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Abstract

In this paper, the problem of bounding the number of reducible curves in
a pencil of algebraic plane curves is addressed. Unlike most of the previous
related works, each reducible curve of the pencil is here counted with its
appropriate multiplicity. It is proved that this number of reducible curves,
counted with multiplicity, is bounded by d2 − 1 where d is the degree of the
pencil. Then, a sharper bound is given by taking into account the Newton’s
polygon of the pencil.
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Introduction

Given a pencil of algebraic plane curves such that a general element is
irreducible, the purpose of this paper is to give a sharp upper bound for the
number of reducible curves in this pencil. This question has been widely
studied in the literature, but never, as far as we know, by counting the
reducible factors with their multiplicities.
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Let r(X, Y ) = f(X, Y )/g(X, Y ) be a rational function in K(X, Y ), where
K is an algebraically closed field. It is commonly said to be non-composite
if it cannot be written r = u ◦ h where h(X, Y ) ∈ K(X, Y ) and u ∈ K(T )
such that deg(u) ≥ 2 (recall that the degree of a rational function is the
maximum of the degrees of its numerator and denominator after reduction).
If d = max(deg(f), deg(g)), we define

f ♯(X, Y, Z) = Zdf

(

X

Z
,
Y

Z

)

, g♯(X, Y, Z) = Zdg

(

X

Z
,
Y

Z

)

that are two homogeneous polynomials of the same degree d in K[X, Y, Z].
The set

σ(f, g) = {(µ : λ) ∈ P1
K | µf ♯ + λg♯ is reducible in K[X, Y, Z]} ⊂ P1

K

is the spectrum of r and a classical theorem of Bertini and Krull implies
that it is finite if r is non-composite. Actually, σ(f, g) is finite if and only
if r is non-composite and if and only if the pencil of projective algebraic
plane curves µf ♯ + λg♯ = 0, (µ : λ) ∈ P1

K, has an irreducible general element
(see for instance [Jou79, Chapitre 2, Théorème 3.4.6] and [Bod08, Theorem
2.2] for detailed proofs). Notice that the study of σ(f, g) is trivial if d = 1.
Therefore, throughout this paper we will always assume that d ≥ 2.

Given (µ : λ) ∈ σ(f, g), a complete factorization of the polynomial
µf ♯ + λg♯ is of the form

µf ♯ + λg♯ =

n(µ:λ)
∏

i=1

P
e(µ:λ),i
(µ:λ),i (⋆)

where each polynomial P(µ:λ),i is irreducible and homogeneous in K[X, Y, Z].
If σ(f, g) is finite the total order of reducibility1 ρ(f, g) of r is then defined
by

ρ(f, g) =
∑

(µ:λ)∈P1
K

(

n(µ : λ)− 1
)

.

Observe that the above sum is finite because n(µ : λ) 6= 1 implies that
(µ : λ) ∈ σ(f, g).

1This terminology is taken from [Ste89].
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It is known that ρ(f, g) is bounded above by d2 − 1 where d stands for
the degree of r. As far as we know, the first related result has been given by
Poincaré [Poi91]. He showed that

|σ(f, g)| ≤ (2d− 1)2 + 2d+ 2.

This bound was improved only very recently by Ruppert [Rup86] who proves
that |σ(f, g)| is bounded by d2−1. This result was obtained as a byproduct of
a very interesting technique developed by the author to decide the reducibility
of an algebraic plane curve. Later on, Stein studied in [Ste89] a less general
question but gave a stronger result: he proves that if g = 1 then ρ(f, 1) ≤
d − 1. Its approach, based on the study of the multiplicative group of all
the divisors of the reducible curves in the pencil, is entirely different from
that of Ruppert. Then, Stein’s bound was improved in [Kal92] and after
that several papers [Lor93, Vis93, AHS03, Bod08] developed techniques with
similar flavors to deal with the general case ρ(f, g). All of them obtained the
bound ρ(f, g) ≤ d2 − 1 but also provide some various extensions: In [Lor93]
the bound is proved in arbitrary characteristic, in [Bod08] it is shown that a
direct generalization of Stein’s result yields the bound ρ(f, g) ≤ d2+d−1, in
[Vis93] the result is generalized to a very general ground variety and finally,
in [AHS03] the authors were interested in a total reducibility order over a
field K that is not necessarily algebraically closed. Incidentally, point out
the paper [PY08] that deals with completely reducible curves in a pencil, a
topic which is closely related.

The aim of this paper is to study the total order of reducibility by counting
the multiplicities. More precisely, for each (µ : λ) ∈ σ(f, g) define

m(µ : λ) :=

n(µ:λ)
∑

i=1

e(µ:λ),i

from the factorization (⋆). This number is the number of factors of µf ♯+λg♯

where the multiplicities of the factors are counted. In particular, it is clear
that n(µ : λ) ≤ m(µ : λ). We define the total order of reducibility with
multiplicities of the rational function r as the integer

m(f, g) =
∑

(µ:λ)∈P1
K

(

m(µ : λ)− 1
)

.
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Obviously, it always holds that 0 ≤ ρ(f, g) ≤ m(f, g). Moreover, notice that
unlike ρ(f, g), m(f, g) takes into account those curves in the pencil that are
geometrically irreducible but scheme-theoretically non-reduced. However, it
is proved in [AHS03, General Mixed Primset Theorem, p 74] that the number
of such curves is at most 4 in our context; we will come back to this point in
Section 2.

The first main result of this paper is that the upper bound d2 − 1 for
ρ(f, g) is also valid for m(f, g). This is the content of Section 2 where it is
assumed that the characteristic of K is zero. Our method, which is inspired
by [Rup86], is elementary compared to the previously mentioned papers.
Roughly speaking, we will transform the pencil of curves into a pencil of
matrices and obtain in this way the claimed bound as a consequence of rank
computations of some matrices that we will study in Section 1. In this way,
the known inequality ρ(f, g) ≤ d2 − 1 is easily obtained. Moreover, we will
actually not only bound m(f, g) by d2 − 1, but a bigger quantity that takes
into account the multiple factors of the reducible elements in the pencil.
Notice that we will also show that the same bound holds in the case where
r = f/g is a rational function in an arbitrary number of variables via a
classical use of Bertini’s Theorem at the end of Section 2.

The second main result of this paper, given in Section 3, is a refined upper
bound for m(f, g) which is obtained by considering the Newton’s polygons of
the polynomials f and g. This result also gives a bound for the total order
of reducibility ρ(f, g) which is new and sharper. Notice that in this section
the characteristic of K will be assumed to be 0 or > d(d−1) where d denotes
the degree of r = f/g.

Notations

Throughout this paper, K stands for an algebraically closed field of cha-
racteristic p. Given a polynomial f , deg(f) denotes its total degree and ∂Xf
(resp. ∂Y f) denotes the partial derivative of f with respect to the variable
X (resp. to Y ). Also, for any integer n the notation K[X, Y ]≤n stands for
the set of all the polynomials in K[X, Y ] with total degree less or equal to n;
the notation K[X, Y, Z]n stands for the set of all homogeneous polynomials
of degree n in K[X, Y, Z].
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1. Ruppert’s linear map

In the paper [Rup86], Ruppert introduced an original technique to decide
whether a plane algebraic curve is reducible. Its formulation relies on the
computation of the first de Rham’s cohomology group of the complementary
of the plane curve by means of linear algebra methods. Later, Gao followed
this approach to obtain an algorithm for the factorization of a bivariate
polynomial [Gao03].

