that
|σ(f, g)| is bounded by d2 − 1. This result was obtained as a byproduct of a
very interesting technique developed by the author to decide the reducibility of
an algebraic plane curve. Later on, Stein studied a less general question but gave
a stronger result: he proves that if g = 1 then ρ(f, 1) ≤ d − 1. Its approach, based
on the study of the multiplicative group of all the divisors of the reducible curves
in the pencil, is entirely different from that of Ruppert. Then, Stein’s bound was
improved in [Kal92] and after that several papers [Lor93, Vis93, AHS03, Bod08]
developed techniques with similar flavors to deal with the general case ρ(f, g). All of
them obtained the bound ρ(f, g) ≤ d2−1 but also provide some various extensions:
In [Lor93] the bound is proved in arbitrary characteristic, in [Bod08] it is shown
that a direct generalization of Stein’s result yields the bound ρ(f, g) ≤ d2 + d − 1,
in [Vis93] the result is generalized to a very general ground variety and finally, in
[AHS03] the authors were interested in a total reducibility order over a field K that
is not necessarily algebraically closed.

The aim of this paper is to study the total order of reducibility by counting the
multiplicities. More precisely, for each (µ : λ) ∈ σ(f, g) define

m(µ : λ) :=

n(µ:λ)
∑

i=1

e(µ:λ),i

from the factorization (⋆). This number is the number of factors of µf ♯ + λg♯

where the multiplicities of the factors are counted. In particular, it is clear that
n(µ : λ) ≤ m(µ : λ). We define the total order of reducibility with multiplicities of
the rational function r as the integer

m(f, g) =
∑

(µ:λ)∈P1
K

(

m(µ : λ) − 1
)

Obviously, it always holds that 0 ≤ ρ(f, g) ≤ m(f, g). Moreover, notice that unlike
ρ(f, g), m(f, g) takes into account those curves in the pencil that are geometrically
irreducible but scheme-theoretically non-reduced. However, it is proved in [AHS03,
General Mixed Primset Theorem, p 74] that the number of such curves is at most
4 in our context; we will come back to this point in Section 2.

The first main result of this paper is that the upper bound d2 − 1 for ρ(f, g) is
also valid for m(f, g). This is the content of Section 2 where it is assumed that the
characteristic of K is zero. Our method, which is inspired by [Rup86], is elementary

1This terminology is taken from [Ste89].
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compared to the previously mentioned papers. Roughly speaking, we will transform
the pencil of curves into a pencil of matrices and obtain in this way the claimed
bound as a consequence of rank computations of some matrices that we will study
in Section 1. In this way, the known inequality ρ(f, g) ≤ d2 − 1 is easily obtained.
Moreover, we will actually not only bound m(f, g) by d2 − 1, but a bigger quantity
that takes into account the multiple factors of the reducible elements in the pencil.
Notice that we will also show the same bound holds in the case where r = f/g is a
rational function in an arbitrary number of variables via a classical use of Bertini’s
Theorem at the end of Section 2.

The second main result of this paper, given in Section 3, is a refined upper
bound for m(f, g) which is obtained by considering the Newton’s polygons of the
polynomials f and g. This result also gives a bound for the total order of reducibility
ρ(f, g) which is new and sharper. Notice that in this section the characteristic of
K will be assumed to be 0 or > d(d − 1) where d denotes the degree of r = f/g.

Notations. Throughout this paper, K stands for an algebraically closed field of
characteristic p. Given a polynomial f , deg(f) denotes its total degree and ∂Xf
(resp. ∂Y f) denotes the partial derivative of f with respect to the variable X
(resp. to Y ). Also, for any integer n the notation K[X, Y ]≤n stands for the set
of all the polynomials in K[X, Y ] with total degree less or equal to n; the nota-
tion K[X, Y, Z]n stands for the set of all homogeneous polynomials of degree n in
K[X, Y, Z].

1. Ruppert’s linear map

In the paper [Rup86], Ruppert introduced an original technique to decide whether
a plane algebraic curve is reducible. Its formulation relies on the computation of
the first de Rham’s cohomology group of the complementary of the plane curve by
means of linear algebra methods. Later, Gao followed this approach to obtain an
algorithm for the factorization of a bivariate polynomial [Gao03].

From now on, we will always assume in this section that the characteristic of the
algebraically closed field K is p = 0.

For ν a positive integer and f(X, Y ) ∈ K[X, Y ] a polynomial of degree d ≤ ν,
define the K-linear map

Gν(f) : K[X, Y ]≤ν−1 × K[X, Y ]≤ν−1 −→ K[X, Y ]≤ν+d−2

(G, H) 7→ f2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

=

∣

∣

∣

∣

f ∂Y f
G ∂Y G

∣

∣

∣

∣

−

∣

∣

∣

∣

f ∂Xf
H ∂XH

∣

∣

∣

∣

Let f1, . . . , fr be the irreducible factors of f . If gcd(f, ∂Xf) is a nonzero constant
in K then it is proved in [Gao03] that kerGd(f) is a K-vector space of dimension r
and that the set

{

( f

fi
∂Xfi,

f

fi
∂Y fi

)

| i = 1, . . . , r

}

is a basis of this kernel. This result provides an explicit description of the kernel
of the linear map Gd(f) if the polynomial f(X, Y ) does not have any square factor.
In order to investigate this kernel in the general case, that is to say for an arbitrary



4 L. BUSÉ AND G. CHÈZE

polynomial f ∈ K[X, Y ] and for an arbitrary integer ν ≥ deg(f), we interpret it in
terms of algebraic de Rham cohomology.

Let ν be a positive integer and 0 6= f(X, Y ) ∈ K[X, Y ] be a polynomial of degree
d ≤ ν. Assume that f = fe1

1 · · · fer
r is a factorization of f where each polynomial

fi is irreducible and denote by C the algebraic curve defined by the equation f = 0.
The first algebraic de Rham cohomology H1(A2

K
\ C) is the quotient of the closed

1-differential forms w ∈ ΩK[X,Y ]f /K of K[X, Y ]f over K by the exact 1-forms.
By definition of Gν(f), a couple (G, H) ∈ K[X, Y ]≤ν−1×K[X, Y ]≤ν−1 belongs to

the kernel of Gν(f) if and only if the 1-form 1
f (GdX + HdY ) is closed. Therefore,

the kernel of Gν(f) is in correspondence with the closed 1-differential forms w ∈
ΩK[X,Y ]f /K that can be written w = 1

f (GdX + HdY ) for some polynomials G and

H of degree less or equal to ν−1. As a consequence of Ruppert’s results in [Rup86]
(see also [Sch07, Theorem 8.3]), these particular closed 1-forms are sufficient to give
a represent for any element in H1(A2

K
\ C), that is to say that the canonical map

kerGν(f) → H1(A2
K \ C)

is surjective. Actually, the closed 1-forms df1

f1
, . . . , dfr

fr
are known to form a basis

of H1(A2
K
\ C) (see loc. cit. or for instance [Dim92, Chapter 6]). It follows that

H1(A2
K
\ C) ≃ kerGν(f)/Bν

where Bν is the set of 1-forms in kerGν(f) that are exact. Basically, the elements

in Bν are of the form d
(

P
fs

)

for some P ∈ K[X, Y ] and s ∈ N. However, we claim

that the following equality holds

(1.1) Bν =

{

w =
1

f
(GdX + HdY ), (G, H) ∈ K[X, Y ]≤ν−1 × K[X, Y ]≤ν−1

such that ∃P ∈ K[X, Y ]≤ν with d

(

P

f

)

= w

}

It is a consequence of the following technical results.

