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QUASI-COMPLETE HOMOGENEOUS

CONTACT MANIFOLD

ASSOCIATED TO A CUBIC FORM

JUN-MUK HWANG1, LAURENT MANIVEL

Dedicated to S. Ramanan

1. Introduction

This note is at the crossroad of two different lines of study.
On the one hand, we propose a general construction of a homogeneous

quasi-projective manifold Xc associated to a cubic form with a mild gener-
icity property. These manifolds are rationally chain connected (Proposition
2), a property which relates our study to that of certain types of homoge-
neous spaces considered in [2, 3, 4].

On the other hand, we show that our manifolds Xc are endowed with
natural contact structures (Proposition 3). Our construction thus appears
as part of the general study of contact projective and quasi-projective man-
ifolds. Of course the projective case is the most interesting one, the main
open problem in this area being the Lebrun-Salamon conjecture: the only
Fano contact manifolds should be the projectivizations of the minimal nilpo-
tent orbits in the simple Lie algebras. As explained in section 4, our con-
struction is in fact modeled on these homogeneous contact manifolds, which
are known to be associated to very special cubic forms: the determinants of
the simple cubic Jordan algebras.

Under both points of view, one of the most interesting questions one may
ask about the quasi-projective contact manifolds Xc is about their compact-
ifications. Even the existence of a small compactification (that is, with a
boundary of codimension at least two) is not clear. Also, it is extremely
tempting to try to construct new projective contact manifolds by compact-
ifying some Xc in such a way that the contact structure extends. We show
that this is possible if and only if the cubic c is the determinant of a simple
cubic Jordan algebra (Proposition 6). This can be interpreted as an evidence
for the Lebrun-Salamon conjecture.

1 supported by the Korea Research Foundation Grant funded by the Korean Govern-
ment (MOEHRD)(KRF-2006-341-C00004).

1



2 JUN-MUK HWANG AND LAURENT MANIVEL

2. Homogeneous spaces defined from cubics

Let V be a complex vector space of dimension p. Let c ∈ S3V ∗ be a cubic
form on V . Let B : S2V → V ∗ be the system of quadrics defined by

B(v1, v2) = c(v1, v2, ·).

In all the sequel we make the following

Assumption on c. The homomorphism B is surjective.

Let W be a complex vector space of dimension 2. Fix a choice of a non-
zero 2-form ω ∈ ∧2W ∗.

Let n := n1 ⊕ n2 ⊕ n3 where

n1 := V ⊗W, n2 := V ∗, n3 := W.

Define a graded Lie algebra structure on n, by

[v1 ⊗ w1, v2 ⊗w2] = ω(w1, w2)B(v1, v2),

[v∗1 , v2 ⊗w2] = v∗1(v2) w2.

The Jacobi identity holds because dimW = 2.
Let N be the nilpotent Lie group with Lie algebra n. For a point ℓ ∈ PW ,

denote by ℓ̂ ⊂W the corresponding 1-dimensional subspace. Let

aℓ := V ⊗ ℓ̂ ⊂ V ⊗W = n1

be the abelian subalgebra of n and Aℓ ⊂ N be the corresponding additive
abelian subgroup. We have the smooth subvariety A ⊂ N × PW defined by

A := {(g, ℓ), g ∈ Aℓ}.

This variety A can be viewed as a family of abelian subgroups parametrized
by PW . Let ψ : Xc → PW be the family of relative quotients

Xc := {N/Aℓ, ℓ ∈ PW}

with the quotient map ξ : N × PW → Xc. Then

dimXc = dimN + 1 − p = 2p+ 3.

Observe that ψ is a locally trivial fibration whose fibers are isomorphic
to affine spaces. But it is not a vector nor an affine bundle. In fact the
transition functions are quadratic, because the nilpotence index of N is
three.

The variety Xc is homogeneous under the action of the group

G := N ⊳ SL(W ) (semi-direct product).