From now on, we will always assume in this section that the characteristic
of the algebraically closed field K is p = 0.

For ν a positive integer and f(X, Y ) ∈ K[X, Y ] a polynomial of degree
d ≤ ν, define the K-linear map

Gν(f) : K[X, Y ]≤ν−1 ×K[X, Y ]≤ν−1 −→ K[X, Y ]≤ν+d−2

(G,H) 7→ f 2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

=

∣

∣

∣

∣

f ∂Y f
G ∂YG

∣

∣

∣

∣

−

∣

∣

∣

∣

f ∂Xf
H ∂XH

∣

∣

∣

∣

.

Let f1, . . . , fr be the irreducible factors of f . If gcd(f, ∂Xf) is a nonzero
constant in K then it is proved in [Gao03] that ker Gd(f) is a K-vector space
of dimension r and that the set

{

( f

fi
∂Xfi,

f

fi
∂Y fi

)

| i = 1, . . . , r

}

(1.1)

is a basis of this kernel. This result provides an explicit description of the
kernel of the linear map Gd(f) if the polynomial f(X, Y ) does not have any
square factor. In order to investigate this kernel in the general case, that is
to say for an arbitrary polynomial f ∈ K[X, Y ] and for an arbitrary integer
ν ≥ deg(f), we interpret it in terms of algebraic de Rham cohomology.

Let ν be a positive integer and 0 6= f(X, Y ) ∈ K[X, Y ] be a polynomial
of degree d ≤ ν. Assume that f = f e1

1 · · · f er
r is a factorization of f where

each polynomial fi is irreducible and denote by C the algebraic curve defined
by the equation f = 0. The first algebraic de Rham cohomology H1(A2

K \ C)
is the quotient of the closed 1-differential forms w ∈ ΩK[X,Y ]f/K of K[X, Y ]f
over K by the exact 1-forms.
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By definition of Gν(f), a couple (G,H) ∈ K[X, Y ]≤ν−1 × K[X, Y ]≤ν−1

belongs to the kernel of Gν(f) if and only if the 1-form 1
f
(GdX + HdY ) is

closed. Therefore, the kernel of Gν(f) is in correspondence with the closed
1-differential forms w ∈ ΩK[X,Y ]f/K that can be written w = 1

f
(GdX +HdY )

for some polynomials G and H of degree less or equal to ν − 1. As a conse-
quence of Ruppert’s results in [Rup86] (see also [Sch07, Theorem 8.3]), these
particular closed 1-forms are sufficient to give a representation of any element
in H1(A2

K \ C), that is to say that the canonical map

ker Gν(f) → H1(A2
K \ C)

is surjective. Actually, the closed 1-forms df1
f1

, . . . , dfr
fr

are known to form a

basis of H1(A2
K \ C) (see loc. cit. or for instance [Dim92, Chapter 6]). It

follows that
H1(A2

K \ C) ≃ ker Gν(f)/Bν

where Bν is the set of 1-forms in ker Gν(f) that are exact. Basically, the

elements in Bν are of the form d
(

P
fs

)

for some P ∈ K[X, Y ] and s ∈ N.

However, we claim that the following equality holds

Bν =

{

w =
1

f
(GdX +HdY ), (G,H) ∈ K[X, Y ]≤ν−1 ×K[X, Y ]≤ν−1

such that ∃P ∈ K[X, Y ]≤ν with d

(

P

f

)

= w

}

. (1.2)

It is a consequence of the following technical results.

Lemma 1. Let p, q be polynomials in K[X, Y ] such that p divides qdp. Then
each irreducible factor of p divides q.

Proof. Let p1, . . . , pr be distinct irreducible factors of p such that p =
∏r

i=1 p
ei
i .

Then the equality
dp

p
=

r
∑

i=1

ei
dpi
pi

together with our hypothesis imply that peii divides q
∑r

j=1 ej
p
pj
dpj . We de-

duce that peii must divide q p
pi
dpi and therefore that pi divides q.
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Lemma 2. Let f ∈ K[X, Y ] of degree d and G,H ∈ K[X, Y ] of degree ≤ ν−1
with ν ≥ d. If P ∈ K[X, Y ] and s ∈ N are such that

d

(

P

f s

)

=
1

f
(GdX +HdY )

and f does not divide P if s ≥ 1, then either s = 1 and deg(P ) ≤ ν or either
s = 0 and deg(P ) ≤ ν − d.

Proof. This proof is inspired by [Sch07, Lemma 8.10]. Since

d

(

P

f s

)

=
fdP − sPdf

f s+1

we have
fdP − sPdf = f s(GdX +HdY ). (1.3)

Assume that s ≥ 2 and denote by f =
∏r

i=1 f
ei
i an irreducible factorization

of f . Equation (1.3) implies that f divides Pdf and therefore, by Lemma 1,
that fi divides P for all i = 1, . . . , r. Furthermore, since

df

f
=

r
∑

i=1

ei
dfi
fi

we get

fdP − sPdf = fdP − sPf

r
∑

i=1

ei
dfi
fi

= f(dP − s

r
∑

i=1

ei
P

fi
dfi).

But f s divides fdP − sPdf by (1.3), so we deduce that

f s−1 |dP − s
r

∑

i=1

ei
P

fi
dfi.

Define Q := gcd(f, P ) =
∏r

i=1 f
µi

i with 1 ≤ µi ≤ ei for all i = 1, . . . , r and
set R := P/Q. We obtain that f s−1 divides

QdR +RdQ− s

r
∑

i=1

ei
P

fi
dfi = QdR +

r
∑

i=1

(µi − sei)R
Q

fi
dfi
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since
dQ

Q
=

r
∑

i=1

µi
dfi
fi

.

As s ≥ 2, µi − sei < 0 for all i and hence fµi

i divides RQ
fi
dfi. It follows that

fi divides Rdfi and therefore that fi divides R by Lemma 1. But then fµi+1
i

divides P which implies that µi = ei for all i. Therefore, we conclude that if
s ≥ 2 then necessarily f divides P : a contradiction with our hypotheses. So
we must have 0 ≤ s ≤ 1.

Suppose that s = 0. Then

GdX +HdY = fdP = f∂XPdX + f∂Y PdY

and hence deg(P ) ≤ ν − d.
Now, assume that s = 1. We have

fGdX + fHdY = fdP −Pdf = (f∂XP −P∂Xf)dX +(f∂Y P −P∂Y f)dY.

Denote by δ the degree of P and by Pδ, resp. fd, the homogeneous part of
highest degree of P , resp. f . If fd∂XPδ−Pδ∂Xfd 6= 0 or fd∂Y Pδ−Pδ∂Y fd 6= 0
then necessarily δ ≤ ν since deg(fG) ≤ ν + d− 1 and deg(fH) ≤ ν + d− 1.
Otherwise, we obtain that

d

(

Pδ

fd

)

=
fddPδ − Pδdfd

(fd)2
= 0

and hence that δ = d ≤ ν.

We are now ready to compute the dimension of the kernel of the K-linear
map Gν(f) for all ν ≥ d.

Proposition 3. Let f(X, Y ) ∈ K[X, Y ] of degree d such that f = f e1
1 · · ·f er

r

is a factorization of f where each polynomial fi is irreducible of degree di.
Then, for all ν ≥ d we have

dimK kerGν(f) = r − 1 +

(

2 + ν − d+
∑r

i=1 di(ei − 1)

2

)

.