Lemma 1. Let p, q be polynomials in K[X, Y ] such that p divides qdp. Then each
irreducible factor of p divides q.

Proof. Let p1, . . . , pr be distinct irreducible factors of p such that p =
∏r

i=1 pei

i .
Then the equality

dp

p
=

r
∑

i=1

ei
dpi

pi

together with our hypothesis implies that pei

i divides q
∑r

j=1 ej
p
pj

dpj . We deduce

that pei

i must divide q p
pi

dpi and therefore that pi divides q. �

Lemma 2. Let f ∈ K[X, Y ] of degree d and G, H ∈ K[X, Y ] of degree ≤ ν−1 with
ν ≥ d. If P ∈ K[X, Y ] and s ∈ N are such that

d

(

P

fs

)

=
1

f
(GdX + HdY )

and f does not divide P if s ≥ 1, then either s = 1 and deg(P ) ≤ ν or either s = 0
and deg(P ) ≤ ν − d.
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Proof. This proof is inspired by [Sch07, Lemma 8.10]. Since

d

(

P

fs

)

=
fdP − sPdf

fs+1

we have

(1.2) fdP − sPdf = fs(GdX + HdY )

Assume that s ≥ 2 and denote by f =
∏r

i=1 fei

i an irreducible factorization of
f . Equation (1.2) implies that f divides Pdf and therefore, by Lemma 1, that fi

divides P for all i = 1, . . . , r. Furthermore, since

df

f
=

r
∑

i=1

ei
dfi

fi

we get

fdP − sPdf = fdP − sPf

r
∑

i=1

ei
dfi

fi
= f(dP − s

r
∑

i=1

ei
P

fi
dfi)

But fs divides fdP − sPdf by (1.2), so we deduce that

fs−1 |dP − s

r
∑

i=1

ei
P

fi
dfi

Define Q := gcd(f, P ) =
∏r

i=1 fµi

i with 1 ≤ µi ≤ ei for all i = 1, . . . , r and set
R := P/Q. We obtain that fs−1 divides

QdR + RdQ − s

r
∑

i=1

ei
P

fi
dfi = QdR +

r
∑

i=1

(µi − sei)R
Q

fi
dfi

since
dQ

Q
=

r
∑

i=1

µi
dfi

fi

As s ≥ 2, µi − sei < 0 for all i and hence fµi

i divides R Q
fi

dfi. It follows that fi

divides Rdfi and therefore that fi divides R by Lemma 1. But then fµi+1
i divides

P which implies that µi = ei for all i. Therefore, we conclude that if s ≥ 2 then
necessarily f divides P : a contradiction with our hypotheses. So we must have
0 ≤ s ≤ 1.

Suppose that s = 0. Then

GdX + HdY = fdP = f∂XPdX + f∂Y PdY

and hence deg(P ) ≤ ν − d.
Now, assume that s = 1. We have

fGdX + fHdY = fdP − Pdf = (f∂XP − P∂Xf)dX + (f∂Y P − P∂Y f)dY

Denote by δ the degree of P and by Pδ, resp. fd, the homogeneous part of highest
degree of P , resp. f . If fd∂XPδ − Pδ∂Xfd 6= 0 or fd∂Y Pδ − Pδ∂Y fd 6= 0 then
necessarily δ ≤ ν since deg(fG) ≤ ν + d − 1 and deg(fH) ≤ ν + d − 1. Otherwise,
we obtain that

d

(

Pδ

fd

)

=
fddPδ − Pδdfd

(fd)2
= 0

and hence that δ = d ≤ ν. �
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We are now ready to compute the dimension of the kernel of the K-linear map
Gν(f) for all ν ≥ d.

Proposition 3. Let f(X, Y ) ∈ K[X, Y ] of degree d such that f = fe1
1 · · · fer

r is a
factorization of f where each polynomial fi is irreducible of degree di. Then, for
all ν ≥ d we have

dimK kerGν(f) = r − 1 +

(

2 + ν − d +
∑r

i=1 di(ei − 1)

2

)

Proof. From the above discussion on the interpretation of kerGν(f) in terms of
1-differential forms, we know that

dimK kerGν(f) = dimK H1(A2
K \ C) + dimK Bν

where Bν is defined by (1.1). Since we also know that dimK H1(A2
K
\ C) = r,

it remains to compute the dimension of Bν . For that purpose, observe that the

condition d
(

P
f

)

= w in the definition of Bν is equivalent to the system of equations

{

f∂XP − P∂Xf − Gf = 0

f∂Y P − P∂Y f − Hf = 0

with the constraints deg(G) ≤ ν − 1, deg(H) ≤ ν − 1 and deg(P ) ≤ ν.
Denote by Lν the vector space of those triples (G, H, P ) solution of this system.

The canonical projection (G, H, P ) 7→ (G, H) sends Lν to Bν . Moreover, the kernel

of this projection are the triples (0, 0, P ) satisfying the condition d
(

P
f

)

= 0 which

implies that P is equal to f up to multiplication by an element in K. Therefore,
dimK Bν = dimK Lν − 1 and we are left with the computation of the dimension of
Lν.

The first equation defining Lν , that can be rewritten as f(∂XP − G) = P∂Xf ,
implies that P must be of the form

P = Q1
f

gcd(f, ∂Xf)

where Q1 is a polynomial of degree less or equal to ν − d + deg gcd(f, ∂Xf). More-
over, any such polynomial P provides a couple (P, G) that is solution of the above
equation – once P is fixed then so does for G. A similar reasoning with the second
defining equation of Lν shows that its solutions are in correspondence with the
polynomials P of the form Q2f/ gcd(f, ∂Y f) where Q2 is any polynomial of degree
less or equal to ν − d + deg gcd(f, ∂Y f).

