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NONLINEAR DYNAMICAL BEHAVIOR OF SHAPE MEMORY 
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*Institut Femto-ST / dpt. Laboratoire de Mécanique Appliquée, 25000 Besançon, France

e-mail: frederic.thiebaud2@univ-fcomte.fr 

Abstract: Shape Memory Alloys (SMAs) are good candidates for being used as passive 

dampers, strain sensors, stiffness or shape drivers. In order to develop the use of these alloys 

in structural vibration control, we present in this paper how the implementation (Thiebaud & 

al. (2007)) of a phenomenological model based on the Rl model (Raniecki & al. (1992)) in a 

finite element code is used. This implementation permits us to simulate internal loops in order 

to characterize the stiffness and the damping effect by an Equivalent Complex Young's 

Modulus approach under many static strain offsets. The results confirmed a dynamic 

mechanical analysis leaded on a SMA wire sample and, clearly show us the influence of an 

initial static strain offset and the amplitude of vibration on the damping effect and the 

stiffness.  

Keywords: Shape Memory Alloys – Numerical Implementation – Equivalent Complex 

Young’s Modulus – Damping Effect – DMA Analysis – Harmonic Balance  

1. Introduction
Shape Memory Alloys (SMAs) are widely studied as smart materials because of its 

potentiality to be used as dampers, absorbers or actuator elements. For damping applications, 

the understanding of the material dynamic behavior is needed. One uses the loss of stiffness 

linked to the martensite transformation between a mother phase called austenite and a product 

phase called martensite. Also the process of reorientation of martensite platelets called 

sometimes pseudoplasticity can be used. In this case, the SMAs elements are used as 

absorbers mainly for seismic applications (Bono & al. (1999), Tirelli & al. (2000), Magonette 

& al. (2000)). The best example of structure control by SMAs can be founded in the basilic S
t
 

François d'Assise in Italy. For technological applications, the effect of a static strain offset on 

the dynamical response of a system is investigated. In order to evaluate stiffness and damping 

evolutions during the martensite transformation, a method based on an Equivalent Complex 

Young’s Modulus determination (Collet & al. (2001)) is initiated. In this present paper at first, 

a phenomenological model at the macroscopic scale in the frame of the thermodynamics of 

irreversible process devoted to multiaxial pseudoelasticity is recalled. Taking into account 

that experiments are investigated on a SMA wire (one dimension), only a one-dimensional 

version of the so-called Rl model (Raniecki & al. (1992)) is written. In a second stage, 

Equivalent Complex Young's Modulus method is quickly described, a dynamic mechanical 

analysis leaded on SMAs wires samples is leaded. Finally the stiffness and damping evolution 

as the function of the loading path investigated and comparison between simulations and 

experiments, exposed. 

2. A thermomechanic model for the pseudoelasticity
Modeling material behavior needs classically a choice of a thermodynamic potential and also 

a dissipation potential function or some yield functions of phase transformation (as it is the 
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scheme in plasticity). Hence, a Helmholtz free energy and two yield functions, the first for the 

forward transformation (A M) and the second for the reverse phase transformation (M A) 

are chosen. The appropriate internal variable is the volume fraction of martensite M: ξ  

( (1 )ξ−  being the volume fraction of austenite A). 

The free energy function of the two phases REV (Reference Elementary volume) is chosen as: 

( ) ( )( ) ( )2 1 1

0 0 0 0 0

1
, , ( ) 1 ( )

2

f

it

E
T T T u Ts T Tε ξ ε γξ α ξπ ξ ξ φ

ρ
Φ = − − − + − − + −  

 

(2.1) 

where 0 ( )f
Tπ  represents the thermodynamic force associated to the phase transformation 

under the stress free state: 
* *

0 ( )f
T u T sπ = Δ − Δ  (2.2) 

with *
uΔ *( )sΔ  the difference between internal energy (entropy) of austenite and martensite 

defined by: 
* *1 *2 * *1 *2

0 0 0 0,    u u u s s sΔ = − Δ = − . (2.3) 

it
φ  represents the coefficient of internal interaction between the martensite platelets and the 

mother phase: 

0 0( )
it

T u Tsφ = − . (2.4) 

In a classical way, the stress can be obtained as: 

( )( )0 0E T T
φσ ρ ε γξ α
ε
∂

= = − − −
∂

. 
 