Proof. From the above discussion on the interpretation of ker Gν(f) in terms
of 1-differential forms, we know that

dimK ker Gν(f) = dimKH1(A2
K \ C) + dimKBν
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where Bν is defined by (1.2). Since we also know that dimKH1(A2
K \ C) = r,

it remains to compute the dimension of Bν . For that purpose, observe that

the condition d
(

P
f

)

= w in the definition of Bν is equivalent to the system

of equations
{

f∂XP − P∂Xf −Gf = 0

f∂Y P − P∂Y f −Hf = 0

with the constraints deg(G) ≤ ν − 1, deg(H) ≤ ν − 1 and deg(P ) ≤ ν.
Denote by Lν the vector space of those triples (G,H, P ) solution of this

system. The canonical projection (G,H, P ) 7→ (G,H) sends Lν to Bν . More-
over, the kernel of this projection are the triples (0, 0, P ) satisfying the con-

dition d
(

P
f

)

= 0 which implies that P is equal to f up to multiplication by

an element in K. Therefore, dimKBν = dimK Lν − 1 and we are left with the
computation of the dimension of Lν .

The first equation defining Lν , that can be rewritten as f(∂XP − G) =
P∂Xf , implies that P must be of the form

P = Q1
f

gcd(f, ∂Xf)

where Q1 is a polynomial of degree less or equal to ν − d+ deg gcd(f, ∂Xf).
Moreover, any such polynomial P provides a couple (P,G) that is solution
of the above equation – once P is fixed then so does for G. A similar reason-
ing with the second defining equation of Lν shows that its solutions are in
correspondence with the polynomials P of the form Q2f/ gcd(f, ∂Y f) where
Q2 is any polynomial of degree less or equal to ν − d+ deg gcd(f, ∂Y f).

Now, to obtain the common solutions of the two defining equations of Lν

we have to solve the equation

Q2 gcd(f, ∂Xf) = Q1 gcd(f, ∂Y f).

But again, with similar arguments and using the fact that

gcd (gcd(f, ∂Xf), gcd(f, ∂Y f)) = gcd(f, ∂Xf, ∂Y f)

we get that

Q1 = Q
gcd(f, ∂Xf)

gcd(f, ∂Xf, ∂Y f)
, Q2 = Q

gcd(f, ∂Y f)

gcd(f, ∂Xf, ∂Y f)
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where Q is any polynomial in K[X, Y ] of degree less or equal to

ν − d+ deg gcd(f, ∂Xf, ∂Y f) = ν − d+

r
∑

i=1

di(ei − 1). (1.4)

Therefore, we deduce that the dimension of Lν is equal to the dimension of
the K-vector space of polynomials in K[X, Y ] of degree less or equal to the
quantity (1.4), that is to say

(

2 + ν − d+
∑r

i=1 di(ei − 1)

2

)

and the claimed formula is proved.

Following Ruppert’s approach in [Rup86], we introduce a new K-linear
map which is similar to Gν(f) but with a source of smaller dimension. This
property will be very important in the next section. To be more precise, for
all positive integer ν consider the K-vector space

Eν = {(G,H) ∈ K[X, Y ]≤ν−1×K[X, Y ]≤ν−1 such that deg(XG+Y H) ≤ ν−1}.

It is of dimension ν2 − 1 and has the following property.

Lemma 4. Let f ∈ K[X, Y ] of degree d. For all positive integer ν and all
couple (G,H) ∈ Eν, the polynomial

f 2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

has degree at most ν + d− 3

Proof. Denote by Gν−1, resp. Hν−1, fd, the homogeneous component of G,
resp. H , f of degree ν − 1, resp. ν − 1, d. We have

f 2
d d

(

XGν−1 + Y Hν−1

fd

)

= fdd(XGν−1 + Y Hν−1)− (XGν−1 + Y Hν−1)dfd

= fd(Gν−1 +X∂XGν−1 + Y ∂XHν−1)dX

+fd(Hν−1 +X∂YGν−1 + Y ∂YHν−1)dY

−(XGν−1∂Xfd + Y Hν−1∂Xfd)dX

−(Y Hν−1∂Y fd +XGν−1∂Y fd)dY.
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So, using Euler’s relation the coefficient of dX is

fd(νGν−1 − Y ∂YGν−1 + Y ∂XHν−1)−Gν−1(dfd − Y ∂Y fd)− Y Hν−1∂Xfd

that is to say

(ν − d)fdGν−1 − Y f 2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

. (1.5)

Similarly, the coefficient of dY is

(ν − d)fdHν−1 −Xf 2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

. (1.6)

Now, since (G,H) ∈ Eν we have XGν−1 + Y Hν−1 = 0. Therefore the
quantities (1.5) and (1.6) are both equal to zero. It follows that

0 = X × (1.5) + Y × (1.6)

= (ν − d)fd(XGν−1 + Y Hν−1)− 2XY f 2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

= −2XY f 2
d

(

∂Y

(

Gν−1

fd

)

− ∂X

(

Hν−1

fd

))

and the lemma is proved.

Let f(X, Y ) ∈ K[X, Y ] of degree d. For all integer ν ≥ d we define the
K-linear map

Rν(f) : Eν −→ K[X, Y ]≤ν+d−3 : (G,H) 7→ f 2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

.

Point out that the operator Rν(−) is K-linear, that is to say that for all
couples (f, g) ∈ K[X, Y ]≤ν and all couple (u, v) ∈ K2, we have

Rν(uf + vg) = uRν(f) + vRν(g).

Of course, a similar property holds for the operator Gν(f).

Proposition 5. Let f(X, Y ) ∈ K[X, Y ] of degree d. Then

dimK kerRd(f) = dimK kerGd(f)− 1

and for all ν > d

dimK kerRν(f) = dimK ker Gν−1(f).
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Proof. Denote by Gν−1, resp. Hν−1, fd, the homogeneous component of G,
resp. H , f of degree ν − 1, resp. ν − 1, d.

First, notice that for all integer ν ≥ d and all couple (G,H) ∈ ker Gν(f)
we have

d

(

XGν−1 + Y Hν−1

fd

)

= (ν − d)
Gν−1dX +Hν−1dY

fd
. (1.7)

Indeed, this follows from the computation we did in the proof of Lemma 4,
more precisely the coefficients (1.5) and (1.6).

Now, let f = f e1
1 · · · f er

r be a factorization of f where each polynomial fi
is irreducible of degree di. By definition of both maps Gd(f) and Rd(f), it
is obvious to notice that any element in the kernel of Rd(f) is also in the
kernel of Gd(f). Moreover, it is easy to check that

(

f

f1
∂Xf1,

f

f1
∂Y f1

)

∈ kerGd(f)

but does not belong to the kernel of Rd(f) because

X
f

f1
∂Xf1 + Y

f

f1
∂Y f1 =

f

f1
(X∂Xf1 + Y ∂Y f1) = d1f +

f

f1
f̃1 (1.8)

where deg(f̃1) < d1 (by Euler’s relation). Nevertheless, for all couple (G,H) ∈
kerGd(f), Equation (1.7) shows that there exists α ∈ K such that

XGd−1 + Y Hd−1 = αfd.

It follows that

(G,H)−
α

d1

(

f

f1
∂Xf1,

f

f1
∂Y f1

)

∈ kerRd(f)

and therefore
dimK kerRd(f) = dimK ker Gd(f)− 1.