Now, to obtain the common solutions of the two defining equations of Lν we
have to solve the equation

Q2 gcd(f, ∂Xf) = Q1 gcd(f, ∂Y f)

But again, with similar arguments and using the fact that

gcd (gcd(f, ∂Xf), gcd(f, ∂Y f)) = gcd(f, ∂Xf, ∂Y f)

we get that

Q1 = Q
gcd(f, ∂Xf)

gcd(f, ∂Xf, ∂Y f)
, Q2 = Q

gcd(f, ∂Y f)

gcd(f, ∂Xf, ∂Y f)
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where Q is any polynomial in K[X, Y ] of degree less or equal to

(1.3) ν − d + deg gcd(f, ∂Xf, ∂Y f) = ν − d +
r

∑

i=1

di(ei − 1)

Therefore, we deduce that the dimension of Lν is equal to the dimension of the
K-vector space of polynomials in K[X, Y ] of degree less or equal to the quantity
(1.3), that is to say

(

2 + ν − d +
∑r

i=1 di(ei − 1)

2

)

and the claimed formula is proved. �

Following Ruppert’s approach in [Rup86], we introduce a new K-linear map
which is similar to Gν(f) but with a source of smaller dimension. This property
will be very important in the next section. To be more precise, for all positive
integer ν consider the K-vector space

Eν = {(G, H) ∈ K[X, Y ]≤ν−1 × K[X, Y ]≤ν−1 such that deg(XG + Y H) ≤ ν − 1}

It is of dimension ν2 − 1 and has the following property.

Lemma 4. Let f ∈ K[X, Y ] of degree d. For all positive integer ν and all couple
(G, H) ∈ Eν , the polynomial

f2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

has degree at most ν + d − 3

Proof. Denote by Gν−1, resp. Hν−1, fd, the homogeneous component of G, resp. H ,
f of degree ν − 1, resp. ν − 1, d. We have

f2
d d

(

XGν−1 + Y Hν−1

fd

)

= fdd(XGν−1 + Y Hν−1) − (XGν−1 + Y Hν−1)dfd

= fd(Gν−1 + X∂XGν−1 + Y ∂XHν−1)dX

+fd(Hν−1 + X∂Y Gν−1 + Y ∂Y Hν−1)dY

−(XGν−1∂Xfd + Y Hν−1∂Xfd)dX − (Y Hν−1∂Y fd + XGν−1∂Y fd)dY

So, using Euler’s relation the coefficient of dX is

fd(νGν−1 − Y ∂Y Gν−1 + Y ∂XHν−1) − Gν−1(dfd − Y ∂Y fd) − Y Hν−1∂Xfd

that is to say

(1.4) (ν − d)fdGν−1 − Y f2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

Similarly, the coefficient of dY is

(1.5) (ν − d)fdHν−1 − Xf2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))
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Now, since (G, H) ∈ Eν we have XGν−1 +Y Hν−1 = 0. Therefore the quantities
(1.4) and (1.5) are both equal to zero. It follows that

0 = X × (1.4) + Y × (1.5) =

(ν − d)fd(XGν−1 + Y Hν−1) − XY f2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

=

− XY f2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

and the lemma is proved. �

Let f(X, Y ) ∈ K[X, Y ] of degree d. For all integer ν ≥ d we define the K-linear
map

Rν(f) : E −→ K[X, Y ]≤ν+d−3 : (G, H) 7→ f2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

Point out that the operator Rν(−) is K-linear, that is to say that for all couples
(f, g) ∈ K[X, Y ]≤ν and all couple (u, v) ∈ K2, we have

Rν(uf + vg) = uRν(f) + vRν(g)

Of course, a similar property holds for the operator Gν(f).

Proposition 5. Let f(X, Y ) ∈ K[X, Y ] of degree d. Then

dimK kerRd(f) = dimK kerGd(f) − 1

and for all ν > d

dimK kerRν(f) = dimK kerGν−1(f)

Proof. Denote by Gν−1, resp. Hν−1, fd, the homogeneous component of G, resp. H ,
f of degree ν − 1, resp. ν − 1, d.

First, notice that for all integer ν ≥ d and all couple (G, H) ∈ kerGν(f) we have

(1.6) d

(

XGν−1 + Y Hν−1

fd

)

= (ν − d)
Gν−1dX + Hν−1dY

fd

Indeed, this follows from the computation we did in the proof of Lemma 4, more
precisely the coefficients (1.4) and (1.5).

Now, let f = fe1
1 · · · fer

r be a factorization of f where each polynomial fi is
irreducible of degree di. By definition of both maps Gd(f) and Rd(f), it is obvious
to notice that any element in the kernel of Rd(f) is also in the kernel of Gd(f).
Moreover, it is easy to check that

(

f

f1
∂Xf1,

f

f1
∂Y f1

)

∈ kerGd(f)

but does not belong to the kernel of Rd(f) because

X
f

f1
∂Xf1 + Y

f

f1
∂Y f1 =

f

f1
(X∂Xf1 + Y ∂Y f1) = d1f +

f

f1
f̃1

where deg(f̃1) < d1 (by Euler’s relation). Nevertheless, for all couple (G, H) ∈
kerGd(f), Equation (1.6) shows that there exists α ∈ K such that

XGd−1 + Y Hd−1 = αfd
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It follows that

(G, H) +
α

d1

(

f

f1
∂Xf1,

f

f1
∂Y f1

)

∈ kerRd(f)

and therefore

dimK kerRd(f) = dimK kerGd(f) − 1

To finish the proof, fix an integer ν > d. It is clear from the definitions that

kerGν−1(f) ⊆ kerRν(f) ⊆ kerGν+1(f)

Pick a couple (G, H) ∈ kerRν(f). It satisfies XGν−1 + Y Hν−1 = 0. Therefore,
using (1.6) we deduce that

Gν−1dX + Hν−1dY

fd
= 0

that is to say that Gν−1 = Hν−1 = 0. It follows that (G, H) ∈ kerGν−1(f). �

Corollary 6. Let f(X, Y ) ∈ K[X, Y ] of degree d such that f = fe1
1 · · · fer

r is a
factorization of f where each polynomial fi is irreducible of degree di. Then

dimK kerRd(f) = r − 2 +

(

2 +
∑r

i=1 di(ei − 1)

2

)

In particular, f(X, Y ) is irreducible if and only if dimK kerRd(f) = 0.

Remark 7. As already mentioned, a basis of the kernel of Gd(f) is known in the
case where f is a square-free polynomial. Under the same hypothesis, it is not hard
to check that the set

{(

−di
f

f1
∂Xf1 + d1

f

fi
∂Xfi,−di

f

f1
∂Y f1 + d1

f

fi
∂Y fi

)

, i = 2, . . . , r

}

form a basis of the kernel of Rd(f).

Since we will often deal with homogeneous polynomials in the rest of this paper,
we need to extend Corollary 6 to the case of a homogeneous polynomial. To proceed,
it is first necessary to define Ruppert’s matrix in this setting. If f(X, Y, Z) ∈
K[X, Y, Z] is a homogenous polynomial of degree d, we define

R(f) : E −→ K[X, Y, Z]2d−3 : (G, H) 7→
1

Z
f2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

where

E = {(G, H) ∈ K[X, Y, Z]d−1 × K[X, Y, Z]d−1 such that Z|XG + Y H}

Observe that the division by Z in this definition is justified by Lemma 4. Here is
the main result of this section.