Let o ∈ N be the identity and ℓ ∈ PW be a fixed base point. Then xℓ :=
ξ(o × ℓ) will be our base point for Xc. Its stabilizer is H = Aℓ ⊳ Bℓ, if Bℓ
denotes the stabilizer of ℓ in SL(W ). Moreover a Borel subgroup of G is
B = N ⊳ Bℓ, and we have a sequence of quotients

G→G/Bℓ
ξ
→ G/H = Xc

ψ
→ G/B = PW.
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Proposition 1. (1) Xc is simply connected.

(2) Let L := ψ∗
OPW (1). Then Pic(Xc) = ZL.

Proof. As a variety, each Aℓ is nothing but an affine space. So the variety
Xc being fibered in simply connected manifolds over the projective line, is
simply connected. This proves (1).

The character group X(G) of G being trivial, the forgetful map

α : PicG(Xc)→Pic(Xc)

is injective ([9] Proposition 1.4). Moreover the Picard group of G is trivial,
so α is in fact an isomorphism (see the proof of Proposition 1.5 in [9]). But
PicG(Xc) ≃ X(H) and an easy computation shows that X(H) = X(Bℓ).
This implies (2). �

Note that G is generated by H and SL(W ) such that H ∩ SL(W ) is a
Borel subgroup of SL(W ). Thus we can apply Proposition 4.1 in [4] to
deduce:

Proposition 2. The variety Xc is rationally chain connected. In particular,

Xc is quasi-complete, i.e., there is no non-constant regular function on Xc.

In fact, it is easy to show that for any n ∈ N , the image of {n} × PW
under ξ is a smooth rational curve on Xc with normal bundle of the form
O(1)p ⊕ O

p+2.

3. Contact structures

Consider the tangent spaces

To×ℓ(N × PW ) = n1 ⊕ n2 ⊕ n3 ⊕ Tℓ(PW )

Txℓ
(Xc) = n1/aℓ ⊕ n2 ⊕ n3 ⊕ Tℓ(PW ).

Using the subspace ℓ̂ ⊂W = n3, we define the hyperplane

Dxℓ
:= n1/aℓ ⊕ n2 ⊕ ℓ̂⊕ Tℓ(PW )

inside Txℓ
(Xc). This hyperplane is invariant under the action of the stabilizer

H of xℓ in G = N ⊳SL(W ), so we get a well-defined hyperplane distribution
D ⊂ T (Xc) with T (Xc)/D ∼= L.

Proposition 3. The distribution D ⊂ T (Xc) defines a contact structure.

Remark. Observe that since

Dxℓ
= (V ⊗W/ℓ̂) ⊕ V ∗ ⊕ ℓ̂⊕ Hom(ℓ̂,W/ℓ̂),

there is a natural W/ℓ̂-valued symplectic pairing on Dxℓ
. Note that W/ℓ̂

is the fiber of L at xℓ. This shows that the bundle D has an L-valued
symplectic form, and indeed this symplectic form comes from the contact
structure

0 → D → T (Xc) → L→ 0.
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Proof. Let Yc be the variety defined as the complement L× of the zero section
in the total space of the line bundle dual to L. Let θ be the L-valued 1-form
on Xc defining D. To check that θ is a contact form, it suffices to show
that the 2-form dθ̃ where θ̃ is the pull-back of θ to Yc, is symplectic (see [1],
Lemma 1.4).

To check this we make a local computation. Let m ∈ PW be some point
distinct from ℓ and m̂ ⊂W be the corresponding line. Then

nm := (V⊗m̂) ⊕V ∗⊗W ⊂ n

defines a complement to aℓ ⊂ n. We can define a local analytic chart on Xc

around xℓ by

x(X, p) = ξ(exp(X) × p),

where X ∈ nm and p ∈ PW −m. Let us write down θ in that local chart.
Since the chart preserves the fibration over PW we just need to compute over
ℓ. The differential eX of the exponential map atX, seen as an endomorphism
of nm, is defined by the relation

exp(X + teX(Y ) +O(t2))xℓ = exp(X)exp(tY )xℓ.