To finish the proof, fix an integer ν > d. It is clear from the definitions
that

ker Gν−1(f) ⊆ kerRν(f) ⊆ kerGν(f).
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Pick a couple (G,H) ∈ kerRν(f). It satisfies XGν−1 + Y Hν−1 = 0. There-
fore, using (1.7) we deduce that

Gν−1dX +Hν−1dY

fd
= 0

that is to say that Gν−1 = Hν−1 = 0. It follows that (G,H) ∈ kerGν−1(f).

Corollary 6. Let f(X, Y ) ∈ K[X, Y ] of degree d such that f = f e1
1 · · ·f er

r

is a factorization of f where each polynomial fi is irreducible of degree di.
Then

dimK kerRd(f) = r − 2 +

(

2 +
∑r

i=1 di(ei − 1)

2

)

.

In particular, f(X, Y ) is irreducible if and only if dimK kerRd(f) = 0.

Remark 7. If f is a square-free polynomial, it is not hard to check that the
set
{(

−di
f

f1
∂Xf1 + d1

f

fi
∂Xfi,−di

f

f1
∂Y f1 + d1

f

fi
∂Y fi

)

, i = 2, . . . , r

}

(1.9)

form a basis of the kernel of Rd(f). Indeed, Equation (1.8) implies that the
elements of (1.9) belongs to Ed. Furthermore, as already mentioned, the set
(1.1) form a basis of the kernel of Gd(f) when f is square-free. It is then
straightforward to check that the elements of (1.9) are linearly independent
over K and then, using Corollary 6, to deduce that (1.9) form a basis of the
kernel of Rd(f).

Since we will often deal with homogeneous polynomials in the rest of
this paper, we need to extend Corollary 6 to the case of a homogeneous
polynomial. To proceed, it is first necessary to define Ruppert’s matrix in
this setting. If f(X, Y, Z) ∈ K[X, Y, Z] is a homogenous polynomial of degree
d, we define

R(f) : E −→ K[X, Y, Z]2d−3 : (G,H) 7→
1

Z
f 2

(

∂Y

(

G

f

)

− ∂X

(

H

f

))

where

E = {(G,H) ∈ K[X, Y, Z]d−1 ×K[X, Y, Z]d−1 such that Z|XG+ Y H}.

Observe that the division by Z in this definition is justified by Lemma 4.
Here is the main result of this section.
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Theorem 8. Let f(X, Y, Z) ∈ K[X, Y, Z] homogeneous of degree d and sup-
pose that f = f e1

1 · · · f er
r where each polynomial fi(X, Y, Z) is irreducible and

homogeneous of degree di. Then

dimK kerR(f) = r − 2 +

(

2 +
∑r

i=1 di(ei − 1)

2

)

.

In particular, f(X, Y, Z) is irreducible if and only if dimK kerR(f) = 0.

Proof. Denote f̃(X, Y ) = f(X, Y, 1) ∈ K[X, Y ] and consider the map Rd(f̃).
We claim that the kernels of R(f) andRd(f̃) are isomorphic K-vector spaces.

Indeed, let (G̃(X, Y ), H̃(X, Y )) ∈ kerRd(f̃) and set

G(X, Y, Z) = Zd−1G̃

(

X

Z
,
Y

Z

)

, H(X, Y, Z) = Zd−1H̃

(

X

Z
,
Y

Z

)

.

Multiplying by Z2d−2 the equality

f̃

(

X

Z
,
Y

Z

)

∂Y G̃

(

X

Z
,
Y

Z

)

− G̃

(

X

Z
,
Y

Z

)

∂Y f̃

(

X

Z
,
Y

Z

)

− f̃

(

X

Z
,
Y

Z

)

∂XH̃

(

X

Z
,
Y

Z

)

+ H̃

(

X

Z
,
Y

Z

)

∂X f̃

(

X

Z
,
Y

Z

)

= 0

we get

f∂YG−G∂Y f − f∂XH +H∂Xf = ZR(f)(G,H) = 0.

Moreover, since deg(XG̃+Y H̃) ≤ d−1 we deduce that Z divides XG+Y H
and conclude that (G,H) belongs to the kernel ofR(f). Similarly, if (G,H) ∈
kerR(f) then (G̃, H̃) = (G(X, Y, 1), H(X, Y, 1)) ∈ kerRd(f̃). Therefore, we
have proved that

dimK kerR(f) = dimK kerRd(f̃).

From here, if deg(f̃) = d then the claimed equality follows from Corol-
lary 6. Now, if deg(f̃) < d then, by Proposition 5, dimK kerRd(f̃) =
dimK kerGd−1(f̃). As deg(f̃) < d, we can suppose that fr(X, Y, Z) = Zer ,
dr = 1, and then f̃(X, Y ) = f e1

1 (X, Y, 1) · · ·f er−1

r−1 (X, Y, 1). Thus deg(f̃) =

d− er and f̃ has r − 1 factors. Therefore, Proposition 3 applied to f̃ yields
the equality

dimK kerGd−1(f̃) = (r− 1)− 1 +

(

2 + (d− 1)− (d− er) +
∑r−1

i=1 di(ei − 1)

2

)

that gives the expected formula.
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2. An upper bound for the total order of reducibility

In this section, given a non-composite rational function r = f/g ∈ K(X, Y )
we establish an upper bound for its total order of reducibility counting mul-
tiplicities m(f, g) (recall that if r is composite then σ(f, g) is not a finite set).
It turns out that this upper bound is the same as the known upper bound
for the usual total order of reducibility ρ(f, g) [Lor93, Vis93]. Notice that
we will actually prove a stronger result by considering a quantity which is
bigger than m(f, g). To proceed, we first need some notations.

Throughout this section, we will assume that the algebraically closed field
K has characteristic p = 0.

Given a non-composite rational function r = f/g ∈ K(X, Y ) of degree d,
define the two homogeneous polynomials of degree d in K[X, Y, Z]

f ♯(X, Y, Z) = Zdf

(

X

Z
,
Y

Z

)

, g♯(X, Y, Z) = Zdg

(

X

Z
,
Y

Z

)

.

If (µ : λ) ∈ σ(f, g) and

µf ♯(X, Y, Z) + λg♯(X, Y, Z) =

n(µ:λ)
∏

i=1

P
e(µ:λ),i
(µ:λ),i (2.1)

where each polynomial P(µ:λ),i is irreducible and homogeneous in K[X, Y, Z],
then

ρ(f, g) =
∑

(µ:λ)∈P1
K

(

n(µ : λ)− 1
)

and

m(f, g) =
∑

(µ:λ)∈P1
K

(m(µ : λ)− 1) =
∑

(µ:λ)∈P1
K









n(µ:λ)
∑

i=1

e(µ:λ),i



− 1



 .

The number of multiple factors of µf ♯(X, Y, Z) + λg♯(X, Y, Z), counted
with multiplicity, is

n(µ:λ)
∑

i=1

(

e(µ:λ),i − 1
)

.
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In the sequel we will actually balance each multiplicity in this sum with the
degree of its corresponding factor, that is to say, we will rather consider the
number

ω(µ : λ) =

n(µ:λ)
∑

i=1

deg(P(µ:λ),i)
(

e(µ:λ),i − 1
)

≥

n(µ:λ)
∑

i=1

(

e(µ:λ),i − 1
)

.

Consequently, we define

ω(f, g) =
∑

(µ:λ)∈P1
K

ω(µ : λ).

Before going further in the notation, let us make a digression on the inter-
esting quantity ω(f, g) that first appears in the works of Darboux [Dar78] and
Poincaré [Poi91] on the qualitative study of first order differential equations.
In particular, they knew the following result:

Lemma 9. Let r = f/g ∈ K(X, Y ) a non-composite reduced rational func-
tion of degree d. Then,

ω(f, g) ≤ 2d− 2.