Theorem 8. Let f(X, Y, Z) ∈ K[X, Y, Z] homogeneous of degree d and suppose that
f = fe1

1 · · · fer
r where each polynomial fi(X, Y, Z) is irreducible and homogeneous

of degree di. Then

dimK kerR(f) = r − 2 +

(

2 +
∑r

i=1 di(ei − 1)

2

)

In particular, f(X, Y, Z) is irreducible if and only if dimK kerR(f) = 0.
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Proof. Denote f̃(X, Y ) = f(X, Y, 1) ∈ K[X, Y ] and consider the map Rd(f̃). We

claim that the kernels of R(f) and Rd(f̃) are isomorphic K-vector spaces.

Indeed, let (G̃(X, Y ), H̃(X, Y )) ∈ kerRd(f̃) and set

G(X, Y, Z) = Zd−1G̃

(

X

Z
,
Y

Z

)

, H(X, Y, Z) = Zd−1H̃

(

X

Z
,
Y

Z

)

Multiplying by Z2d−2 the equality

f̃

(

X

Z
,
Y

Z

)

∂Y G̃

(

X

Z
,
Y

Z

)

− G̃

(

X

Z
,
Y

Z

)

∂Y f̃

(

X

Z
,
Y

Z

)

− f̃

(

X

Z
,
Y

Z

)

∂XH̃

(

X

Z
,
Y

Z

)

+ H̃

(

X

Z
,
Y

Z

)

∂X f̃

(

X

Z
,
Y

Z

)

= 0

we get

f∂Y G − G∂Y f − f∂XH + H∂Xf = R(f)(G, H) = 0

Moreover, since deg(XG̃ + Y H̃) ≤ d − 1 we deduce that Z divides XG + Y H and
conclude that (G, H) belongs to the kernel of R(f). Similarly, if (G, H) ∈ kerR(f)

then (G̃, H̃) = (G(X, Y, 1), H(X, Y, 1)) ∈ kerRd(f̃). Therefore, we have proved
that

dimK kerR(f) = dimK kerRd(f̃)

From here, the claimed equality follows from Corollary 6 if deg(f̃) = d. Otherwise,

if deg(f̃) < d, it is a consequence of Proposition 3 and Proposition 5. �

2. An upper bound for the total order of reducibility

In this section, given a non-composite rational function r = f/g ∈ K(X, Y ) we
establish an upper bound for its total order of reducibility counting multiplicities
m(f, g) (recall that if r is composite then σ(f, g) is not a finite set). Surprisingly,
this upper bound is the same as the known upper bound for the usual total order
of reducibility ρ(f, g) [Lor93, Vis93]. Notice that we will actually prove a stronger
result by considering a quantity which is bigger than m(f, g). To proceed, we first
need some notations.

Throughout this section, we will assume that the algebraically closed field K has
characteristic p = 0.

Given a non-composite rational function r = f/g ∈ K(X, Y ) of degree d, define
the two homogeneous polynomials of degree d in K[X, Y, Z]

f ♯(X, Y, Z) = Zdf

(

X

Z
,
Y

Z

)

, g♯(X, Y, Z) = Zdg

(

X

Z
,
Y

Z

)

If (µ : λ) ∈ σ(f, g) and

(2.1) µf ♯(X, Y, Z) + λg♯(X, Y, Z) =

n(µ:λ)
∏

i=1

P
e(µ:λ),i

(µ:λ),i

where each polynomial P(µ:λ),i is irreducible and homogeneous in K[X, Y, Z], then

ρ(f, g) =
∑

(µ:λ)∈P1
K

(

n(µ : λ) − 1
)
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and

m(f, g) =
∑

(µ:λ)∈P1
K

(m(µ : λ) − 1) =
∑

(µ:λ)∈P1
K









n(µ:λ)
∑

i=1

e(µ:λ),i



 − 1





The number of multiple factors of µf ♯(X, Y, Z) + λg♯(X, Y, Z), counted with
multiplicity, is

n(µ:λ)
∑

i=1

(

e(µ:λ),i − 1
)

In the sequel we will actually balance each multiplicity in this sum with the degree
of its corresponding factor, that is to say, we will rather consider the number

ω(µ : λ) =

n(µ:λ)
∑

i=1

deg(P(µ:λ),i)
(

e(µ:λ),i − 1
)

≥

n(µ:λ)
∑

i=1

(

e(µ:λ),i − 1
)

Consequently, we define

ω(f, g) =
∑

(µ:λ)∈P1
K

ω(µ : λ)

Before going further in the notation, let us make a digression on the interesting
quantity ω(f, g) that first appears in the works of Darboux [Dar78] and Poincaré
[Poi91] on the qualitative study of first order differential equations. In particular,
they knew the following result:

Lemma 9. Let r = f/g ∈ K(X, Y ) a non-composite reduced rational function of
degree d. Then,

ω(f, g) ≤ 2d − 2

Proof. See [Jou79, Chapitre 2, Corollaire 3.5.6] for a detailed proof of this result
valid with an arbitrary number of variables. �

It is also interesting to emphasize how Lemma 9 implies that the cardinal of the
set

γ(f, g) :=
{

(µ : λ) ∈ P1
K such that µf ♯ + λg♯ = P

e(µ:λ)

(µ:λ)

with e(µ:λ) ≥ 2 and P(µ:λ) ∈ K[X, Y, Z] irreducible
}

⊂ P1
K

that is to say of the set of geometrically irreducible but reduced fibers2, is less or
equal to 3. Indeed, Lemma 9 yields

∑

(µ:λ)∈γ(f,g)

deg(P(µ:λ))(e(µ:λ) − 1) ≤ 2d − 2

But obviously, deg(P(µ:λ)) ≤ d
2 for all (µ : λ) ∈ γ(f, g) and, denoting by |γ(f, g)|

the cardinal of γ(f, g), it follows that

d |γ(f, g)| =
∑

(µ:λ)∈γ(f,g)

e(µ:λ) deg(P(µ:λ))

≤ 2d − 2 +
∑

(µ:λ)∈γ(f,g)

deg(P(µ:λ)) ≤ 2d − 2 +
d

2
|γ(f, g)|

2Notice that these fibers appear in the work of Poincaré [Poi91] as the critical remarkable
values of fifth types.