Now we can use the fact that N being 3-nilpotent, the Campbell-Hausdorff
formula in N is quite simple: we have exp(X)exp(Y ) = exp(H(X,Y )) for
X,Y ∈ n, with

H(X,Y ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]].

We easily deduce that eX(Y ) = Y + 1
2 [X,Y ] + 1

12 [X, [X,Y ]]. Now we can
decompose this formula with respect to the three-step grading of n. If Z =
eX(Y ) = Z1 + Z2 + Z3, we find that

Z1 = Y1,

Z2 = Y2 +
1

2
[X1, Y1],

Z3 = Y3 +
1

2
[X1, Y2] +

1

2
[X2, Y1] +

1

12
[X1, [X1, Y1]],

which can be inverted as

Y1 = Z1,

Y2 = Z2 −
1

2
[X1, Z1],

Y3 = Z3 −
1

2
[X1, Z2] −

1

2
[X2, Z1] +

5

12
[X1, [X1, Z1]].

Since the hyperplane Dxℓ
is defined by the condition that Y3 belongs to ℓ̂,

we deduce that the contact form is given at x(X, ℓ), in our specific chart, by
the formula

θx(X,ℓ)(Z) = Z3 −
1

2
[X1, Z2] −

1

2
[X2, Z1] +

5

12
[X1, [X1, Z1]] mod ℓ̂.
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Even more explicitly, if we write Z1 = z1⊗m and X1 = x1⊗m, we have
[X1, Z1] = 0, [X1, Z2] = Z2(x1)m and [X2, Z1] = −X2(z1)m, so

θx(X,ℓ)(Z) = Z3 +
1

2
(X2(z1) − Z2(x1))m.

Now we pull-back θ to Yc = L×. A local section of L× around ℓ is given by
m∗ − zℓ∗ over the point p = ℓ + zm of PW . Over φ = y(m∗ − zℓ∗), we get
the 1-form on L× given in our local chart by

θ̃x(X,p),φ(Z, Y ) = y(m∗ − zℓ∗)(Z3) +
y

2
(X2(z1) − Z2(x1)).

If Z3 = Z1
3m+ Z2

3ℓ, this can also be written as:

θ̃x(X,p),φ = y(dX1
3 − zdX2

3 ) +
y

2
(X2dX1 −X1dX2).

We can easily differentiate this expression and evaluate it at xℓ. We obtain

dθ̃xℓ,ym
∗ = dy ∧ dX1

3 − ydz ∧ dX2
3 + ydX2 ∧ dX1.

Since y is a non zero scalar this 2-form is everywhere non-degenerate. By
homogeneity this remains true over the whole of L×, and the proof is com-
plete. �

4. Projective homogeneous contact varieties

Consider a complex simple Lie algebra g and the adjoint variety

Yg = POmin ⊂ Pg,

the projectivization of the minimal nilpotent orbit Omin. Then Yg is homo-
geneous under the action of the adjoint group G = Aut(g). Suppose that
Pic(Yg) ≃ Z (this is the case if and only if g is not if type A). Then the
variety F of lines on Yg is G-homogeneous and we can describe a line as
follows. Choose T ⊂ B ⊂ G a maximal torus and a Borel sugbroup. Let gψ
denote the root space in g associated to the highest root ψ. Then Yg = Ggψ
and the stabilizer of gψ is the maximal parabolic subgroup Pα of G defined
by the unique simple root α such that ψ − α is a root. Moreover the line
ℓ = 〈gψ, gψ−α〉 is contained in the adjoint variety Yg, and F = G.ℓ.