Proof. See [Jou79, Chapitre 2, Corollaire 3.5.6] for a detailed proof of this
result valid with an arbitrary number of variables.

It is also interesting to emphasize how Lemma 9 implies that the cardinal
of the set

γ(f, g) :=
{

(µ : λ) ∈ P1
K such that µf ♯ + λg♯ = P

e(µ:λ)
(µ:λ)

with e(µ:λ) ≥ 2 and P(µ:λ) ∈ K[X, Y, Z] irreducible
}

⊂ P1
K

that is to say of the set of geometrically irreducible but reduced fibers2, is
less or equal to 3. Indeed, Lemma 9 yields

∑

(µ:λ)∈γ(f,g)

deg(P(µ:λ))(e(µ:λ) − 1) ≤ 2d− 2.

2Notice that these fibers appear in the work of Poincaré [Poi91] as the critical remark-

able values of fifth type.
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But obviously, deg(P(µ:λ)) ≤ d
2
for all (µ : λ) ∈ γ(f, g) and, denoting by

|γ(f, g)| the cardinal of γ(f, g), it follows that

d |γ(f, g)| =
∑

(µ:λ)∈γ(f,g)

e(µ:λ) deg(P(µ:λ))

≤ 2d− 2 +
∑

(µ:λ)∈γ(f,g)

deg(P(µ:λ)) ≤ 2d− 2 +
d

2
|γ(f, g)|.

Therefore, since d is a positive integer we have |γ(f, g)| ≤ 3.
Mention that one can also be interested in fibers that are non reduced and

geometrically irreducible on the affine space A2
K, say with variables X, Y , that

is to say fibers of the pencil of curves µf ♯ + λg♯ of the form Ze∞P e where P
is an irreducible and homogeneous polynomial and e deg(P )+ e∞ = d. Since
there is at most one point (µ : λ) ∈ P1

K such that Z divides µf ♯ + λg♯, we
deduce from the inequality |γ(f, g)| ≤ 3 that the number of such fibers is at
most 4. This property actually appears in [AHS03, General Mixed Primset
Theorem, p 74].

Closing this parenthesis on the quantity ω(f, g), we finish with the nota-
tion by defining from (2.1) the quantity

θ(µ, λ) =

(

ω(µ : λ) + 1

2

)

−

n(µ:λ)
∑

i=1

(e(µ:λ),i − 1)

which is positive since

θ(µ, λ) ≥

(

ω(µ : λ) + 1

2

)

− ω(µ : λ) =

(

ω(µ : λ)

2

)

.

Finally, we set

θ(f, g) =
∑

(µ:λ)∈P1
K

θ(µ : λ).

It is important to notice that we defined θ(µ, λ) in order to have the
equality

m(µ : λ)− 1 + ω(µ : λ) + θ(µ : λ) = dimkerR(µf ♯ + λg♯) (2.2)

according to Theorem 8.
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Theorem 10. Let r = f/g ∈ K(X, Y ) a non-composite reduced rational
function and set d = deg(r) = max(deg(f), deg(g)). We have

0 ≤ ρ(f, g) ≤ m(f, g) + ω(f, g) + θ(f, g) ≤ d2 − 1.

Proof. For all (µ : λ) ∈ P1
K, consider the linear map

R(µf ♯ + vg♯) = µR(f ♯) + vR(g♯)

and its matrix
M(µf ♯ + vg♯) = µM(f ♯) + vM(g♯),

where arbitrary bases for the K-vector spaces E and K[X, Y, Z]2d−3 have been
chosen.

They form a pencil of matrices that has d2 − 1 columns and more rows.
We define the polynomial Spect(U, V ) ∈ K[U, V ] as the greatest common
divisor of all the (d2 − 1)-minors of the matrix

UM(f ♯) + VM(g♯). (2.3)

It is a homogeneous polynomial of degree ≤ d2 − 1, since each entry of (2.3)
is a linear form in K[U, V ].

First, notice that Spect(U, V ) is nonzero. Indeed, since r = f/g is re-
duced and non-composite, the spectrum σ(f, g) is finite and hence there ex-
ists (µ : λ) /∈ σ(f, g). By Theorem 8, it follows that kerM(µf ♯ + λg♯) = {0}
and therefore that at least one of the (d2−1)-minors of (2.3) is nonzero since
it has to be nonzero after the specializations of U to µ and V to λ.

Now, let (µ : λ) ∈ σ(f, g). By Theorem 8

dimkerM(µf ♯ + λg♯) = m(µ : λ)− 1 + ω(µ : λ) + θ(µ : λ) > 0. (2.4)

Therefore, (µ : λ) is a root of Spect(U, V ). Moreover, by a well-known
property of characteristic polynomials, (µ : λ) is a root of Spect(U, V ) of
multiplicity at least

m(µ : λ)− 1 + ω(µ : λ) + θ(µ : λ).

Summing all these multiplicities over all the elements in the spectrum σ(f, g),
we obtain the quantity m(f, g) + ω(f, g) + θ(f, g). It is bounded above by
d2−1 because Spect(U, V ) is a polynomial of degree less or equal to d2−1.
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Observe that the term m(f, g) + ω(f, g) + θ(f, g) depends quadratically
on the degrees and on the multiplicities of the irreducible components of the
reducible curves in the pencil µf ♯ + λg♯. This has to be compared with the
bound d2−1 which depends quadratically on the total degree d of the pencil.

As mentioned earlier, the inequality ρ(f, g) ≤ d2 − 1 has been proved
in [Lor93, Vis93]. This bound is known to be reached only for d = 1, 2, 3
and several authors raised the question of the optimality of this bound for
an arbitrary degree d (see for instance [AHS03, Question 1, p. 79] or [Vis93,
top of p. 254]). Coming back to the total order of reducibility counting
multiplicities, we do not know whether the bound d2 − 1 given in Theorem
10 is optimal. Of course, it is optimal for d = 1, 2, 3 since this is the case for
the bound ρ(f, g) ≤ d2 − 1. Nevertheless, as a consequence of Theorem 10
we obtain the

Corollary 11. Let r = f/g ∈ K(X, Y ) a non-composite reduced rational
function of degree d. If ρ(f, g) = d2 − 1 then ω(f, g) = 0.

In other words, if there exists a pencil of curves with total order of reducibil-
ity equal to d2 − 1 then it must have all its reducible members scheme-
theoretically reduced.

In the same spirit, given a polynomial f ∈ K[X, Y ] of degree d, one
may ask if there exists a sharper bound for the spectrum m(f) := m(f, 1)
than d2 − 1. Indeed, as a consequence of a result of Stein [Ste89] (see also
[Lor93] and [AHS03]), such a phenomenon appears when multiplicities of the
irreducible factors are not considered; one has ρ(f) ≤ d− 1 (and this bound
is reached). As pointed out to us by Dino Lorenzini, it turns out that the
later inequality combined with Lemma 9 implies that m(f) ≤ 3d− 3.

The technique we used for proving Theorem 10 allows to show that

m(f) + ω(f) + θ(f) ≤ d(d− 1)/2 (2.5)

providing f is a non-composite polynomial. It follows from the fact that
Rd(1) has rank d(d− 1)/2, this rank being easy to compute since the linear
map Rd(1) sends a couple (G,H) to the difference ∂YG− ∂XH . We do not
know if a bound linear in the degree d holds for the quantity m(f) + ω(f) +
θ(f).