12 L. BUSÉ AND G. CHÈZE

Therefore, since d is a positive integer we have |γ(f, g)| ≤ 3.
Mention that one can also be interested in fibers that are non reduced and

geometrically irreducible on the affine space A2
K
, say with variables X, Y , that is

to say fibers of the pencil of curves µf ♯ + λg♯ of the form Ze∞P e where P is an
irreducible and homogeneous polynomial and e deg(P ) + e∞ = d. Since there is at
most one point (µ : λ) ∈ P1

K
such that Z divides µf ♯ + λg♯, we deduce from the

inequality |γ(f, g)| ≤ 3 that the number of such fibers is at most 4. This property
actually appears in [AHS03, General Mixed Primset Theorem, p 74].

Closing this parenthesis on the quantity ω(f, g), we finish with the notation by
defining from (2.1) the quantity

θ(µ, λ) =

(

ω(µ : λ) + 1

2

)

−

n(µ:λ)
∑

i=1

(e(µ:λ),i − 1)

which is positive since

θ(µ, λ) ≥

(

ω(µ : λ) + 1

2

)

− ω(µ : λ) =

(

ω(µ : λ) − 1

2

)

Finally, we set

θ(f, g) =
∑

(µ:λ)∈P1
K

θ(µ : λ)

It is important to notice that we defined θ(µ, λ) in order to have the equality

(2.2) m(µ : λ) − 1 + ω(µ : λ) + θ(µ : λ) = dimkerR(µf ♯ + λg♯)

according to Theorem 8.

Theorem 10. Let r = f/g ∈ K(X, Y ) a non-composite reduced rational function
and set d = deg(r) = max(deg(f), deg(g)). We have

0 ≤ ρ(f, g) ≤ m(f, g) + ω(f, g) + θ(f, g) ≤ d2 − 1

Proof. For all (µ : λ) ∈ P1
K
, consider the linear map

R(µf ♯ + vg♯) = µR(f ♯) + vR(g♯)

and, choosing bases for the K-vector spaces E and K[X, Y, Z]2d−3, the correspond-
ing matrix

M(µf ♯ + vg♯) = µM(f ♯) + vM(g♯)

They form a pencil of matrices that has d2 − 1 columns and more rows. We define
the polynomial Spect(U, V ) ∈ K[U, V ] as the greatest common divisor of all the
(d2 − 1)-minors of the matrix

(2.3) UM(f ♯) + V M(g♯)

It is a homogeneous polynomial of degree ≤ d2 − 1, since each entry of (2.3) is a
linear form in K[U, V ].

First, notice that Spect(U, V ) is nonzero. Indeed, since r = f/g is reduced and
non-composite, the spectrum σ(f, g) is finite and hence there exists (µ : λ) /∈ σ(f, g).
By Theorem 8, it follows that kerM(µf ♯ + λg♯) = {0} and therefore that at least
one of the (d2 − 1)-minors of (2.3) is nonzero since it has to be nonzero after the
specializations of U to µ and V to λ.

Now, let (µ : λ) ∈ σ(f, g). By Theorem 8

(2.4) dimkerM(µf ♯ + λg♯) = m(µ : λ) − 1 + ω(µ : λ) + θ(µ : λ) > 0
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Therefore, (µ : λ) is a root of Spect(U, V ). Moreover, by a well-known property of
characteristic polynomials, (µ : λ) is a root of Spect(U, V ) of multiplicity at least
(2.4). Summing all these multiplicities over all the elements in the spectrum σ(f, g),
we obtain the quantity m(f, g) + ω(f, g) + θ(f, g). It is bounded above by d2 − 1
because Spect(U, V ) is a polynomial of degree less or equal to d2 − 1. �

It is remarkable that the term m(f, g)+ω(f, g)+θ(f, g) depends quadratically on
the degrees and on the multiplicities of the irreducible components of the reducible
curves in the pencil µf ♯ + λg♯. This has to be compared with the bound d2 − 1
which depends quadratically on the total degree d of the pencil.

As mentioned earlier, the inequality ρ(f, g) ≤ d2 − 1 has been proved in [Lor93,
Vis93]. This bound is known to be reached only for d = 1, 2, 3 and several authors
raised the question of the optimality of this bound for an arbitrary degree d (see
for instance [AHS03, Question 1, p. 79] or [Vis93, top of p. 254]). Coming back to
the total order of reducibility counting multiplicities, we do not know whether the
bound d2−1 given in Theorem 10 is optimal. Of course, it is optimal for d = 1, 2, 3
since this is the case for the bound ρ(f, g) ≤ d2 − 1. Nevertheless, as a consequence
of Theorem 10 we obtain the

Corollary 11. Let r = f/g ∈ K(X, Y ) a non-composite reduced rational function
of degree d. If ρ(f, g) = d2 − 1 then ω(f, g) = 0.

In other words, if there exists a pencil of curves with total order of reducibility
equal to d2 − 1 then it must have all its reducible members scheme-theoretically
reduced.

In the same spirit, given a polynomial f ∈ K[X, Y ] of degree d, one may ask
if there exists a sharper bound for the spectrum m(f) := m(f, 1) than d2 − 1.
Indeed, as a consequence of a result of Stein [Ste89] (see also [Lor93] and [AHS03]),
such a phenomenon appears when multiplicities of the irreducible factors are not
considered; one has ρ(f) ≤ d − 1 (and this bound is reached). The technique we
used for proving Theorem 10 allows to show that

(2.5) m(f) + ω(f) + θ(f) ≤ d(d − 1)/2

providing f is a non-composite polynomial. Indeed, (2.5) follows from the fact that
Rd(1) has rank d(d− 1)/2. This rank can be easily computed since this linear map
sends a couple (G, H) to the difference ∂Y G− ∂XH . However, one can expect that
a bound linear in the degree d holds for m(f).

Although beyond the scope of this paper, we would like to mention that our
approach can be directly applied for a collection of polynomials (f1, . . . , fr) rather
than a couple of polynomials (f, g). The problem is then to investigate the variety

S of points (λ1, . . . , λr) such that the polynomial λ1f
♯
1 + · · · + λrf

♯
r is reducible,

assuming that this latter is generically irreducible. As an immediate consequence
of our approach, the degree of S is less or equal to d2 − 1. Notice that the study of
S has already been considered in [BDN08] in arbitrary characteristic.

Finally, before closing this section we establish a result similar to Theorem 10
in the multivariate case. This kind of result is based on a classical use of Bertini’s
Theorem under the following form.
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Lemma 12. Let

f =
∑

|e|≤d

ce1,...,en
Xe1

1 . . . Xen
n ∈ K[X1, . . . , Xn]

set |e| = e1 + · · · + en and

L := K(U1, . . . , Un, V1, . . . , Vn, W1, . . . , Wn)

where U1, . . . , Un, V1, . . . , Vn, W1, . . . , Wn are algebraically independent indetermi-
nates.

Then, the bivariate polynomial

f̃(X, Y ) = f(U1X + V1Y + W1, . . . , UnX + VnY + Wn) ∈ L[X, Y ]

is irreducible in L[X, Y ] if and only if f is irreducible in K[X1, . . . , Xn].