(2.5) 

The thermodynamic force associated to the progress of the phase transformation can be 

written as: 

0( , , ) ( ) (1 2 ) ( )f

f itT T T
φ γσπ σ ξ π ξ φ
ξ ρ
∂

= − = + − −
∂

. 
(2.6) 

A classical calculation delivers the expression of the increment of dissipation dD which 

cannot be negative: 

0
f

dD dπ ξ= ≥ . (2.7) 

Thus, the present inequality precludes the forward phase transformation if 0fπ ≥  and the 

reverse one if 0fπ ≤ . One has to note that 0fπ =  implies the equilibrium condition. In order 

to specify the kinetic equations driving the phase transformation, we presume that there exist 

two functions ( , )fαψ π ξ , ( )1, 2α =  such that an active process of parent phase 

decomposition can only proceed when 1 0dψ =  and an active process of martensite 

decomposition can only proceed if 2 0dψ = . These yield functions are chosen as: 

( )1 (1)

f
kψ π ξ= − ,   ( )2 (2)

f
kψ π ξ= − + . (2.8) 

The expression of ( )kα ξ  are built to give kinetics in agreement with the measurements of 

metallurgists as Koistinen and Marbuger (Koistinen & al. (1959)): 

( )(1)

1 ln(1 )k Aξ ξ= − − ,   ( )(2)

2 ln( )k Aξ ξ= . (2.9) 

Thanks to derivation, the kinetic laws for forward and reverse phase transformation are 

obtained:  
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(2.10) 
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It is known that the forward transformation is exothermic and the reverse transformation 

endothermic. Many studies have shown or just taken into account the temperature influence: 

for dynamic loadings by Collet (Collet & al. (2001)) or for the rate effects loading by 

Lexcellent and Rejzner (Lexcellent & al. (2001)). The phase transformation which occurs 

during a period of vibration is supposed to be adiabatic. In this case, the expression of the heat 

equation is thus obtained: 

( )( )*, ,
f

Cv T T T sπ σ ξ ξ⋅ = + ⋅Δ . (2.11) 

This equation is used to quantify the temperature evolution inside the SMA wire sample. 

3. Prediction of the dynamical behavior
This study will allow us to characterize the stiffness and damping of SMAs as function of a 

static strain offset 0ε  and the amplitude of vibration 
m
ε   by using the Equivalent Complex 

Young’s Modulus approach. First of all, a simple strain load/unload until 10% is done on a 

NiTi wire (length: L0=30mm and diameter: D=0.59mm) in order to identify the constants of 

the used SMA (NiTi). The following figure 1 shows us the tensile testing machine with the 

NiTi wire (a) and, the SMA wire response (b). 
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a. Tensile testing machine with the NiTi wire b. SMA wire response

Figure 1. Tensile test for the identification of the constants of the NiTi wire 

Thus, the used constants are identified and recalled in the table 1. 

Table 1. Constants used for NiTi alloy 

Designation Notation Value Unit

Mechanical 
   Young’s modulus 

   Transformation strain 
E 
γ  

52 

8.5% 

GPa 

∅ 

Physical 
   External temperature 

   Density 

   Driving force 

   Coefficient of internal interaction 

   Coefficient A1 

   Coefficient A2 

T0 

ρ 

π0
f
(T0) 

φit(T0) 

A1 

A2 

293 

6723 

-4538 

1782 

699 

280 

K 

kg/m3 

J/kg 

J/kg 

J/kg 

J/kg 

3.1 Numerical implementation 
Taking into account the pseudoelastic behavior explained in the section 2, the equilibrium of a 

wire cross-section leads us to the vibration wave equation of the wire in tension: 

3



2 2

2 2

( , ) ( , )u x t u x t
E E

t x x

ξρ γ∂ ∂ ∂
= −

∂ ∂ ∂
. 

 

(3.1) 

This equation is thus coupled with both kinetic equations and the heat equation: only one 

linear Lagrange element is used to build the finite element model (Thiebaud & al. (2007)). 