Although beyond the scope of this paper, we would like to mention
that our approach can be directly applied for a collection of polynomials
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(f1, . . . , fr) rather than a couple of polynomials (f, g). The problem is then
to investigate the variety S of points (λ1, . . . , λr) such that the polynomial
λ1f

♯
1 + · · · + λrf

♯
r is reducible, assuming that this latter is generically irre-

ducible. As an immediate consequence of our approach, the degree of S is
less or equal to d2−1. Notice that the study of S has already been considered
in [BDN08] in arbitrary characteristic.

Finally, before closing this section we establish a result similar to Theorem
10 in the multivariate case. This kind of result is based on a classical use of
Bertini’s Theorem under the following form.

Lemma 12. Let

f =
∑

|e|≤d

ce1,...,enX
e1
1 . . .Xen

n ∈ K[X1, . . . , Xn]

set |e| = e1 + · · ·+ en and

L := K(U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn)

where U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn are algebraically independent inde-
terminates.

Then, the bivariate polynomial

f̃(X, Y ) = f(U1X + V1Y +W1, . . . , UnX + VnY +Wn) ∈ L[X, Y ]

is irreducible in L[X, Y ] if and only if f is irreducible in K[X1, . . . , Xn].

Proof. See [Kal95, lemma 7]. See also [Jou83] for a complete treatment of
Bertini’s Theorem.

In the following theorem, the quantities m(f, g), ω(f, g) and θ(f, g) that
we have defined for a rational function r = f/g in two variables are straight-
forwardly extended to a rational function in several variables, denoting by
X0 the homogenizing variable.

Theorem 13. Let r = f/g ∈ K(X1, . . . , Xn) a non-composite reduced ratio-
nal function of degree d. We have

m(f, g) + ω(f, g) + θ(f, g) ≤ d2 − 1.
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Proof. Given (µ : λ) ∈ P1
K, Lemma 12 implies that

µf ♯ + λg♯ =

n(µ:λ)
∏

i=1

P
e(µ:λ),i
(µ:λ),i

with P(µ:λ),i homogeneous and irreducible in K[X0, X1, . . . , Xn], if and only if

µf̃ ♯ + λg̃♯ =

n(µ:λ)
∏

i=1

P̃
e(µ:λ),i
(µ:λ),i

with P̃(µ:λ),i homogeneous irreducible in L[X, Y, Z]. Therefore, m(f, g) =

m(f̃ , g̃), ω(f, g) = ω(f̃ , g̃) and θ(f, g) = θ(f̃ , g̃). The claimed result then
follows from Theorem 10 applied to the rational function r = f̃ /g̃ ∈ K(X, Y ).

3. Exploiting Newton’s polygon

In the previous section we considered rational functions f/g with a certain
fixed degree. In this section, we will refine this characterization by consid-
ering the Newton’s polygons of f and g. In this way, we will give an upper
bound for the total order of reducibility counting multiplicities m(f, g) that
improves the one of Theorem 10 in many cases. In particular, an example
for which this bound is almost reached for an arbitrary degree is presented.

To obtain this upper bound, we will follow a more basic approach than
in Section 2. Indeed, instead of using Theorem 8 we will exhibit explicit
elements in the kernel of a suitable Ruppert’s linear map and show that they
are linearly independent. This has the advantage to allow us working in
non-zero characteristic, but has the disadvantage to provide a bound for the
quantity m(f, g) and not m(f, g) + ω(f, g) + θ(f, g) as in Theorem 8.

Before going further into details, mention that a bound for the total
order of reducibility ρ(f, g) related to the Newton’s polygons of f and g is
contained in the result of Vistoli [Vis93, Theorem 2.2] since this amounts to
homogenize the corresponding pencil of curves over a certain toric variety
which is built from the Newton’s polygons of f and g. The bound provided
in [Vis93] is then expressed in terms of invariants of this variety and of the
pencil of curves that are not easy to make explicit.

Recall that p stands for the characteristic of the algebraically closed field
K. We begin with some notations and preliminary materials.
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Given a polynomial f(X, Y ) ∈ K[X, Y ], its support is the set Sf of integer
points (i, j) such that the monomial X iY j appears in f with a non zero
coefficient. The convex hull, in the real space R2, of Sf is denoted by N(f)
and called the Newton’s polygon of f . It is contained in the first quadrant
of the plane R2.
Recall that the Minkowski sum A + B of two sets A and B ∈ R2 is the set
of all elements a + b with a ∈ A and b ∈ B. We have the following classical
result due to Ostrowski: let f, f1, . . . , fr be polynomials in K[X, Y ] such that
f = f1 . . . fr, then

N(f) = N(f1) + · · ·+N(fr). (3.1)

Now, we introduce another polygon.

Definition 14. N+(f) is the smallest convex set that contains N(f) and the
origin, and that is bordered by edges having non-positive slopes (horizontal
and vertical edges are hence allowed).

Remark: An equivalent definition of N+(f) is the following: For any in-
teger point (i, j) ∈ N × N we define its boxed Newton Polygon B+(i, j) to
be all integer points in the rectangle with opposite corners (0, 0), (i, j). Then
N+(f) is the convex hull of all B+(i, j) with (i, j) in the support of f .

As N(f), N+(f) is also contained in the first quadrant of the plane R2.
For example, N+(XY ) is the square with vertices (0, 0), (0, 1), (1, 1) and
(1, 0) and N+(X + Y + X2Y 2) is the polygon with vertices (0, 0), (1, 0),
(2, 2) and (0, 2). Moreover, it will be useful in the sequel to notice that if
f, g ∈ K[X, Y ] are such that g divides f then clearly N(f/g) ⊂ N+(f).

The notion of total degree of a polynomial f ∈ K[X, Y ] can be refined in
many ways in the sparse context. For instance, if f(X, Y ) =

∑

i,j fi,jX
iY j

in K[X, Y ], given a couple (a, b) ∈ Z2 the (a, b)-weighted degree, or simply
weighted degree, of f is defined by

da,b(f) = max
(i,j)∈N2

{ai+ bj | fi,j 6= 0}.

Thus, the total degree of a polynomial f is nothing but d1,1(f) and the
degree of f with respect to the variable X , resp. Y , corresponds to deg1,0(f),
resp. deg0,1(f).

If E is an edge of a given convex set N , denote by aEX+ bEY = cE one of
its integer equation. Then, it is clear that daE ,bE (m) = daE ,bE (n) if m,n ∈ E ,
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and that daE ,bE (m) 6= daE ,bE (n) if m 6∈ E , n ∈ E . In what follows we will use
this remark for particular edges that we will call good edges.

Definition 15. Suppose given a convex set N in the first quadrant of the
plane. An edge E of N is called a good edge if the two following conditions
hold:

• there exists (aE , bE) ∈ N2 \ (0, 0) and cE ∈ N such that aEX + bEY = cE
is an equation of E ,

• if n ∈ N , n 6∈ E and m ∈ E then 0 ≤ daE ,bE (n) < daE ,bE (m).

Remarks: A good edge is a vertical edge or an edge with a non positive
slope such that the convex set is below or to the left of this edge.
A good edge does not always exist. Consider for example the triangle formed
by (1, 0), (2, 2) and (0, 1).

We are now ready to state the main result of this section.

Theorem 16. Let N be a convex set in R2. Denote by p its number of
integral points and by pX , resp. pY , the number of points in N lying on the
X-axis, resp. Y -axis. If N possesses a good edge E , then pE stands for the
number of integral points in N lying on E ; otherwise set pE = 0.