Proof. See [Kal95, lemma 7]. See also [Jou83] for a complete treatment of Bertini’s
Theorem. �

In the following theorem, the quantities m(f, g), ω(f, g) and θ(f, g) that we have
defined for a rational function r = f/g in two variables are straightforwardly ex-
tended to a rational function in several variables, denoting by X0 the homogenizing
variable.

Theorem 13. Let r = f/g ∈ K(X1, . . . , Xn) a non-composite reduced rational
function of degree d. We have

m(f, g) + ω(f, g) + θ(f, g) ≤ d2 − 1

Proof. Given (µ : λ) ∈ P1
K
, Lemma 12 implies that

µf ♯ + λg♯ =

n(µ:λ)
∏

i=1

P
e(µ:λ),i

(µ:λ),i

with P(µ:λ),i homogeneous and irreducible in K[X0, X1, . . . , Xn], if and only if

µf̃ ♯ + λg̃♯ =

n(µ:λ)
∏

i=1

P̃
e(µ:λ),i

(µ:λ),i

with P̃(µ:λ),i homogeneous irreducible in L[X, Y, Z]. Therefore, m(f, g) = m(f̃ , g̃),

ω(f, g) = ω(f̃ , g̃) and θ(f, g) = θ(f̃ , g̃). The claimed result then follows from

Theorem 10 applied to the rational function r = f̃ /g̃ ∈ K(X, Y ). �

3. Exploiting Newton’s polygon

In the previous section we considered rational functions f/g with a certain fixed
degree. In this section, we will refine this characterization by considering the New-
ton’s polygons of f and g. In this way, we will give an upper bound for the total
order of reducibility counting multiplicities m(f, g) that improves the one of The-
orem 10 in many cases. In particular, an example for which this bound is almost
reached for an arbitrary degree is presented.

To obtain this upper bound, we will follow a more basic approach than in Section
2. Indeed, instead of using Theorem 8 we will exhibit explicit elements in the kernel
of a suitable Ruppert’s linear map and show that they are linearly independent.
This has the advantage to allow us working in non-zero characteristic, but has the
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disadvantage to provide a bound for the quantity m(f, g) and not m(f, g)+ω(f, g)+
θ(f, g) as in Theorem 8.

Before going further into details, mention that a bound for the total order of
reducibility ρ(f, g) related to the Newton’s polygons of f and g is contained in
the result of Vistoli [Vis93, Theorem 2.2] since this amounts to homogenize the
corresponding pencil of curves over a certain toric variety which is built from the
Newton’s polygons of f and g. The bound provided in [Vis93] is then expressed in
terms of invariants of this variety and of the pencil of curves that are very hard to
make explicit.

Hereafter, p stands for the characteristic of the algebraically closed field K. We
begin with some notation and preliminary materials.

Given a polynomial f(X, Y ) ∈ K[X, Y ], its support is the set Sf of integer points
(i, j) such that the monomial X iY j appears in f with a non zero coefficient. The
convex hull, in the real space R2, of Sf is denoted N(f) and called the Newton’s
polygon of f . It is contained in the first quadrant of the plane R2.

The superior envelop of N(f), that we will denote N+(f), is the smallest convex
set that contains N(f) and the origin, and that is bordered by edges having non-
positive slopes (horizontal and vertical edges are hence allowed). It is also contained
in the first quadrant of the plane R2. Moreover, it will be useful in the sequel to
notice that if f, g ∈ K[X, Y ] are such that g divides f then clearly N(f/g) ⊂ N+(f).

Recall that the Minkowski sum A + B of two sets A and B ∈ R2 is the set of all
elements a + b with a ∈ A and b ∈ B. We have the following classical result due to
Ostrowski: let f, f1, . . . , fr be polynomials in K[X, Y ] such that f = f1 . . . fr, then

(3.1) N(f) = N(f1) + · · · + N(fr)

The notion of total degree of a polynomial f ∈ K[X, Y ] can be refined in many
ways in the sparse context. For instance, if f(X, Y ) =

∑

i,j fi,jX
iY j in K[X, Y ],

given a couple (a, b) ∈ Z2 the (a, b)-weighted degree, or simply weighted degree, of
f is defined by

da,b(f) = max
(i,j)∈N2

{ai + bj | fi,j 6= 0}

Thus, the total degree of a f is nothing but d1,1(f) and the degree of f with respect
to the variable X , resp. Y , corresponds to deg1,0(f), resp. deg0,1(f).

If E is an edge of a given convex set N , denote by aEX + bEY = cE one of its
integer equation. Then, it is clear that daE ,bE (m) = daE ,bE (n) if m, n ∈ E , and that
daE ,bE (m) 6= daE ,bE (n) if m 6∈ E , n ∈ E . In what follows we will use this remark for
particular edges that we will call good edges.

Definition 14. Suppose given a convex set N in the first quadrant of the plane.
An edge E of N is called a good edge if the two following conditions hold:

• there exists (aE , bE) ∈ N2 \ (0, 0) and cE ∈ N such that aEX + bEY = cE is
an equation of E ,

• if n ∈ N , n 6∈ E and m ∈ E then 0 ≤ daE ,bE (n) < daE ,bE (m).

Notice that a good edge does not always exist, as the reader can convince itself
very easily.

We are now ready to state the main result of this section.



16 L. BUSÉ AND G. CHÈZE

Theorem 15. Let N be a convex set in R2. Denote by N its number of interior
integral points and by NX, resp. NY , the number of points in N lying on the X-
axis, resp. Y -axis. If N possesses a good edge E, then NE stands for the number of
integral points in N lying on E; otherwise set NE = 0.

Suppose given a non-composite reduced rational function r = f/g ∈ K(X, Y ) of
degree d, assume that N ⊆ N

(

(1 + X + Y )d
)

and that p = 0 or p > d(d − 1).

• If N(f) ⊂ N and N(g) ⊂ N then

(3.2) ρ(f, g) ≤ 2N − NX − NY − NE + κ

• If N+(f) ⊂ N and N+(g) ⊂ N then

(3.3) m(f, g) ≤ 2N − NX − NY − NE + κ

• If N(f) ⊂ N , N(g) ⊂ N and (−g(0, 0) : f(0, 0)) 6∈ σ(f, g) then

(3.4) m(f, g) ≤ 2N − NX − NY − NE + κ

where κ = max(e∞−1, 0) with e∞ the multiplicity (possibly 0) of the line at infinity
{Z = 0} in the pencil of curves µf ♯ + λg♯.