This model is illustrated on the figure 2a and a simulated cycle on the figure 2b. One can 

notice a good correspondence between the numerical simulated cycle and the tensile test of 

the sample. 
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Numerical simulation

Experimental test

a. FEM model with Lagrange element b. Tensile testing machine with the NiTi wire 

Figure 2. Numerical implementation of the wire in tension 

 

3.2 Equivalent Complex Young’s Modulus 
The Equivalent Complex Young’s Modulus is a powerful tool usually used to describe the 

elastic behavior and the damping properties of a viscoelastic material under dynamical 

loading (Collet (2001)). This modulus can be generalized to quantify, on the first harmonic, 

the response of a nonlinear hysteretic material. 

The constitutive relation between the stress σ  and strain ε  for a dissipative material subject 

to steady state harmonic can be written as: 

( )* 1E E iσ ε η ε= = +  (3.2) 

where *
E is the complex modulus, E the storage modulus and η the loss factor. For a 

harmonic strain input ( )0( ) cos
m

t tε ε ε ω= + and the corresponding measured stress ( )tσ , the 

storage modulus and the loss factor are evaluated as : 

{ }02 2 0 0
0

( ) ( ) cos
2

T T

m

m

E t dt t tdt
ω ε σ ε σ ω

πε πε
= +

+ ∫ ∫  

0
( )sin

T

m

E t tdt
ωη σ ω
πε

= − ∫ . 

(3.3) 

 

 

(3.4) 

Thus, the harmonic strain input ( )tε  and the corresponding stress ( )tσ  are evaluated as: 

{ } ( )ˆ( ) Re ( ) cosmt t tε ε ε ω= =  

{ } ( ) ( )( )ˆ( ) Re ( ) cos sin
m

t t E t tσ σ ε ω η ω= = − . 

(3.5) 

 

(3.6) 

A graphical representation of both previous equations in the ( ),ε σ axis system yields the 

classical stress/strain elliptical hysteresis cycle of a damping material subjected to harmonic 

excitations of amplitude 
m
ε , figure 3. 

Node 1 Node 2 

L0=30mm 

u1 u2 

1 element, 2 nodes, 2 degrees of freedom

u(t)L0 

x  0 
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Figure 3. Hysteresis cycle of a dissipative material with storage factor and loss modulus 

undergoing cyclic strain oscillations of amplitude 0ε . 

 

3.3 Experimental investigations 
In order to predict the dynamical behavior of SMAs, a series of experimental tests is leaded 

on the tensile testing machine. This dynamic mechanical analysis is automatically done by the 

machine software, with a FFT Fourier analysis. The static strain offset 0ε  (and thus u0) is 

reached linearly and ten vibration cycles are simulated with amplitude of 
m
ε (and thus um) and 

a frequency of 1Hz in order to get a stabilize response cycle. Finally, only this last stabilized 

response is kept and used to evaluate the storage modulus and the loss factor by the resolution 

of both equations (3.5) and (3.6). A suitable value of 0ε  is fixed at 4%. Beyond this limit, the 

fatigue effects can be sufficient to quickly lead the wire to the rupture. Also, 
m
ε is with most 

equal to 0ε . The figure 4 shows us the command function (a) and the material answer (b). The 

table 2 presents the used values for U0 and Um. 
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Figure 4. Vibration tests 

 

Table 2. Used values for U0 and Um 

U0 (mm) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

 

 

 

Um (mm) 

0.01 

0.02 

0.03 

0.04 

0.05 

… 

0.01 

0.02 

0.04 

0.06 

0.08 

… 

0.01 

0.02 

0.03 

0.06 

0.09 

… 

0.01 

0.02 

0.04 

0.08 

0.12 

… 

0.01 

0.03 

0.05 

0.10 

0.15 

… 

0.01 

0.03 

0.06 

0.12 

0.18 

… 

0.01 

0.03 

0.05 

0.07 

0.14 

… 

0.01 

0.04 

0.08 

0.16 

0.24 

… 

0.01 

0.04 

0.09 

0.18 

0.27 

… 

0.01 

0.04 

0.07 

0.10 

0.20 

… 

0.01 

0.04 

0.07 

0.11 

0.22 

… 

0.01 

0.05 

0.07 

0.12 

0.24 

… 
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0.09 

0.10 

0.18 

0.20 

0.27 

0.30 

0.36 

0.40 

0.45 

0.50 

0.54 

0.60 

0.63 

0.70 

0.72 

0.80 

0.81 

0.90 

0.90 

1.00 

0.99 

1.10 

1.08 

1.20 

 