Suppose given a non-composite reduced rational function r = f/g ∈
K(X, Y ) of degree d, assume that N ⊆ N

(

(1 +X + Y )d
)

and that the char-
acteristic p of K is such that p = 0 or p > d(d− 1).

• If N(f) ⊂ N and N(g) ⊂ N then

ρ(f, g) ≤ 2p− pX − pY − pE + κ. (3.2)

• If N+(f) ⊂ N and N+(g) ⊂ N then

m(f, g) ≤ 2p− pX − pY − pE + κ. (3.3)

• If N(f) ⊂ N , N(g) ⊂ N and (−g(0, 0) : f(0, 0)) 6∈ σ(f, g) then

m(f, g) ≤ 2p− pX − pY − pE + κ. (3.4)

where κ = max(e∞ − 1, 0) with e∞ the multiplicity (possibly 0) of the line at
infinity {Z = 0} in the pencil of curves µf ♯ + λg♯.
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Before proceeding with the proof of this theorem, we comment it and
illustrate it through three examples. First, consider the dense case which
corresponds to the situation studied in Section 2. Here, we have

N = N(f) = N+(f) = N(g) = N+(g) = N((1 +X + Y )d)

and therefore p = (d + 2)(d+ 1)/2, pX = pY = pE = d + 1, the good edge E
being the diagonal joining the vertices (0, d) and (d, 0). Moreover, since we
are in the dense case, a linear change of coordinates leaves invariant N(f),
N(g), ρ(f, g) and m(f, g). Thus we can assume that κ = 0, that is to say
that the line at infinity is not a factor of any member of pencil of curves
µf ♯ + λg♯. It follows that we obtain the expected bounds ρ(f, g) ≤ d2 − 1
and m(f, g) ≤ d2 − 1.

Our next example, taken from [Lor93, Remark 5], is to show that the
bound (3.3) is almost reached for an arbitrary degree d. Indeed, set

f(X, Y ) = X(X + 1) · · · (X + d− 2)Y +X, g(X, Y ) = 1.

It is not hard to check that r = f/g is non-composite (see [Lor93, Remark 5])
and that m(f, g) ≥ 2d−2. Now, defining N = N+(f+g) which is a rectangle
with vertices (0, 0), (d− 1, 0), (d− 1, 1) and (0, 1), we have p = 2d, pX = d,
pY = 2. Furthermore, we choose the horizontal good edge corresponding to
aε = 0, bε = 1, cε = 1 and obtain pE = d. Since κ = d − 1, the bound given
in (3.3) is equal to 2d− 1 and we obtain

2d− 2 ≤ m(f, g) ≤ 2d− 1.

Finally, our last example is to justify why we chose to state (3.4) despite
the technical hypothesis requiring that the projective point (−g(0, 0) : f(0, 0))
does not belong to the spectrum of f/g. Consider the example

f(X, Y ) = a0 + a1XY + a2X
2Y 2 + a3X

3Y 2 + a4X
2Y 3

g(X, Y ) = b0 + b1XY + b2X
2Y 2 + b3X

3Y 2 + b4X
2Y 3

where the coefficients ai’s and bj ’s are all assumed to be nonzero and such
that the above mentioned hypothesis is satisfied. We have N(g) = N(f) and
it is clear that N(f) ( N+(f). Taking N = N+(f) and defining the good
edge E as, for instance, the top horizontal edge of N+(f), we get p = 15,
px = 4, py = 4, pE = 3, d = 5. Therefore, (3.3) yields

m(f, g) ≤ 2p− px − py − pE = 19 < d2 − 1 = 24. (3.5)
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Now, choosing N = N(f) there is only one choice for the good edge E and
we obtain p = 5, px = 1, py = 1, pE = 2, d = 5. Consequently, (3.4) gives
m(f, g) ≤ 10, to be compared with (3.5). The following picture shows the
different polytopes involved in this example.
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We now turn to the proof of Theorem 16. We begin with the following
preliminary definition and result.

Definition 17. Let f(X, Y ) ∈ K[X, Y ], let (aE , bE) ∈ Z2 and let f =
f e1
1 · · ·f er

r be a factorization of f where each polynomial fi is irreducible.
For all i = 2, . . . , r, we set

G(1)
i = −daE ,bE (fi)

f

f1
∂Xf1 + daE ,bE (f1)

f

fi
∂Xfi

H(1)
i = −daE ,bE (fi)

f

f1
∂Y f1 + daE ,bE (f1)

f

fi
∂Y fi

and for all i = 1, . . . , r and k = 2, . . . , ei we set

G(k)
i =

f

fk
i

∂Xfi, H(k)
i =

f

fk
i

∂Y fi.

Proposition 18. Let f(X, Y ) ∈ K[X, Y ] be a polynomial of degree d, let
f = f e1

1 · · ·f er
r be a factorization of f where each polynomial fi is irreducible

and assume that the characteristic p of K is such that p = 0 or p > d.
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(i) For all i = 2, . . . , r and all (aE , bE) ∈ Z2,

N
(

XG(1)
i

)

⊂ N(f) and N
(

YH(1)
i

)

⊂ N(f).

(ii) For all i = 1, . . . r and all k = 2, . . . , ei,

N
(

XG(k)
i

)

⊂ N+(f) and N
(

YH(k)
i

)

⊂ N+(f).

Furthermore, if f(0, 0) 6= 0 then for all i = 1, . . . r and all k = 2, . . . , ei,

N
(

XG(k)
i

)

⊂ N(f) and N
(

YH(k)
i

)

⊂ N(f).

(iii) If E is a good edge of N(f) with equation aEX + bEY = cE , then for all
i = 1, . . . r and all k = 1, . . . , ei,

daE ,bE

(

aEXG(k)
i + bEYH(k)

i

)

≤ daE ,bE (f)− 1.

(iv) The (
∑r

i=1 ei)− 1 elements

(

G(k)
i ,H(k)

i

)

, i = 1, . . . , r, k = 1, . . . , ei, (i, k) 6= (1, 1)

are K-linearly independent.

Proof. We begin with the proof of (i) and (ii).

By Ostrowski’s formula, see(3.1), N
(

X
f

fk
i

∂Xfi

)

= N
( f

fk
i

)

+N(X∂Xfi), and

since N(X∂Xfi) ⊂ N(fi) we get

N
(

X
f

fk
i

∂Xfi

)

⊂ N
( f

fk
i

)

+N(fi) = N
( f

fk−1
i

)

⊂ N+(f). (3.6)

If k = 1, Equation (3.6), shows that N
(

X
f

fi
∂Xfi

)

⊂ N(f) for all i =

1, . . . , r and hence that N(XG(1)
i ) ⊂ N(f) for all i = 2, . . . , r.

If k > 1 then, by (3.1) we have

N(f) = N
( f

fk−1
i

)

+N(fk−1
i ).
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So, if f(0, 0) 6= 0 then fk−1
i (0, 0) 6= 0 and hence (0, 0) ∈ N(fk−1

i ). It follows
that

N
( f

fk−1
i

)

⊂ N(f),

that proves that N
(

XG(k)
i

)

⊂ N(f) for all i = 1, . . . r and all k = 2, . . . , ei.

We can proceed similarly with the polynomials h
(k)
i and conclude this way

the proof of (i) and (ii).
We turn to the proof of (iii). If k > 1, then by Definition 15 we clearly

have
daE ,bE (aEXG(k)

i + bEYH(k)
i ) ≤ daE ,bE (f)− 1.