Before proceeding with the proof of this theorem, we comment it and illustrate
it through three examples. First, consider the dense case which corresponds to the
situation studied in Section 2. Here, we have

N = N(f) = N+(f) = N(g) = N+(g) = N((1 + X + Y )d)

and therefore N = (d + 2)(d + 1)/2, NX = NY = NE = d + 1, the good edge E
being the diagonal joining the vertices (0, d) and (d, 0). Moreover, since a linear
change of coordinates leaves invariant ρ(f, g), m(f, g) and the Newton’s polygons
N(f) and N(g), we can assume that κ = 0, that is to say that the line at infinity
does not belong to the pencil of curves µf ♯ + λg♯. It follows that we obtain the
expected bounds ρ(f, g) ≤ d2 − 1 and m(f, g) ≤ d2 − 1.

Our next example, taken from [Lor93, Remark 5], is to show that the bound
(3.3) is almost reached for an arbitrary degree d. Indeed, set

f(X, Y ) = X(X + 1) · · · (X + d − 2)Y + X, g(X, Y ) = 1

It is not hard to check that r = f/g is non-composite (see [Lor93, Remark 5]) and
that m(f, g) ≥ 2d − 2. Now, defining N = N+(f + g) wich is a rectangle with
vertices (0, 0), (d − 1, 0), (d − 1, 1) and (0, 1) we have N = 2d, NX = NY = d.
Futhermore, we choose the horizontal good edge corresponding to aε = 0, bε = 1,
cε = 1 and obtain NE = d. Since κ = d − 1, the bound given in (3.3) is equal to
2d − 1 and we obtain

2d − 2 ≤ m(f, g) ≤ 2d − 1

Finally, our last example is to justify why we chose to state (3.4) despite the
technical hypothesis requiring that the projective point (−g(0, 0) : f(0, 0)) does not
belong to the spectrum of f/g. Consider the example

f(X, Y ) = a0 + a1XY + a2X
2Y 2 + a3X

3Y 2 + a4X
2Y 3

g(X, Y ) = b0 + b1XY + b2X
2Y 2 + b3X

3Y 2 + b4X
2Y 3

where the coefficients ai’s and bj ’s are all assumed to be nonzero and such that the
above mentioned hypothesis is satisfied. We have N(g) = N(f) and it is clear that
N(f) ( N+(f). Taking N = N+(f) and defining the good edge E as, for instance,
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the top horizontal edge of N+(f), we get N = 15, Nx = 4, Ny = 4, NE = 3, d = 5.
Therefore, (3.3) yields

(3.5) m(f, g) ≤ 2N − Nx − Ny − NE = 19 < d2 − 1 = 24

Now, choosing N = N(f) there is only one choice for the good edge E and we obtain
N = 5, Nx = 1, Ny = 1, NE = 2, d = 5. Consequently, (3.4) gives m(f, g) ≤ 10,
to be compared with (3.5). The following picture shows the different polytopes
involved in this example.
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We now turn to the proof of Theorem 15. We begin with the following prelimi-
nary definition and result.

Definition 16. Let f(X, Y ) ∈ K[X, Y ], let (aE , bE) ∈ Z2 and denote f = fe1
1 · · · fer

r

a factorization of f where each polynomial fi is irreducible. For all i = 2, . . . , r, we
set

G
(1)
i = −daE ,bE (fi)

f

f1
∂Xf1 + daE ,bE (f1)

f

fi
∂Xfi

H
(1)
i = −daE ,bE (fi)

f

f1
∂Y f1 + daE ,bE (f1)

f

fi
∂Y fi

and for all i = 1, . . . , r and k = 2, . . . , ei we set

G
(k)
i =

f

fk
i

∂Xfi, H
(k)
i =

f

fk
i

∂Y fi.

Proposition 17. Let f(X, Y ) ∈ K[X, Y ] of degree d, denote f = fe1
1 · · · fer

r a
factorization of f where each polynomial fi is irreducible and assume that p = 0 or
p > d.

(i) For all i = 2, . . . , r and all (aE , bE) ∈ Z2,

N
(

XG
(1)
i

)

⊂ N(f) and N
(

Y H
(1)
i

)

⊂ N(f)
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(ii) For all i = 1, . . . r and all k = 2, . . . , ei,

N
(

XG
(k)
i

)

⊂ N+(f) and N
(

Y H
(k)
i

)

⊂ N+(f)

Furthermore, if f(0, 0) 6= 0 then for all i = 1, . . . r and all k = 2, . . . , ei,

N
(

XG
(k)
i

)

⊂ N(f) and N
(

Y H
(k)
i

)

⊂ N(f)

(iii) If E is a good edge of N(f) with equation aEX + bEY = cE , then for all
i = 1, . . . r and all k = 1, . . . , ei,

daE ,bE

(

aEXG
(k)
i + bEY H

(k)
i

)

≤ daE ,bE (f) − 1

(iv) If p = 0 or p > d then the (
∑r

i=1 ei) − 1 elements
(

G
(k)
i ,G

(k)
i

)

, i = 1, . . . , r, k = 1, . . . , ei, (i, k) 6= (1, 1)

are K-linearly independent.

Proof. We begin with the proof of (i) and (ii). For all i = 1, . . . , r and k = 1, . . . , ei,
set

(3.6) g
(k)
i =

f

fk
i

∂Xfi, h
(k)
i =

f

fk
i

∂Y fi

By (3.1), N(Xg
(k)
i ) = N

( f

fk
i

)

+ N(X∂Xfi), and since N(X∂Xfi) ⊂ N(fi) we get

(3.7) N
(

X
f

fk
i

∂Xfi

)

⊂ N
( f

fk
i

)

+ N(fi) = N
( f

fk−1
i

)

⊂ N+(f)

If k = 1, Equation (3.7) shows that N(Xg
(1)
i ) ⊂ N(f) for all i = 1, . . . , r and

hence that N(XG
(1)
i ) ⊂ N(f) for all i = 2, . . . , r.

If k > 1 then, by (3.1) we have

N(f) = N
( f

fk−1
i

)

+ N(fk−1
i )

So, if f(0, 0) 6= 0 then fk−1
i (0, 0) 6= 0 and hence (0, 0) ∈ N(fk−1

i ). It follows that

N
( f

fk−1
i

)

⊂ N(f)

proving that N
(

XG
(k)
i

)

⊂ N(f) for all i = 1, . . . r and all k = 2, . . . , ei.