There is a five-step grading on g defined by the highest root ψ, as follows.
Define Hψ ∈ [gψ, g−ψ] by the condition that ψ(Hψ) = 2. Then the eigen-
values of ad(Hψ) are 0,±1,±2 and the eigenspace decomposition yields the
five-step grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

We have g2 = gψ, while gα and gψ−α are respectively lines of lowest and
highest weights in g1.

Since gψ−α defines, exactly as gψ, a point of the adjoint variety, we can
use the root ψ − α to define another five-step grading. Since ad(Hψ) and
ad(Hψ−α) commute, we get a double grading on g. Moreover, the stabilizer



6 JUN-MUK HWANG AND LAURENT MANIVEL

s ⊂ g of the line ℓ ⊂ g decomposes as follows (where the grading defined by
ad(Hψ) can be read horizontally):

g−α
g00 g10

gα g11 g21 gψ−α
gψ

Let W = gψ−α ⊕ gψ ≃ C
2 and V = g∗21. The map g10 ⊗ g21 → g31 = gψ−α

defined by the Lie bracket is a perfect pairing, as well as g11⊗g21 → g32 = gψ,
giving a natural identification

g10 ⊕ g11 ≃ V⊗W

and isomorphisms

g10
φ

−→ g11
∼= V.

The positive part of the vertical grading of s thus reads

(V⊗W ) ⊕V ∗⊕W = n.

Note that the degree zero part of this grading reads sl(W ) × h00, where
g00 = [g−α, gα]⊕h00 is an orthogonal decomposition with respect to the
Killing form.

The cubic form c on V is defined (up to scalar) once we identify g10 with
g11, through the map φ. We also need to choose a generator Xψ of gψ. Then
we can define c by the formula

[φ(X), [φ(X),X]] = c(X)Xψ ∀X ∈ g10 ≃ V.

Remark. This construction is closely related to the ternary models for simple
Lie algebras considered in [7], section 2. These models are of the form

g = h × sl(U) ⊕ (U⊗V ) ⊕ (U∗⊗V ∗),

where U is three dimensional, and V is an h-module. To define a Lie bracket
on g, one needs a cubic form c on V , a cubic form c∗ on V ∗, and a map
θ : V⊗V ∗→h. Then the Jacobi identity implies a series of conditions on
these data, including that

h ⊂ Aut(c) ∩Aut(c∗).

These conditions should ultimately lead to a cubic Jordan algebra structure
on V . If we choose a maximal torus in sl(U) and use the associated grading
on U,U∗, we get an hexagonal model as in Figure 2 of [8] :
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g−α

g−ψ g−1−1 g10 gψ−α

g−2−1 g00 g21

gα−ψ g−10 g11 gψ

gα

The subalgebra we denoted n is the sum of the factors in the last three
columns. and we can add the factor sl(W ) from the middle column in order
to get s.

Once we have defined the cubic c associated to the simple Lie algebra
g, we have the associated homogeneous space Xc with its natural contact
structure. A direct verification gives:

Proposition 4. The homogeneous space Xc is an open subset of Yg, with

a codimension two boundary. Its contact structure is the restriction of the

natural contact structure on Yg.

It is tempting, but illusory, as we shall see, to try to construct new pro-
jective contact manifolds as suitable compactifications of our homogeneous
spaces Xc for other types of cubics.

5. Compactifications

Since all regular functions on Xc are constant, we can expect that Xc

admits a small compactification, that is, a projective variety X̄c containing
Xc as an open subset in which the boundary of Xc has codimension two or
more. By Theorem 1 in [3] and Lemma 1, it is enough to check that the
algebra of sections

R(Xc, L) =
∞⊕

k=0

Γ(Xc, L
k)

is of finite type, as well as all the R(Xc, L
m), for m ≥ 1. We have not been

able to prove this but we can make the following observations.