Finally, one can represents on the figure 5, the measured storage modulus E and the measured 

loss factor η  in function of the static strain offset 0ε  and the amplitude of vibration 
m
ε . 
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Figure 5. Equivalent Complex Young’s Modulus measured components in function of the 

static strain offset 0ε  and the amplitude of vibrations
m
ε . 

 

The same figures are now represented in three dimensions on the following figure 6: 
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a. Measured storage factor E b. Measured Loss factor η 

Figure 6. Equivalent Complex Young’s Modulus measured components in function of the 

static strain offset 0ε  and the amplitude of vibration 
m
ε - representation in three dimensions 

 

The following observations can be made based on these experiments: as the excitation 

amplitude increases, a decrease of the storage modulus is observed. This storage modulus is 

minimal for a static strain offset between 1.25% to 4% which corresponds to a strain located 

on the plateau of transformation. As the excitation increases, an increase of the loss factor is 

observed. This loss factor is maximal for a static strain offset between 1.5% to 4% which 

corresponds to a deformation located on the plateau of transformation too. A priori, one can 

conclude that the wire must be partially transformed to present interesting damping 

properties.  

 

3.4 Simulations, numerical results  
In order to confront these previous results given in the section 3.3, a series of numerical tests 

is done. The storage factor E and the loss modulus η are thus calculated in Matlab
©

 as post 
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processing with the same values of U0 and Um exposed in the table 2. Thus, one can represent 

on the figure 7, the storage modulus E (7a) and the loss factor η (7b) versus the static strain 

offset 0ε  and the vibration strain 
m
ε . 
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Figure 7. Equivalent Complex Young’s Modulus components in function of the static strain 

offset 0ε  and the amplitude of vibration 
m
ε . 

 

The same figures are now represented in three dimensions on the following figure 8: 
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Figure 8 . Equivalent Complex Young’s Modulus components in function of the static strain 

offset 0ε  and the amplitude of vibration 
m
ε - representation in three dimensions 

 

The following observations can be made based on the results: as the excitation amplitude 

increases, an decrease of the storage modulus is observed. This storage modulus is minimal 

for a static strain offset between 1.5% to 4% which corresponds to a deformation located on 

the plateau of transformation. As the excitation increases, a increase of the loss factor is 

observed. This loss factor is maximal for a static strain offset between 1.5% to 4% which 

corresponds to a deformation located on the plateau of transformation too. But a difference is 

noticed for a static strain offset upper than 1.5% and small amplitude of vibration: whereas 

the experiments predict that the damping capacity is negligible, the computation shows a high 

damping capacity inside this area. Everywhere else, the numerical simulations are in good 

agreement with the experiments leaded on the tensile testing machine. 

 
Conclusion 
In this paper, the characterization of the dynamic behavior of Shape Memory Alloys versus of 

two parameters: the amplitude of vibration and the static strain offset, has been done by using 
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the Equivalent Complex Young's Modulus approach. In a first part, the use of the 

implementation of a phenomenological model has been recalled in order to simulate internal 

loops for many cases of displacement loadings. Those internal loops were necessary to use 

this method. In the second part, the Equivalent Complex Young's Modulus has been presented 

and the material parameters identified. Many cases of displacement loadings with different 

values of the static strain offset and the strain vibration have been simulated. At last, the 

storage modulus and the loss factor (which defined the Equivalent Complex Young's 

Modulus) have been calculated from numerical simulations and several cycles done on a 

testing tensile machine. Thus, this study permits us to highlight the existence of a high 

damping zone which is localized for static strain offsets between 1.5% and 4%% and small 

strains vibration (the totally pseudoelastic behavior zone of the SMA). These investigations 

permit us to improve the nonlinear modeling of SMAs in order to develop and optimize 

applications for the control and the damping in civil engineering. 
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