We can proceed similarly with the polynomials h
(k)
i and conclude this way the

proof of (i) and (ii).
We turn to the proof of (iii). If k > 1, then by Definition 14 we clearly have

daE ,bE (aEXG
(k)
i + bEY H

(k)
i ) ≤ daE ,bE (f) − 1

If k = 1, denote by f top the homogeneous part of f with maximum weighted degree
daE ,bE (f). Then, Euler’s relation

aEX∂Xf top + bEY ∂Y f top = daE ,bE (f)f top

allows to conclude.
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It remains to prove (iv). For this purpose, we will prove that the
∑r

i=1 ei elements

(g
(k)
i , h

(k)
i ) defined by (3.6) are K-linearly independent. So suppose that there exists

a collection of λi,k ∈ K such that

r
∑

i=1

ei
∑

k=1

λi,kg
(k)
i = 0,

r
∑

i=1

ei
∑

k=1

λi,kh
(k)
i = 0

and choose an integer j ∈ {1, . . . , r}. We have

r
∑

i=1

ei
∑

k=1

λi,kg
(k)
i g

(ej)
j = 0

and since f divides g
(k)
i g

(ej)
j for all i 6= j, we deduce that

ej
∑

k=1

λj,kg
(k)
j g

(ej)
j = 0 mod f

Equivalently, there exists a polynomial T ∈ K[X, Y ] such that

fT = λj,1
f

fj

f

f
ej

j

(∂Xfj)
2 + · · · + λj,ej

f

f
ej

j

f

f
ej

j

(∂Xfj)
2

that is to say, such that

f
ej

j T = (∂Xfj)
2 f

f
ej

j

(λj,1f
ej−1
j + · · · + λj,ej

).

It follows that either fj divides ∂Xfj or either f
ej

j divides (λj,1f
ej−1
j + · · ·+ λj,ej

).

A similar reasoning by replacing g
(k)
i with h

(k)
i shows that either fj divides ∂Y fj

or either f
ej

j divides (λj,1f
ej−1
j + · · ·+λj,ej

). Now, since deg fj ≤ d < p and f is not

a constant polynomial, (∂Xfj , ∂Y fj) 6= (0, 0) and hence fj cannot divide one of its

partial derivative. It follows that necessarily f
ej

j divides λj,1f
ej−1
j + · · ·+λj,ej

. But

since deg f
ej

j > deg λj,1f
ej−1
j + · · ·+ λj,ej

we must have λj,1f
ej−1
j + · · ·+ λj,ej

= 0.

Furthermore deg f
ej

j > deg f
ej−1
j > · · · > deg fj , so that λj,k = 0 for all j, k. This

proves that the (g
(k)
i , h

(k)
i ), hence the (G

(k)
i , H

(k)
i ), are linearly independent over

K. �

Observe that the technical hypothesis f(0, 0) 6= 0 in (ii) is necessary. Indeed, if
f = X3(Y 2 + X + 1), f1 = X and e1 = 3 then XGe1

1 = X(Y 2 + X + 1) and its
Newton’s polygon is not included in the Newton’s polygon of f .

Proof of Theorem 15. We will proceed similarly to what we did to prove Theorem
10. Given a polynomial h(X, Y ) ∈ K[X, Y ], we define the K-linear map

SR(h) : EN −→ K[X, Y ]

(G, H) 7−→ h2

(

∂Y

(

G

h

)

− ∂X

(

H

h

))

where

EN = {(G, H) ∈ K[X, Y ] × K[X, Y ] such that N(XG) ⊂ N , N(Y H) ⊂ N ,

daE ,bE (aEXG + bEY H) ≤ daE ,bE (h) − 1}
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Notice that the last condition in the above definition has to be forgotten if there
does not exist a good edge E . Also, observe that all the elements introduced in
Definition 16 belong to the kernel of SR(f), keeping the notation of loc. cit.

Since we assumed that N ⊆ N
(

(1 + X + Y )d
)

, EN is a subvector space of the
K-vector space K[X, Y ]≤d−1 × K[X, Y ]≤d−1, so that SR(h) is a restriction of the
K-linear map Gd(h) introduced in Section 1, to EN . Let us compute the dimension
of this latter vector space. Pick (G, H) ∈ EN . We have N(XG) ⊂ N , hence XG
has at most N − Nx nonzero coefficients and so does G, because XG and G have
the same number of nonzero coefficients. Similarly, we get that H has N − Ny

nonzero coefficients. The condition

daE ,bE (aEXG + bEY H) ≤ daE ,bE (f) − 1

means that the weighted homogeneous part of highest degree of G and H are related.
That is to say, we can write the homogeneous part of weighted degree daE ,bE (f)− 1
of H in terms of the homogeneous part of weighted degree daE ,bE (f) − 1 of G.
Consequently, we obtain

(3.8) dimK EN = 2N − Nx − Ny − NE

Now, for all (µ : λ) ∈ P1
K
, consider the linear map

SR(µf + λg) = µSR(f) + λSR(g)

and, choosing bases for EN and K[X, Y ]≤2d−2, the corresponding matrix

M(µf + λg) = µM(f) + λM(g)

They form a pencil of matrices that has (3.8) columns and more rows. Then, define
the polynomial Spect(U, V ) ∈ K[U, V ] as the greatest common divisor of all the
minors of size (3.8) of the matrix

UM(f) + V M(g)

It is a homogeneous polynomial of degree lower or equal to (3.8).

The polynomial Spect(U, V ) is nonzero for the same reason that the one given
in Theorem 10, since the linear maps SR(−) are restrictions of the linear maps
Gd(−). The fact that this property remains valid if p > d(d−1) is a consequence of
[Gao03, Lemma 2.4] where Gao studied the property of the linear map Gd(−) for
square-free polynomials in positive characteristic.

Now, let (µ : λ) ∈ σ(f, g). Then dimkerM(µf + λg) > 0 and (µ : λ) is root of
Spect(U, V ) of multiplicity, say η. Since η ≥ dim kerM(µf + λg), Proposition 17
gives some lower bounds for η that allow to conclude the proof of this theorem as
follows.

• If N(f), N(g) ⊂ N , then Proposition 17,(i),(iii) and (iv) implies that η ≥
n(µ : λ)−1 if deg(µf +λg) = d or η+κ ≥ n(µ : λ)−1 otherwise. Summing
over all the elements in σ(f, g) we deduce the bound (3.2).

• If N(f)+, N(g)+ ⊂ N , then Proposition 17,(i), (ii) - first part, (iii) and (iv)
implies that η ≥ m(µ : λ) − 1 if deg(µf + λg) = d or η + κ ≥ m(µ : λ) − 1
otherwise. Summing over all the elements in σ(f, g) we deduce the bound
(3.3).
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• If N(f), N(g) ⊂ N and (−g(0, 0) : f(0, 0)) /∈ σ(f, g), then Proposition
17,(i), (ii) - second part, (iii) and (iv) implies that η ≥ m(µ : λ) − 1 if
deg(µf + λg) = d or η + κ ≥ m(µ : λ)− 1 otherwise. Summing over all the
elements in σ(f, g) we deduce the bound (3.3).

Notice that we used the fact that the polynomial Spect(U, V ) is of degree lower or
equal to (3.8). �

To finish, point out that we can not state a result similar to Theorem 15 in terms
of the Newton’s polygon of f and g ∈ K[X1, . . . , Xn] following the above strategy
because we are not able to preserve the sparsity of the polynomials through Bertini’s
Theorem.
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