Since the Lie algebra g of G = N ⊳SL(W ) preserves the contact structure
we have defined on Xc, there must be a morphism ϕ from Xc into Pg∗ (see
[1], Section 1). In fact, any contact vector field on a contact manifold defines
a holomorphic section of the contact line bundle L. Thus g defines a linear
subsystem in |L|. The morphism is always etale over its image, and since
our Xc is simply connected we conclude that ϕ embeds Xc as a coadjoint
orbit in g∗. We thus have a natural projective compactification of Xc in Pg∗.
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Note that the inclusion of Xc in Pg∗ is just the projectivization of the
moment map of the symplectic variety Yc = L×. We have a commutative
diagram

Yc
µ

−→ g∗

↓ ↓

Xc
ν

−→ Pg∗

Here µ denotes the (G-equivariant) moment map and ν is its quotient by the

C
∗-action. We have g∗ = n∗ ⊕ sl(W )∗ and the component µ′ of µ on n∗ is

not injective, since the N action on Xc preserve the P
1-fibration. Consider

µ′(Yc) ⊂ n∗.

Proposition 5. Suppose that the cubic hypersurface Zc ⊂ PV be smooth.

Then the boundary of µ′(Yc) has codimension at least two.

Proof. We can describe explicitly the closure of µ′(Yc) as the set of triples
(φ1, φ2, φ3) ∈ n∗ such that

ω(φ1, φ3) = c(φ2, φ2, .),

where ω : (V ∗⊗W ) ×W → V ∗ is the natural bilinear map.
If φ3 6= 0, we are in µ′(Yc). Thus on the boundary, we must have φ3 = 0,

and then c(φ2, φ2, .) = 0. But under our smoothness assumption on Zc,
this implies that φ2 = 0. So the boundary of µ′(Yc) has dimension at most
2p = dimµ′(Yc) − 2, the number of parameters for φ1. �

This seems to be a first step towards proving that Xc has a small com-
pactification. But we have not been able even to find conditions on c that
would ensure that the compactification X̄c ⊂ Pg∗ is small.

What is rather surprising is that the cubics whose associated variety Xc

has a smooth contact compactification can be completely classified. By this,
we mean a smooth projective variety X̄c compactifying Xc, with a contact
structure extending that of Xc.

Proposition 6. There exists a smooth contact compactification X̄c of Xc if

and only if c is the cubic norm of a semi-simple Jordan algebra.

Proof. We will deduce this statement from a study the variety of minimal
rational tangents Cxℓ

⊂ PDxℓ
. Note that the space of lines on Xc through

xℓ is just ξ−1(xℓ) ∼= Aℓ ∼= V .

We claim that the tangent map sending a line through xℓ to its tangent
direction in PDxℓ

is equal, up to scalars, to the rational map

τ : V → PDxℓ
= P(V ⊕ V ∗ ⊕ C ⊕ C)

τ(v) := [v : B(v, v) : c(v, v, v) : 1].

Indeed, a line through xℓ in Xc is of the form ℓg = ξ(g × PW ) for g ∈ Aℓ.
To write this line in the local chart we used in the proof of Proposition 3
(we use the same notations), we must write

ξ(g × p) = exp(Z)ξ(o× p).



HOMOGENEOUS CONTACT MANIFOLD 9

If g = exp(X) withX ∈ V⊗ℓ, this amounts to solving the equation exp(X) =
exp(Z)exp(W ), with Z ∈ nm and W ∈ V⊗p. So X = H(Z,W ), and if we
write X = v⊗ℓ for some v ∈ V , we must have W = v⊗p and then we get,
up to term of order at least two in z,

Z1 = −zv⊗m,

Z2 = −
1

2
[Z1,W ] =

z

2
B(v, v),

Z3 = −
1

6
[Z1, [Z1,W ]] = −

z

6
c(v)ℓ.

This proves the claim.
We can now conclude the proof as follows. By the results of [5], the closure

of the image of this map must be smooth if there exists a smooth contact
compactification of Xc. So the closure of the image of the map τ must be
smooth. But then we can apply Corollary 26 in [6]. �
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