If k = 1, denote by f top the homogeneous part of f with maximum weighted
degree daE ,bE (f). Then, Euler’s relation

aEX∂Xf
top + bEY ∂Y f

top = daE ,bE (f)f
top

allows to conclude.
It remains to prove (iv). For all i = 1, . . . , r and k = 1, . . . , ei, set

g
(k)
i =

f

fk
i

∂Xfi, h
(k)
i =

f

fk
i

∂Y fi. (3.7)

We will prove that the
∑r

i=1 ei elements (g
(k)
i , h

(k)
i ) defined by (3.7) are K-

linearly independent and then the desired result will follow directly. So sup-
pose that there exists a collection of λi,k ∈ K such that

r
∑

i=1

ei
∑

k=1

λi,kg
(k)
i = 0,

r
∑

i=1

ei
∑

k=1

λi,kh
(k)
i = 0

and choose an integer j ∈ {1, . . . , r}. We have

r
∑

i=1

ei
∑

k=1

λi,kg
(k)
i g

(ej)
j = 0

and since f divides g
(k)
i g

(ej)
j for all i 6= j, we deduce that

ej
∑

k=1

λj,kg
(k)
j g

(ej)
j = 0 mod f.
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Equivalently, there exists a polynomial T ∈ K[X, Y ] such that

fT = λj,1
f

fj

f

f
ej
j

(∂Xfj)
2 + · · ·+ λj,ej

f

f
ej
j

f

f
ej
j

(∂Xfj)
2

that is to say, such that

f
ej
j T = (∂Xfj)

2 f

f
ej
j

(λj,1f
ej−1
j + · · ·+ λj,ej).

Therefore, either fj divides ∂Xfj or either f
ej
j divides (λj,1f

ej−1
j + · · ·+ λj,ej).

A similar reasoning by replacing g
(k)
i with h

(k)
i shows that either fj divides

∂Y fj or either f
ej
j divides (λj,1f

ej−1
j + · · ·+ λj,ej). Now, since deg fj ≤ d < p

and f is not a constant polynomial, (∂Xfj, ∂Y fj) 6= (0, 0) and hence fj cannot
divide one of its partial derivative. It follows that necessarily f

ej
j divides

λj,1f
ej−1
j + · · · + λj,ej . But since deg(f

ej
j ) > deg(λj,1f

ej−1
j + · · · + λj,ej) we

must have λj,1f
ej−1
j + · · · + λj,ej = 0. Furthermore deg f

ej
j > deg f

ej−1
j >

· · · > deg fj , so that λj,k = 0 for all j, k. This proves that the (g
(k)
i , h

(k)
i ),

hence the (G(k)
i ,H(k)

i ), are linearly independent over K.

Observe that the technical hypothesis f(0, 0) 6= 0 in (ii) is necessary.
Indeed, if f = X3(Y 2+X+1), f1 = X and e1 = 3 thenXGe1

1 = X(Y 2+X+1)
and its Newton’s polygon is not included in the Newton’s polygon of f .

Proof of Theorem 16. We will proceed similarly to what we did to prove
Theorem 10. Given a polynomial h(X, Y ) ∈ K[X, Y ], we define the K-linear
map

SR(h) : EN −→ K[X, Y ]

(G,H) 7−→ h2

(

∂Y

(

G

h

)

− ∂X

(

H

h

))

where

EN = {(G,H) ∈ K[X, Y ]×K[X, Y ] such that N(XG) ⊂ N , N(Y H) ⊂ N ,

daE ,bE (aEXG+ bEY H) ≤ daE ,bE (h)− 1}.

Notice that the last condition in the above definition has to be forgotten if
there does not exist a good edge E . Also, observe that all the elements intro-
duced in Definition 17 belong to the kernel of SR(f), keeping the notation
of loc. cit.
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Since we assumed thatN ⊆ N
(

(1 +X + Y )d
)

, EN is a subvector space of
the K-vector space K[X, Y ]≤d−1×K[X, Y ]≤d−1, so that SR(h) is a restriction
of the K-linear map Gd(h) introduced in Section 1, to EN . Let us compute
the dimension of this latter vector space. Pick (G,H) ∈ EN . We have
N(XG) ⊂ N , hence XG has at most p − px nonzero coefficients and so
does G, because XG and G have the same number of nonzero coefficients.
Similarly, we get that H has p− py nonzero coefficients. The condition

daE ,bE (aEXG+ bEY H) ≤ daE ,bE (f)− 1

means that the weighted homogeneous part of highest degree of G and H
are related. That is to say, we can write the homogeneous part of weighted
degree daE ,bE (f)−1 of H in terms of the homogeneous part of weighted degree
daE ,bE (f)− 1 of G. Consequently, we obtain

dimKEN = 2p− px − py − pE . (3.8)

Now, for all (µ : λ) ∈ P1
K, consider the linear map

SR(µf + λg) = µSR(f) + λSR(g)

and, choosing bases for EN and K[X, Y ]≤2d−2, the corresponding matrix

M(µf + λg) = µM(f) + λM(g).

They form a pencil of matrices that has dimKEN columns and more rows.
Then, define the polynomial Spect(U, V ) ∈ K[U, V ] as the greatest common
divisor of all the minors of size dimKEN of the matrix

UM(f) + VM(g).

It is a homogeneous polynomial of degree lower or equal to dimK EN .

The polynomial Spect(U, V ) is nonzero for the same reason as the one
given in Theorem 10, since the linear maps SR(−) are restrictions of the
linear maps Gd(−). The fact that this property remains valid if p > d(d− 1)
is a consequence of [Gao03, Lemma 2.4] where Gao studied the property of
the linear map Gd(−) for square-free polynomials in positive characteristic.

Now, let (µ : λ) ∈ σ(f, g). Then dim kerM(µf + λg) > 0 and (µ : λ)
is root of Spect(U, V ) of multiplicity, say η. Since η ≥ dimkerM(µf + λg),
Proposition 18 gives some lower bounds for η that allow to conclude the proof
of this theorem as follows.
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• If N(f), N(g) ⊂ N , then Proposition 18,(i),(iii) and (iv) implies that
η ≥ n(µ : λ)− 1 if deg(µf + λg) = d or η+ κ ≥ n(µ : λ)− 1 otherwise.
Summing over all the elements in σ(f, g) we deduce the bound (3.2).

• If N(f)+, N(g)+ ⊂ N , then Proposition 18,(i), (ii) - first part, (iii)
and (iv) implies that η ≥ m(µ : λ) − 1 if deg(µf + λg) = d or
η + κ ≥ m(µ : λ)− 1 otherwise. Summing over all the elements in
σ(f, g) we deduce the bound (3.3).

• If N(f), N(g) ⊂ N and (−g(0, 0) : f(0, 0)) /∈ σ(f, g), then Proposition
18,(i), (ii) - second part, (iii) and (iv) implies that η ≥ m(µ : λ)− 1 if
deg(µf + λg) = d or η+ κ ≥ m(µ : λ)− 1 otherwise. Summing over all
the elements in σ(f, g) we deduce the bound (3.4).

Notice that we used the fact that the polynomial Spect(U, V ) is of degree
lower or equal to dimKEN . �

To finish, point out that we can not state a result similar to Theorem
16 in terms of the Newton’s polygon of f and g ∈ K[X1, . . . , Xn] following
the above strategy because we are not able to preserve the sparsity of the
polynomials through Bertini’s Theorem.
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